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Abstract 

Background Epilepsy is a neurological disorder that is usually detected by electroencephalogram (EEG) signals. Since 
manual examination of epilepsy seizures is a laborious and time-consuming process, lots of automatic epilepsy detec-
tion algorithms have been proposed. However, most of the available classification algorithms for epilepsy EEG signals 
adopted a single feature extraction, in turn to result in low classification accuracy. Although a small account of studies 
have carried out feature fusion, the computational efficiency is reduced due to too many features, because there are 
also some poor features that interfere with the classification results.

Methods In order to solve the above problems, an automatic recognition method of epilepsy EEG signals based 
on feature fusion and selection is proposed in this paper. Firstly, the Approximate Entropy (ApEn), Fuzzy Entropy 
(FuzzyEn), Sample Entropy (SampEn), and Standard Deviation (STD) mixed features of the subband obtained by the 
Discrete Wavelet Transform (DWT) decomposition of EEG signals are extracted. Secondly, the random forest algorithm 
is used for feature selection. Finally, the Convolutional Neural Network (CNN) is used to classify epilepsy EEG signals.

Results The empirical evaluation of the presented algorithm is performed on the benchmark Bonn EEG datasets and 
New Delhi datasets. In the interictal and ictal classification tasks of Bonn datasets, the proposed model achieves an 
accuracy of 99.9%, a sensitivity of 100%, a precision of 99.81%, and a specificity of 99.8%. For the interictal-ictal case of 
New Delhi datasets, the proposed model achieves a classification accuracy of 100%, a sensitivity of 100%, a specificity 
of 100%, and a precision of 100%.

Conclusion The proposed model can effectively realize the high-precision automatic detection and classification of 
epilepsy EEG signals. This model can provide high-precision automatic detection capability for clinical epilepsy EEG 
detection. We hope to provide positive implications for the prediction of seizure EEG.

Keywords Epileptic EEG signal classification, Random forest, Convolutional neural networks, Epilepsy detection, 
Feature selection
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Introduction
Epilepsy is the second most common neurological disor-
der after stroke, according to a report from World Health 
Organization [1, 2]. People with epilepsy account for 
about 1% of the world population. Due to the uncertainty 
of ictal, epilepsy patients need to take long-term medica-
tion, which brings great harm to their bodies and mind. 
Therefore, the analysis and mining of epilepsy features 
are helpful to achieve early warning of epileptic seizures, 
which can not only ensure the personal safety of patients, 
but also remind patients to choose emergency antiepi-
leptic drugs. The development of electroencephalogram 
(EEG) has prompted the emergence of a low-cost, high-
efficiency EEG recognition technology for epilepsy [3]. 
The EEG features of epileptic patients and normal people 
are quite different. EEG activity in patients with epilepsy 
is usually divided into interictal and ictal phases, and 
there are significant differences in EEG features between 
interictal and ictal. The way that neurosurgeons read 
EEG signals to determine if people have epilepsy is a gen-
eral approach in the medical community. However, the 
observation and detection of EEG signals is a time-con-
suming and laborious task [4]. Not only does it require 
many manpower and material resources, but also has a 
high risk of misdiagnosis. Therefore, the automatic detec-
tion and classification model of EEG signals is becoming 
more and more urgent.

In recent years, in order to realize the automatic diag-
nosis of epilepsy EEG signals, various automatic detec-
tion and classification models have been proposed. In 
order to extract the features of EEG signals effectively, the 
decomposition of the signal is required to be performed 
first. Since the wavelet transform can handle non-smooth 
and complex signals such as EEG signals while the tra-
ditional Fourier transform used for time–frequency 
domain analysis of signals can only handle smooth sig-
nals, a large number of studies have employed Discrete 
Wavelet Transform (DWT) to decompose EEG signals 
[5–7]. Furthermore, analyzing and extracting the effective 
signal features play an important role in classification, 
to realize the automatic detection of epilepsy. However, 
only a single feature was adopted for EEG classification in 
most of the available studies for epilepsy EEG detection. 
In general, the features which are used to detect epilepsy 
contain the following categories: Power Spectral Density 
Energy Diagram (PSDED) represented by energy analy-
sis [5], nonlinear characteristics Approximate Entropy 
(ApEn), Distribution Entropy (DistEn), Shannon Entropy 
(ShanEn), Renyi Entropy (RenEn) and LempelZiv Com-
plexity [8–15], and Common Spatial Pattern (CSP) algo-
rithms for the spatiotemporal domain [16]. A single EEG 
feature can only describe part of the EEG features, result-
ing in poor classification accuracy. Yet, the combination 

of the above features can better reflect the features of 
EEG signals in epilepsy. For example, some studies com-
bine various nonlinear features such as Hurst Exponent 
(HE), Kolmogorov Complexity (KC), ShanEn, and Sample 
Entropy (SampEn) [15, 17, 18], and a fusion of spatial and 
temporal features could also be performed [19]. How-
ever, if too many epileptic EEG features are extracted 
and fused, it may lead to lower computational efficiency 
and information redundancy, and there are also some 
bad features that interfere with the classification results. 
Therefore, a small number of studies have performed the 
selection of hybrid features, such as features selection by 
use of genetic algorithms based on the Viral Swarm Par-
ticle Optimization (VSPO) technique [20], but the clas-
sification accuracy obtained by this method is not high. 
In addition, according to the EEG characteristics of epi-
lepsy, selecting an effective classification model is very 
critical for the automatic detection of epilepsy. With the 
development of artificial intelligence, machine learning 
models were widely used in automatic epilepsy detection, 
such as Artificial Neural Networks (ANN) [5], Random 
Forests (RF) [21], and Support Vector Machines (SVM). 
Although the traditional machine learning algorithms 
such as SVM are widely used, the method is more suit-
able for single channel and small sample datasets [13, 20, 
22–24]. However, when larger data with multiple features 
for EEG signals is analyzed, deep learning algorithms 
such as Convolutional Neural Network (CNN) have obvi-
ous advantages compared to traditional machine learning 
algorithms [8, 19, 25–28].

To address the above multi-feature extraction and 
screening problems as well as to consider the perfor-
mance of the used classifier, an automatic epileptic EEG 
signal recognition method based on feature fusion and 
selecting is proposed in this paper. Firstly, the EEG sig-
nal was decomposed by DWT, and the Joint Time–Fre-
quency Analysis (JTFA) and nonlinear analysis were used 
to extract the EEG hybrid features of epilepsy. Secondly, 
the random forest algorithm was used to select some 
important features. Finally, CNN was used to classify the 
EEG signals. The structure of this article is as follows. 
The previous related works are investigated and summa-
rized in Section II. Section III shows the dataset used in 
this experiment, in addition to describing the methods 
and algorithms used to establish the model in this paper. 
Section IV shows the experiment results and analysis. 
Finally, Section V concludes the paper by summarizing 
the contributions.

Literature survey
Many automated epileptic EEG signal classification sys-
tems using a single feature have emerged in recent years. 
In EEG signals, features can be divided into time domain, 
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frequency domain, time–frequency domain, and non-
linear features. Nonlinear features are often used in the 
classification of EEG signals [8, 10, 12, 13]. G. R. Kiran-
mayi and Udayashankara [8] proposed a method for 
nonlinear analysis of EEG based on ApEn feature, and 
the ApEn feature was extracted from the δ, θ, α, β, and γ 
subbands of healthy EEG, ictal and interictal EEG. Emran 
Ali et  al. [10] analyzed and compared the effectiveness 
of DistEn, ShanEn, RenEn, and LempelZiv Complexity 
as classification features of seizures in EEG signals. Si 
Thu Aung et  al. [12] proposed a modified Distribution 
Entropy (mDistEn) for epilepsy detection and obtained 
92% classification accuracy by exploring the advantages 
of Fuzzy Entropy (FuzzyEn) and DistEn. Deepti Tripathi 
et al. [13] described the classification of EEG signals into 
healthy, interictal, and ictal using the EMD-based Fuzz-
yEn method.

Shasha Zhang et al. [26] presented a lightweight solu-
tion. For the first stage, Pearson correlation coefficients 
are computed to obtain the correlation matrix. For the 
second stage, a simple CNN model was used to classify 
the correlation matrix to distinguish pre-episode states 
from inter-episode states with a prediction accuracy of 
89.98%.

Aayesha et  al. [29] proposed a fuzzy-based seizure 
detection model that incorporates a new feature extrac-
tion and selection method. For the binary classification 
problem of interictal and ictal periods, the classification 
accuracy rate of 96.67% was reached.

With the study of EEG characteristics, energy analysis 
of EEG signals and space–time analysis have emerged [9, 
16, 30]. Yunyuan Gao et al. [9] proposed a deep learning-
based method for the detection of epileptic EEG signals, 
where the epilepsy EEG signals were converted into 
Power Spectral Density Energy Daps (PSDED), which are 
then applied to Deep Convolutional Neural Networks 
(DCNNs) and transfer learning PSDED. N. Sriraam et al. 
[30] utilized Teager energy features to automatically 
detect seizures from multichannel EEG recordings and 
evaluated the performance of a multilayer perceptron 
neural network classifier using sensitivity, specificity, and 
false detection rate. Turky N. Alotaiby et al. [16] used the 
CSP algorithm to extract spatiotemporal domain features 
from EEG signals for the classification of EEG signals.

Rishabh Bajpai et  al. [25] applied the spectrum to 
convert EEG signals into the image domain. The spec-
tral images were then applied to CNN to learn robust 
features, which facilitate the automatic detection of 
pathological and normal EEG signals with experimental 
accuracy, sensitivity, and specificity of 96.65%, 90.48%, 
and 100%, respectively.

Zhao and Wang [31] proposed SeizureNet, a CNN-
based model for robust seizure detection of EEG 

signals. Firstly, two convolutional neural networks were 
employed to extract time-invariant features from single-
channel EEG signals. Secondly, the fully connected layer 
was used to learn the high-level features. Finally, these 
features were fed to the softmax layer for classification. 
They evaluated the model on a benchmark database pro-
vided by the University of Bonn, and a tenfold cross-vali-
dation method was used, obtaining up to 98.5% accuracy 
and 97.0% sensitivity for dichotomous mission between 
interictal and ictal period.

As seen from the above experiments, the classification 
accuracy obtained from a single feature is low. There-
fore, some other studies performed feature fusion. Many 
researchers choose to fuse nonlinear features with other 
features [15, 17, 22].Mohd Syakir Fathillah et  al. [15] 
combined multiple features such as HE, KC, ShanEn, and 
SampEn for EEG signals by studying multi-resolution 
analysis algorithms. Daniel Abásolo et  al. [17] analyzed 
EEG recordings from patients with focal epilepsy using 
two nonlinear methods of ApEn and LempelZiv com-
plexity. Yanan Lu et  al. [22] combined three features to 
classify single-channel EEG signals for seizure detection, 
and the three features contain the Kraskov entropy fea-
ture based on the Hilbert-Huang Transform (HHT), the 
instantaneous area of the analytical eigenmode function 
of EEG signals, and the Kraskov entropy applied to the 
tunable Q wavelet transform, while the Least Squares 
Support Vector Machine (LS-SVM) classifier was used to 
classify the multivariate feature combination.

Sharma et  al. [23] used the Empirical Modal Decom-
position (EMD) method to decompose EEG signals 
and extracted the Intrinsic Mode Function (IMF). The 
entropy features of different IMFs for focal and nonfo-
cal EEG signals were calculated, namely average Shannon 
Entropy (ShanEnAvg), average Renyi Entropy (RenE-
nAvg), average ApEn (ApEnAvg), average Sample Entropy 
(SampEnAvg) and average phase entropy (S1Avg and 
S2Avg). These entropies were used as input feature sets 
for LS-SVM classifiers to classify EEG signals into focal 
and nonfocal signals and the model achieved an average 
classification accuracy of 87%.

In addition, some researchers integrate temporal fea-
tures with frequency-domain features or spatial features 
[19, 21, 24]. Hisham Daoud et  al. [19] used DCNN and 
Bi-LSTM networks to learn important spatial and tem-
poral features from raw data, respectively, and used a 
semi-supervised learning method based on DCAE with 
migration learning techniques for dichotomous classi-
fication of EEG states. Xiashuang Wang et  al. [21] pre-
sented an automatic seizure detection model based on 
the method of multiple time–frequency analysis, which 
involves a new random forest model combined with 
grid search optimization. Abeg Kumar Jaiswal et al. [24] 
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proposed an automatic detection method for EEG signal 
epilepsy based on subpattern Principal Component Anal-
ysis (SpPCA) and cross-subpattern correlation Principal 
Component Analysis (SubXPCA) combined with SVM.

Banupriya and Devi [20] used a genetic algorithm 
based on Virus Swarm Particle Optimization (VSPO) 
technique for feature selection and SVM technique for 
classification of EEG signals. The experimental results 
shown that the sensitivity was 98.03%, the specificity was 
98.01%, and the accuracy was 98.90%.

Deivasigamani et al. [32] presented a computer-assisted 
method for automatic detection and classification of focal 
and nonfocal EEG signals. The Double-Tree Complex 
Wavelet Transform (DT-CWT) was used to decompose 
EEG signals and extract features from the decomposi-
tion coefficients. These features were trained and classi-
fied using the Adaptive Neural Fuzzy Inference System 
(ANFIS). Finally, the classification results with sensitiv-
ity of 98%, specificity of 100% and accuracy of 99% were 
obtained.

Methods and materials
Dataset
Bonn EEG dataset
The dataset used in this study is the epilepsy EEG data-
set of the University of Bonn, Germany [33], which was 
collected from five healthy subjects and five epilepsy 
patients, and the dataset is a single-channel EEG sig-
nal dataset, containing five subsets (Set A ~ Set E). Each 

subset contains 100 data segments of the same type, and 
each data segment contains 4097 EEG time series. Each 
data segment has a time length of 23.6  s with a sam-
pling frequency of 173.61 Hz, and the artifacts have been 
removed by manual filtering of 0.53 ~ 40  Hz. The elec-
trode positions of Set A and Set B subsets were located 
on the scalp, which is the EEG data of 5 healthy subjects 
in the state of opened and closed eyes, respectively. The 
EEG data of Set C and Set D subsets were obtained from 
5 epilepsy patients in the interictal period, while the elec-
trode position of the Set C subset was located in the con-
tralateral region of the lesion, and the electrode position 
of the Set D subset was located in the lesion area. The 
electrode position of the Set E subset was located in the 
lesion area, which is the EEG data of 5 epilepsy patients 
during the ictal period.

Figure  1 shows the visual graphics of the data frag-
ments of Group 1 in each subset, where the horizontal 
axis represents the number of samples of EEG time series 
and the vertical axis represents the sample value. It can 
be seen that there are some differences in the 5 types of 
EEG signal waveforms. Due to the presence of feature 
waves for epileptic EEG signals, the EEG signal amplitude 
of Set E is significantly larger than those of the other four 
groups.

New Delhi EEG dataset
These datasets were exemplary segmented EEG time 
series recordings of 10 epilepsy patients from the 

Fig. 1 Example of a 5-class EEG signal
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Neurology & Sleep Centre, Hauz Khas, New Delhi. The 
datasets were acquired using the Grass Telefacor Comet 
AS40 amplification system at a sampling frequency of 
200  Hz. Gold-plated scalp EEG electrodes were placed 
using a 10–20 electrode placement system at the time 
of acquisition. The acquired EEG signal is filtered by a 
band-pass filter from 0.5  Hz ~ 70  Hz. There are three 
states including preictal, interictal and ictal, which are in 
the form of MAT. Each EEG state contains 50 MAT files, 
and each MAT file consists of 1024 samples of one EEG 
time series data with a duration of 5.12 s.

Research methods
The study process in this paper is divided into four steps. 
Firstly, it is necessary to preprocess the EEG signal data, 
where it is filtered through the bandpass filter, and then 
DWT is used to decompose and reconstruct the wavelet 
to realize wavelet denoising. Secondly, feature extraction 
is performed. The reconstructed EEG signal is decom-
posed again, which is divided into five subbands D1, 
D2, D3, D4, and A4, and four types of features including 
time domain standard deviation (STD), ApEn, FuzzyEn, 
and SampEn are extracted from the above five subbands. 

Thirdly, feature selection is carried out. The random 
forest algorithm is adopted to evaluate the importance 
of features and select the most important 10 features. 
Finally, the fourth step is classification, using CNN to 
classify EEG signals. The method block diagram is shown 
in Fig. 2.

Data preprocessing
In order to improve the accuracy of subsequent feature 
extraction and classification, it is necessary to filter and 
denoise the EEG signals. The feature wave of epilepsy 
EEG signal covers the 0 ~ 80  Hz frequency band, while 
the sampling frequency of the experimental dataset is 
173.61 Hz, so the 4th-order Butterworth bandpass filter 
is used to obtain an EEG signal of 0.01 Hz ~ 86.8 Hz. The 
filtered EEG was decomposed by using the "db4" wavelet 
basis function, and the select threshold was selected for 
denoising. Then the denoised subband was reconstructed 
to obtain the filtered denoised EEG.

The Fourier transform, which is traditionally used for 
the Joint Time–Frequency Analysis of signals, only can 
process stationary signals, while wavelet transforms can 
process non-stationary complex signals such as EEG 

Fig. 2 Epilepsy classification flowchart
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signals. Therefore, the EEG signal preprocessing and EEG 
signal decomposition were realized using DWT in this 
paper. The DWT was used to denoise the raw EEG data. 
The EEG signal was decomposed by multi-level wave-
let decomposition, and the approximation coefficient 
and detail coefficient of the signal at various scales were 
obtained.

It is assumed that the function φ(t) is a quadratic inte-
gral function which is denoted as φ(t) ∈ L2(R), where 
L2(R) represents the square-integrable space of real num-
bers. Its Fourier Transform Ψ(ω) satisfies the following 
equation:

The continuous wavelet function Ψs,t (t) is obtained 
from the fundamental wavelet Ψ(t) by scale scaling and 
translation, which is expressed as:

where s is the scale factor, τ is the translation factor, and 
R represents the set of real numbers.

Next, the discretizations of the scale factor and trans-
lation factor are performed. Assuming that s =  2−j and 
τ = k2−j, where j and k are the size of the scaling and the 
translation scale, respectively, and the values of j and 
k are integers. And then, the expression of the discrete 
wavelet function for the Ψ(t) can be written as:

For any function f(x), the DWT can be expressed as:

(1.)C� =

+∞

−∞

|�(ω)|2

|ω|
dω < ∞

(2.)C� =

∫ +∞

−∞

|�(ω)|2

|ω|
dω < ∞

(3.)�2−j ,k2−j (t) = 2
j/2�

(

2
jt − k

)

In this study, the input signal passes through the low-
pass filter G(n) and the high-pass filter H(n), both of 
which have a cut-off frequency of one-quarter of the 
sampling frequency. In the first step of DWT decom-
position, the low-frequency approximation coefficient 
A1 and detail coefficient D1 are obtained, and then, the 
output A1 is fed to another quadrature mirror filter. 
By means of repeating the same process, the approxi-
mation and detail coefficient for the next level can be 
obtained. Considering that the frequency band above 
80 Hz may not contain the eigenwaves of epileptic EEG, 
the "db4" wavelet basis function was used to perform 
a 4-level decomposition of EEG signals. Figure 3 illus-
trates the 4-level decomposition of EEG signals. The 
subband frequencies of A1, D1, A2, D2, A3, D3, A4, 
and D4 are 0 ~ fs/4, fs/4 ~ fs/2, 0 ~ fs/8, fs/8 ~ fs/4, 0 ~ fs/16, 
fs/16 ~ fs/8, 0 ~ fs/32, fs /32 ~ fs/16, 0 ~ fs/64, fs/64 ~ fs /32, 
respectively, where fs is the sampling frequency of the 
used data set, being 173.61 Hz.

Feature extraction
Firstly, DWT wavelet decomposition is performed 
on the filtered denoised EEG signals. The "db4" was 
selected as the wavelet basis function, and the 4-stage 
decomposition was used to obtain five subbands of 
D1 ~ D4 and A4. Then, the multiple features of the STD, 
SampEn, FuzzyEn, and ApEn were extracted from the 
EEG signals of the above five subbands. The extracted 
20 EEG features are shown in Table 1.

(4.)W� f (j, k) = 2
j/2

∫ +∞

−∞

f (t)�∗
(

2
jt − k

)

dt

Fig. 3 4-level DWT decomposition of EEG signal
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Nonlinear features
With an in-depth understanding of EEG signals, it is gen-
erally believed that human EEG signals are nonlinear ran-
dom signals in the field of bioelectric signals, and their 
nonlinear features can better characterize EEG signals. 
Entropy is a physical quantity that can characterize the 
EEG complexity. Studies have shown that the uncertainty 
of EEG signals during the ictal phase is significantly 
reduced, so it is necessary to characterize the features of 
EEG signals using entropy. ApEn was developed on the 
basis of Kolmogorov-Sinai entropy and was proposed by 
Pincus in 1991 [34]. ApEn predicts the amplitude of the 
future signal based on the known signal amplitude, which 
can be used to describe the uncertainty or randomness 
of the signal. SampEn was proposed by Richman et  al. 
[35]. The SampEn is similar to the ApEn in the physical 
meaning, but the SampEn overcomes three following 
shortcomings of the ApEn: SampEn removes the self-
match from the data. SampEn obtains the total number 
of well-matched templates before the logarithmic opera-
tion. When dimension m is embedded, the reconstructed 
time series in SampEn is N-m rows instead of N-m + 1 
rows of ApEn, so that the number of patterns in embed-
ding dimension m and m + 1 are equal. FuzzyEn charac-
terizes the occurrence probability of the new pattern, and 
the larger the measured value, the greater the occurrence 

probability of the new pattern, that is, the greater the 
complexity of the sequence.

Standard Deviation (STD)
Since the STD can achieve a good recognition effect, as a 
simple and computable time–frequency feature, the STD 
is also applied to EEG signals in this paper. The calcula-
tion formula of the STD σ is defined as:

where x represents the average of xi. N is the total sample 
quantity, and x is a variable.

Feature selection
In this paper, the random forest algorithm was used to 
evaluate the extracted 20 EEG signal features impor-
tance and sorted them in descending order. According 
to the feature importance, the last feature in each round 
was removed. Thus, a new feature set is obtained and the 
above process is repeated with the new feature set, and 
the process does not stop until the 10 features with the 
highest importance are left.

As an ensemble learning algorithm, Random Forests 
(RF) uses decision trees as the basic unit. The decision 
trees are added into RF on the basis of Bagging, which is 
an improved version of the Bagging algorithm. The train-
ing of RF subsets is independent of each other and effi-
cient. It also retains the advantages of the Classification 
and Regression Tree (CART) algorithm, which uses Gini 
coefficients to select the optimal features and syncopa-
tion point, and overcomes the disadvantages of CART 
which require a fully spanning tree. The operation princi-
ple of random forest is shown in Fig. 4.

(5.)=

√

∑N
i=1 (xi − x)

2

N

Table 1 EEG features of epilepsy

D1STD D2 STD D3 STD D4 STD A4 STD

D1 SampEn D2 SampEn D3 SampEn D4 SampEn A4 SampEn

D1 ApEn D2 ApEn D3 ApEn D4 ApEn A4 ApEn

D1 FuzzyEn D2 FuzzyEn D3 FuzzyEn D4 FuzzyEn A4 FuzzyEn

Fig. 4 RF model
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For RF, k samples are taken from the dataset using 
bootstrap sampling, and each sample has N features. 
Then k decision models are established for each of the k 
samples, and the k-th decision tree is labeled as Tk. The 
k-th bootstrap sample was trained to calculate the clas-
sification accuracy of the k-th Out of bag (OOB) data 
LOOB k. The feature Xj (j = 1,2,…, N) in the OOB data 
was disturbed randomly, and the classification accuracy 
was calculated again. And then, the above process is 
repeated when k = 2, 3, 4, …, in order. The importance of 
the feature Pj is calculated by the following equation.

Finally, they are ranked according to their importance 
and the features with the lowest importance are excluded.

Classification
In this work, the CNN architecture is defined with 16 fil-
ters of size 2 × 1 with a stride of 1 for the first convolu-
tional layer. An input data of 10 × 1 × 1 was used as input 
to this convolutional layer. After the first convolutional 
layer, batch normalization and max-pooling were per-
formed using a filter of 2 × 1 with a stride of 1. Again, for 
the next convolutional layer, 32 filters of size 2 × 1 were 
used with a stride of 1. Similarly, batch normalization and 
max-pooling were performed using a filter of size 2 × 1 
and a stride of 1 after the second convolutional layer. 
There are two fully connected layers that use softmax as 

(6.)Pj =
1

K

K
∑

j=1

(

LOOBk − LOOBk ,j

)

the activation function after the two convolutional layers. 
Adaptive Moment Estimation (Adam) is used to learn the 
parameters of the CNN. The dataset used in the experi-
ment was divided into a training and test set with a ratio 
of 3:1, and the CNN classifier was used to classify the 
selected feature data. The CNN architecture diagram is 
shown in Fig. 5.

The convolutional layer consists of several convolu-
tional units, and the parameters of each convolutional 
unit are optimized by a backpropagation algorithm. The 
different features of the input are extracted by convolu-
tion, which is calculated as follows.

where f is the activation function, Dk is the K-th convolu-
tion kernel, ak is the offset error for the sum of the results 
of the K-th convolution kernel, and x is the convolution 
input data.

The pooling layer, also called the downsampling layer, 
mainly subsamples the feature maps learned in the con-
volutional layer, which reduces the input dimension of 
the subsequent network layers, and improves the compu-
tational accuracy.

The average pooling can be expressed as:

The max pooling is given as:

(7.)Hi,j = f
(

CDk ∗ x
)

i,j
+ ak

(8.)y(x) =
1

k ∗ k

i1+k
∑

i=i1

j1+K
∑

j=j1

xi,j

Fig. 5 The architecture of the convolutional neural network used in this work
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The fully connected layer is fully connected by using soft-
max, and the obtained activation values are the features 
extracted by the convolutional neural network, and the 
features learned by the convolutional layer and the pooling 
layer are weighted and fused to the sample labeling space.

Results and discussion
Evaluation metrics
To evaluate the performance of the model, Accuracy, Sen-
sitivity, Specificity, and Precision metrics are used in this 
paper. The indicators are calculated as follows:

where TN is the true negative rate, which indicates the 
number of samples that are actually negative samples 

(9.)(x) = max
(

X[i,i+k][j,j+k]

)

(10.)Accuracy =
TP + TN

TP + FN + FP + TN

(11.)Sensitivity =
TP

TP + FN

(12.)Specificity =
TN

TN + FP

(13.)Precision =
TP

TP + FP

predicted to be negative samples; FP is the false posi-
tive rate, which indicates the number of samples that are 
actually negative samples predicted to be positive sam-
ples; FN is the false negative rate, which indicates the 
number of samples that are actually positive samples pre-
dicted to be negative samples; TP is the true positive rate, 
which represents the number of samples that are actually 
positive samples predicted to be positive samples.

Experimental results
In order to extract the features of the EEG signals effec-
tively, the wavelet decompositions for Set A, Set B, 
Set C, Set D, and Set E of the Bonn EEG dataset were 
carried out. Taking the Set E subset during the ictal 
period as an example, the DWT was adopted to per-
form a 4-level wavelet decomposition. The subband 
waveforms of Set E decomposed by DWT are shown in 
Fig.  6, where the horizontal axis represents the num-
ber of samples of EEG time series and the vertical axis 
represents the sample value. The subband frequencies 
of A4, D4, D3, D2 and D1 are 0 ~ 5.4 Hz, 5.4 ~ 10.8 Hz, 
10.8 ~ 21.7  Hz, 21.7 ~ 43.4  Hz, and 43.4 ~ 86.8  Hz, 
respectively. And then, the effective features for all the 
subbands were extracted and analyzed. For conveni-
ence, the analysis of features including ApEn, FuzzyEn, 
SampEn, and STD features for decomposed D1 sub-
band was given in this paper. The extracted features for 
the D1 subband are shown in Figs. 7 and 8, where the 

Fig. 6 The subband waveforms of Set E decomposed by DWT
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horizontal axis represents each data segment and the 
vertical axis represents the feature value of each data 
segment. For the D1 subband, there are significant dif-
ferences in the amplitudes of the above four features. 
The amplitude of the four features of the D1 subband 
in the inter epileptic Set D is significantly lower than 
those in Set A and E, so the classification effect could 
be greatly improved by using the four features to clas-
sify the interictal period and the ictal period or healthy 
people. For Set A and Set E, the FuzzyEn feature ampli-
tude and STD feature amplitude are quite different, so 
the two features can play very important roles in the 
classification of Set A and Set E. For the approximates 
entropy and SampEn features, most of the feature 
amplitudes for Set E are lower than those for Set A, 
while there is a small overlap. Therefore, it is necessary 
to use random forest-based feature selection to remove 

the poor features, and the adopted 10 features with the 
best importance are shown in Table 2.

In order to more intuitively reflect that it is essential 
to perform feature selection, the compared experiment 
before and after performing feature selection was carried 
out. The data was divided into a training set and a test set 
with a ratio of 3:1, and MATLAB R2019A was employed 
to construct and simulate the model. For the classifica-
tion results between Set D and Set E EEG signals, the 
accuracies obtained by CNN, SVM, and BP neural net-
work optimized by genetic algorithm (GA-BP) classifiers 
without feature screening are 98.2%, 94.7%, and 97.5%, 
respectively. When the 10 features obtained from the 
screening are used for classification, the accuracies of 
CNN, SVM,   and GA-BP classifiers are improved to be 
99.2%, 96%, and 97.9%, respectively. Figure  9 shows the 
compared results for the classification between Set D and 

Fig. 7 A, B the ApEn feature of D1 subband, C, D the SampEn feature of D1 subband
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Set E EEG signals. It can be seen that for CNN, SVM, and 
GA-BP, using a random forest algorithm to screen the 
importance of features can improve classification accu-
racy. Especially, the classification accuracy rate of the 
CNN algorithm can be improved to 99.2% after feature 
selection.

In order to verify the superiority of the CNN algorithm 
in classification applications, SVM and GA-BP classifiers 
along with CNN classifiers were also employed. Table 3 
describes the classification tasks in this topic. And the 
Accuracy, Sensitivity, Specificity, and Precision of the 

binary classification task are listed in Table 4. Moreover, 
to visually show the superiority of the CNN classifier, 
Figs.  10, 11, 12, and 13 shows the Accuracy, Sensitivity, 
Specificity, and Precision, respectively, where the hori-
zontal axis represents the different cases and the verti-
cal axis represents the value of index. The experimental 
results show that the classification accuracy obtained by 
the classification algorithm combining RF and CNN is 
much higher than that of combining RF with SVM and 
GA-BP.

Discussion
In order to verify the advantages of the proposed model 
over other classification techniques, we compare the 
results obtained by other methods with our proposed 
methods, which are shown in Table 5. So as to make the 
calculation results more comparable, only the results 
obtained from using the same data set and similar cases 

Fig. 8 A, B the FuzzyEn feature of D1 subband, C, D the STD feature of D1 subband

Table 2 The adopted 10 most important features

D1 SampEn D1 ApEn D4 ApEn A4 FuzzyEn D1 FuzzyEn

D2 FuzzyEn D4 FuzzyEn A4 STD D4 STD D3 STD
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are listed in this paper. The classification model pro-
posed in this paper can achieve an accuracy of 99.9%, a 
sensitivity of 100%, a precision of 99.81%, and a specific-
ity of 99.8% in the binary classification task of interictal 
and ictal periods of Bonn EEG datasets. In terms of New 
Delhi EEG datasets can achieve an accuracy of 100%, a 
sensitivity of 100%, a precision of 100%, and a specific-
ity of 100% in the binary classification task of interictal 
and ictal periods. It can be seen that the RF + CNN algo-
rithm used in this paper for mixed features is considered 
to be a noteworthy improvement compared to state-of-
the-art methods. For the classification of Set D and Set E, 

Wang et al. [21] utilized a Short Time Fourier Transform 
(STFT), average energy, and Principal Component Anal-
ysis (PCA) feature as the basis for classification, and ran-
dom forest-grid search optimization (RF + GSO) for the 
extracted features. Jaiswal and Banka [24], Riaz et al. [6], 
and Deepti Tripathi and Agrawal [13] proposed an auto-
matic classification technique based on SVM. Xin et  al. 
[36] proposed an Attention Mechanism-based Wavelet 
Convolution Neural Network (AMWCNN) for epilepsy 
EEG classification. However, our proposed RF + CNN 
model system is superior to their method. Jiang et al. [37] 
used Wavelet Packet Decomposition (WPD) to extract 

Fig. 9 Prediction results with feature filtering

Table 3 The specific classification tasks

Classification Task Case Number Dataset Lable

Healthy Vs. Epileptic Case1 Bonn (A-E) Datasets A, B, C, and D are labeled as 0, dataset E is labeled as 1

Case2 Bonn (B-E)

Interictal Vs. Ictal Case3 Bonn (C-E)

Case4 Bonn (D-E)

Healthy Vs. Epileptic Case5 Bonn (AB-E)

Nonictal Vs. Ictal Case6 Bonn (AC-E)

Case7 Bonn (AD-E)

Case8 Bonn (BC-E)

Case9 Bonn (BD-E)

Interictal Vs. Ictal Case10 Bonn (CD-E)

Nonictal Vs. Ictal Case11 Bonn (ABC-E)

Case12 Bonn (ABD-E)

Case13 Bonn (ACD-E)

Case14 Bonn (BCD-E)

Case15 Bonn (ABCD-E)

Interictal Vs. Ictal Case16 New Delhi (Interictal-Ictal) The dataset of Preictal and Interictal are labeled as 0, and the 
dataset of Ictal is labeled as 1Preictal Vs. Ictal Case17 New Delhi (Preictal-Ictal)

Nonictal Vs. Ictal Case18 New Delhi (Nonictal-Ictal)



Page 13 of 17Chen et al. BMC Medical Informatics and Decision Making           (2023) 23:96  

features from EEG and adopted Takagi Sugeuo Kang 
(TSK) classifier to classify epileptic status. Lu et al. [22]. 
proposed Kraskov entropy and instantaneous area as fea-
tures to classify interictal signals and ictal signals using 
the LS-SVM classifier. Al-Hadeethi et  al. [38] recom-
mended the method that the multiple time-domain fea-
tures combined with Kolmogorov Smirnov Test (KST) 
are used for feature selection and AdaBoost is used for 
classification. Although these studies on the classifica-
tion of interictal and ictal signals have yielded encourag-
ing results, their classification accuracy is lower than the 
model that we proposed.

Conclusion
Accurate classification may reduce the damage caused 
by seizures. In this paper, we propose a novel epileptic 
EEG signal classification methodology using a multivari-
ate feature classification method based on the combina-
tion of RF and CNN to classify different epileptic states 
(i.e., nonictal, preictal, interictal, and ictal). The method 
is verified by the multichannel EEG signals in the Bonn 
database and New Delhi database. It can be concluded 
through the study that: (1) the proposed EEG signal clas-
sification method outperforms other benchmark models 
in classifying different epileptic states; For the C-E case, 

Table 4 Accuracy, sensitivity, specificity, and precision results of SVM, CNN, and GA-BP classifiers

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

CNN SVM GA-BP CNN SVM GA-BP CNN SVM GA-BP CNN SVM GA-BP

case1 99.30 99.30 99.10 98.62 98.62 98.18 100 100 100 100 100 100

case2 98.10 95.20 96.70 97.39 91.86 95.92 99.01 98.54 97.18 98.99 98.63 97.22

case3 99.90 97.30 98.70 100 96.64 97.81 99.80 97.90 99.62 99.81 98.09 99.58

case4 99.20 96.00 97.90 99.42 93.98 98.04 98.82 98.18 97.79 98.80 98.20 97.90

case5 99.00 97.13 97.67 97.71 92.59 94.24 99.68 99.34 99.25 99.47 98.41 98.18

case6 99.40 98.80 99.47 98.45 97.02 98.72 99.91 99.70 99.91 99.75 99.38 99.76

case7 99.28 96.67 97.80 98.91 91.17 94.55 99.42 99.26 99.50 98.80 98.31 98.98

case8 98.40 96.67 97.93 96.32 90.38 94.94 99.38 99.81 99.49 98.86 99.52 99.03

case9 97.46 91.47 95.20 95.35 80.91 91.85 98.50 97.28 96.87 96.92 94.25 93.61

case10 99.07 96.20 97.47 98.85 93.00 95.69 99.20 98.05 98.37 98.42 96.34 96.83

case11 98.95 97.25 97.95 97.17 89.50 94.47 99.59 99.80 99.25 98.87 99.37 97.92

case12 97.30 94.15 97.00 92.66 81.51 91.21 98.79 98.11 98.88 96.37 93.67 96.42

case13 98.65 97.53 97.85 97.14 94.69 95.32 99.20 98.49 98.69 97.59 95.32 95.94

case14 97.65 94.05 96.25 94.43 81.56 89.67 98.67 98.02 98.63 95.96 93.59 95.45

case15 98.47 96.33 97.16 95.80 84.24 89.64 99.16 99.03 99.04 96.74 95.24 96.13

case16 100 99.34 99.17 100 99.04 100 100 99.71 98.43 100 99.67 98.37

case17 97.33 96.69 96.01 97.10 96.72 97.51 97.53 96.56 94.36 97.88 96.84 95.10

case18 98.33 97.43 98.12 97.53 96.27 96.65 98.83 98.17 98.78 97.79 96.24 97.83

Fig. 10 Accuracy results of SVM, CNN, and GA-BP classifiers
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the proposed model achieves a classification accuracy 
of 99.9%, a sensitivity of 100%, a specificity of 99.80%, 
and a precision of 99.81%. For the interictal-ictal case 
of New Delhi datasets, the proposed model achieves a 

classification accuracy of 100%, a sensitivity of 100%, a 
specificity of 100%, and a precision of 100%. (2) the pro-
posed method can extract multiple features from EEG 
signals; (3) The RF + CNN model can be used to rank the 

Fig. 11 Sensitivity results of SVM, CNN, and GA-BP classifiers

Fig. 12 Specificity results of SVM, CNN, and GA-BP classifier

Fig. 13 Precision results of SVM, CNN, and GA-BP classifiers
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extracted EEG features according to their importance 
and achieve feature selection, so as to achieve higher clas-
sification accuracy. In medicine, the proposed EEG clas-
sification method has important practical significance 
for the diagnosis and treatment of epilepsy. For example, 
for patients, the high classification accuracy of epileptic 
states classified by EEG signals (i.e., interictal, ictal) can 
achieve reliable and timely early warning; For doctors, it 
can help them understand the classification of epilepsy in 
patients so that the prevention and treatment of epilepsy 
can be effectively controlled.

Thus, this work addresses one important challenges 
of accurately classifying epileptic states by multi-fea-
ture EEG signals. As part of our future research, we aim 
to improve EEG classification methods in the following 
ways to better serve the prevention and treatment of 
epilepsy: (1) the proposed EEG classification model will 
be used to detect seizures; (2) through combining with 
the temporal correlation between EEG signal frames, 
the false detection of seizures may be further reduced, 
however, further studies need to be performed.

Table 5 Comparison of seizure detection methods using the benchmark Bonn EEG dataset

Article Year Selected features Classifier Case Accuracy (%)

Riaz et al. [6] 2016 Time matrix + spectral features SVM A-E
D-E

97.00
92.00

Raghu et al. [14] 2017 Wavelet Packet norm Entropy REN C-E 99.60

Jiang et al. [37] 2017 WPD TSK A-E 91.40

Jaiswal and Banka [39] 2017 EEG 1D-Local Gradient Patterns (LGP) + SVM C-E
D-E

99.10
99.07

Jaiswal et al. [24] 2018 PCA SVM D-E
ABCD-E

95.50
97.40

Tripathi and Agrawal [13] 2018 FuzzyEn SVM C-E
D-E

98.62
97.00

Lu et al. [22] 2018 Kraskov entropy + instantaneous area LS-SVM C-E
D-E

99.00
97.00

Wang et al. [21] 2019 STFT + average energy + PCA RF + GSO C-E
D-E

98.50
98.10

Zhao and Wang [31] 2020 EEG CNN D-E 98.50

Shoeibi et al. [40] 2021 Timedomain + Power spectrum + Nonlinear 
features + Lyapunov index

Fisher + CNN C-E 96.67

Banupriya and Devi [20] 2021 EEG VSPO-SVM D-E 98.13

Al-Hadeethi et al. [38] 2021 Max + Min + Mode + range + var + standard 
deviation

KST + AdaBoost C-E
AB-E
CD-E

98.50
98.00
98.20

Aayesha et al. [29] 2022 Time domain + spectrum + nonlinear fea-
tures + Local Binary Pattern

Feedforward Neural Network A-E
B-E
C-E
D-E
AB-E
CD-E
ABCD-E

96.67
91.67
91.67
85.00
90.00
91.11
90.67

Xin et al. [36] 2022 DWT decompose EEG AMWCNN C-E
D-E

99.39
99.11

Hemachandira and Viswanathan [7] 2022 DWT Haar + db4 + Sym8 Particle Swarm Optimization (PSO) + SVM A-E 98.00

Proposed study 2022 Time–frequency + nonlinear features RF + CNN A-E
B-E
C-E
D-E
AB-E
AC-E
AD-E
BC-E
BD-E
CD-E
ABC-E
ABD-E
ACD-E
BCD-E
ABCD-E

99.30
98.10
99.90
99.20
99.00
99.40
99.28
98.40
97.46
99.07
98.95
97.30
98.65
97.65
98.47
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