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Abstract 

Background A growing body of research suggests that the use of computerized decision support systems can bet-
ter guide disease treatment and reduce the use of social and medical resources. Artificial intelligence (AI) technology 
is increasingly being used in medical decision-making systems to obtain optimal dosing combinations and improve 
the survival rate of sepsis patients. To meet the real-world requirements of medical applications and make the training 
model more robust, we replaced the core algorithm applied in an AI-based medical decision support system devel-
oped by research teams at the Massachusetts Institute of Technology (MIT) and IMPERIAL College London (ICL) with 
the deep deterministic policy gradient (DDPG) algorithm. The main objective of this study was to develop an AI-based 
medical decision-making system that makes decisions closer to those of professional human clinicians and effectively 
reduces the mortality rate of sepsis patients.

Methods We used the same public intensive care unit (ICU) dataset applied by the research teams at MIT and ICL, i.e., 
the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC-III) dataset, which contains information on the 
hospitalizations of 38,600 adult sepsis patients over the age of 15. We applied the DDPG algorithm as a strategy-based 
reinforcement learning approach to construct an AI-based medical decision-making system and analyzed the model 
results within a two-dimensional space to obtain the optimal dosing combination decision for sepsis patients.

Results The results show that when the clinician administered the exact same dose as that recommended by the 
AI model, the mortality of the patients reached the lowest rate at 11.59%. At the same time, according to the data-
base, the baseline mortality rate of the patients was calculated as 15.7%. This indicates that the patient mortality rate 
when difference between the doses administered by clinicians and those determined by the AI model was zero was 
approximately 4.2% lower than the baseline patient mortality rate found in the dataset. The results also illustrate that 
when a clinician administered a different dose than that recommended by the AI model, the patient mortality rate 
increased, and the greater the difference in dose, the higher the patient mortality rate. Furthermore, compared with 
the medical decision-making system based on the Deep-Q Learning Network (DQN) algorithm developed by the 
research teams at MIT and ICL, the optimal dosing combination recommended by our model is closer to that given 
by professional clinicians. Specifically, the number of patient samples administered by clinicians with the exact same 
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dose recommended by our AI model increased by 142.3% compared with the model based on the DQN algorithm, 
with a reduction in the patient mortality rate of 2.58%.

Conclusions The treatment plan generated by our medical decision-making system based on the DDPG algorithm 
is closer to that of a professional human clinician with a lower mortality rate in hospitalized sepsis patients, which 
can better help human clinicians deal with complex conditional changes in sepsis patients in an ICU. Our proposed 
AI-based medical decision-making system has the potential to provide the best reference dosing combinations for 
additional drugs.
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Introduction
Sepsis is a type of systemic inflammatory syndrome 
(SIRS) caused by the invasion of pathogenic microor-
ganisms such as bacteria into the body. Sepsis and sub-
sequent inflammatory responses can lead to multiple 
organ dysfunction syndrome (MODS) and even death if 
not treated promptly and accurately [1, 2].

The rate of sepsis incidence is high. In 2017, an esti-
mated 48.9 million cases of sepsis were registered, 
and approximately 11.0 million sepsis-related deaths 
were reported worldwide, representing approximately 
19.7% of all deaths globally [3]. At the same time, the 
treatment of sepsis requires many social and medi-
cal resources, posing a threat to personal physical and 
mental health and seriously affecting the quality of life 
of patients and their families [4–6].

Intravenous (IV) fluids and vasopressors (VPs) are 
commonly used to treat sepsis [7]. Most dosing com-
binations for sepsis patients focus on IV fluids and VPs 
because they are the most important elements in sep-
sis treatment; however, there remains no consensus on 
when and what amounts of each drug should be admin-
istered to sepsis patients [8, 9].

To address this problem, in late 2018, research teams 
at the Massachusetts Institute of Technology (MIT) and 
IMPERIAL College London (ICL) developed a medical 
decision-making system based on the deep-Q learning 
network (DQN) algorithm for sepsis treatment [10–12].

This was an innovative and pioneering system in the 
application of reinforcement learning techniques in the 
field of medicine dosing [12, 13]. Patients with sepsis 
require continuous IV and VP injections to maintain their 
blood pressure; however, the optimal dosing combina-
tion of IV fluids and VPs remains controversial [14]. An 
AI-based medical decision-making system extracts and 
learns information from a large number of clinical data 
and outputs the optimal therapeutic strategy by analyzing 
the outcomes of multiple treatment decisions [15]. The 
system outperformed human clinicians in determining 
the optimal dosing combination of IV fluids and VPs [16].

AI models, including reinforcement learning algo-
rithms, are expected to provide patients with personalized 

treatment plans and improve their treatment outcomes 
[14, 15]. To better deal with the various complex clinical 
conditions of sepsis patients and obtain a more optimal 
treatment plan, we replaced the core algorithm used in 
the AI-based medical decision-making system developed 
by the research teams from MIT and ICL with the deep 
deterministic policy gradient (DDPG) algorithm [17]. The 
DDPG algorithm can handle high-dimensional input data 
and converges faster, making it better suited for medical 
data.

The medical decision-making systems proposed for 
sepsis patients have all been based on deep reinforcement 
learning algorithms, which have many advantages in 
terms of medical decision-making, such as the ability to 
handle sparse reward signals, making systems based on 
such algorithms adaptable to special patients, and allow 
a level of sensitivity in terms of different drug decisions 
[18–21]. Such a medical decision-making system can not 
only improve the survival rate of patients and reduce the 
pressure on social medical resources and family finances, 
it also helps human clinicians to make treatment deci-
sions more effectively. Simultaneously, this system can 
provide a personalized treatment plan for each patient to 
optimize the outcomes of the complete individual treat-
ment process [22–24].

Methods
Data
We used the same public intensive care unit (ICU) data-
set applied by the research team at MIT and ICL, i.e., the 
Multiparameter Intelligent Monitoring in Intensive Care 
III (MIMIC-III) dataset [25, 26], which contains infor-
mation on the hospitalizations of 38,600 adult sepsis 
patients over 15 years in age and meeting the internation-
ally recognized sepsis 3 standard.

The data on 38,600 hospitalized patients over 15 years 
in age were first screened, and their vital signs within 
72 h of contracting sepsis were extracted. The 72-h data 
were then divided into 4-h segments, and the data seg-
ments were aligned based on time. If multiple data points 
were found in a time segment, we calculated their aver-
age or sum according to the actual situation. For data 
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segments with incomplete information, the K-nearest 
neighbor algorithm was used to estimate and fill in the 
fitted information to ensure that the data were as accu-
rate as possible. We then removed the vital sign data that 
exceeded the clinical limits and normalized the data. A 
48-dimensional feature vector was generated for each 
patient at each time step. Similar to the research teams 
from MIT and ICL, we used an auto-encoder method to 
expand the data features into 200 dimensions to improve 
the learning effect of the deep reinforcement learning 
model.

Actions and rewards
As shown in Table 1, we divided the dosages of IV fluids 
and VPs into five integer dosing levels, where zero repre-
sents no addition of drugs, and the higher the level, the 
greater the quantity of drugs added. We then converted 
the IV fluid and VP dosing of each patient at each time 
point into the five dosing levels described above [27].

As shown in Fig. 1, the output of the medical decision-
making system can be represented by a discretized tuple 
(IV dosing, VP dosing), resulting in a 5 × 5 action space, 
where each action corresponds to a tuple, that is, the 
combination of IV fluid and VP dosages [9].

The vital sign data of the patients will change with 
the dosing of IV fluids and VPs, and such a change 
determines the reward. The appropriate reward was 
calculated based on the Sequential Organ Failure 
Assessment (SOFA) score and lactate value, where 
the SOFA score represents the degree of organ failure 
and the lactate value measures the degree of cellular 
hypoxia in patients with sepsis [27]. The equation is as 
follows:

Here,  C0 =  − 0.025,  C1 =  − 0.125, and  C2 =  − 2. The 
reward was negative when the SOFA score was higher. At 
the same time, when the SOFA score and lactic acid value 
increased, the reward was negative. If the patient eventu-
ally survived, the reward was increased by 15 points; oth-
erwise, it was reduced by 15 points.

Model architecture

1) Experience feedback

With respect to experience feedback, a weighted sam-
pling method was used to set the initial probability of 
extracting data to the absolute value of the reward. The 
larger the reward is, the more significant the change in 
state, indicating that the input data are more conducive 
to model learning. If the state of the patient was dis-
charge or death, the relevant values for the next state 
were set to zero.

2) Neural networks

A model based on the DDPG algorithm generally con-
tains four neural networks, two online networks, and 
two target networks. Both online and target networks 
are subdivided into actor and critical networks. In our 
model, all four neural networks have two hidden lay-
ers and use the random batch gradient descent method 
and leaky RELU activation function. Meanwhile, critical 
networks apply equal advantages and value functions.

3) Algorithm flow

As shown in Fig. 2, the model first passes the samples 
drawn from the database to the actor network. Independ-
ent hot coding is used inside the network to obtain the 
coordinates of the action corresponding to each sample 
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Table 1 Five levels corresponding to IV fluid and VP dosages

Dosing levels 0 1 2 3 4
Drug dosage

IV (ml/h) 0 1–50 50–180 180–530  > 530

VP (µg/kg/min) 0 0.001–0.08 0.08–0.22 0.22–0.45  > 0.45

Fig. 1 Each action corresponds to the combination of IV fluid and VP 
dosages



Page 4 of 12Lin et al. BMC Medical Informatics and Decision Making           (2023) 23:81 

by changing the output form of the original 25 action 
probabilities to the probability of a specific action. We 
then use the original randomly selected action intelli-
gence to select only the specified action and obtain the 
weight parameters of the actor network.

The actions produced by the two actor networks, 
together with the corresponding next state in the sample, 
are then passed to two critical networks. In other words, 
critical networks evaluate the actions produced by the 
actor network.

Fig. 2 Structure of sepsis drug delivery algorithm

Fig. 3 Mortality rate (y-axis) corresponding to the difference between the dosing given by the model and that given by the human clinician 
(x-axis). Differences in IV fluids and VPs affect the in-hospital mortality rate of sepsis patients. By analyzing the differences in the doses administered 
by the model and by human physicians at different time points, it can be seen that when the difference in dosing is zero, the mortality rate of the 
patients is the lowest
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The loss function is then calculated using the Q data 
generated by the two critical networks, which in turn 
optimizes and updates the parameters of the critical 
online network.

Finally, the Q value produced by the critical online net-
work is passed to the actor online network, and its policy 
gradient is updated. The parameters of the entire target 
network are then updated using soft updates. After many 
training cycles, the Q-value of the critic network is more 
accurately predicted, and the corresponding action of the 
actor network is improved.

4) Model architecture

We tested the performance of different reinforce-
ment learning algorithms and corresponding parameter 
combinations on this data set. The algorithms include 
Double Q-learning, Dueling Networks, noise Nets, pri-
ority replay, and Multistep learning. Their correspond-
ing parameters consist of exploring rate, learning rate, 
discount rate, number of neural network layers, etc. The 
algorithm and parameters with the lowest mortality were 
selected by the GridSearchCV method. The final selected 
model was an improved version of the classical DDPG 
algorithm. The main differences from the DDPG algo-
rithm are as follows:

The connection allowing the agent to sample the envi-
ronment is removed, and data are taken directly from the 
experience pool. Some random actions are also removed, 

and thus the agent chooses the same action from the 
experience pool. The action selected for the next state of 
each sample recorded in the experience pool is added.

Results
We adopted the U-curve method used by Raghu et  al. 
[28] and the results are shown in Fig.  3. The U-curve 
method is a statistical method for evaluating clinical 
decision making by comparing the actions of a clinician 
with an evaluation policy, and measuring the associated 
outcomes. The idea behind the method is that a positive 
association between the difference between the clinician’s 
policy and the evaluation policy and an outcome, such as 
mortality, suggests that the best outcomes occur when 
the clinician’s actions align with the suggested actions. 
The U-curve is constructed by plotting the difference 
between the clinician’s and evaluation policies against the 
outcome of interest, and the resulting shape of the curve 
represents the relationship between the policies and 
outcomes.

The upper part of Fig. 3 shows the change in the aver-
age mortality rate of hospitalized sepsis patients with the 
difference of dosing strategy between the DDPG model 
and the human clinicians. The left side shows the rela-
tionship between the mortality of patients and the dif-
ference between the IV fluid dosage given by the DDPG 
model and that given by a human clinician, which indi-
cates that the patient has the highest survival rate when 
both treatment plans are the same. The right part shows 

Fig. 4 Relationship between in-hospital survival rate (z-axis) and differences in IV fluid (x-axis) and VP (y-axis) dosing administered by the models 
and human clinicians. The model is trained at a step size of 16.5 w, and the model outputs the drug dosing combination. If the number of results 
corresponding to the combination of drug doses is less than 50, such results will be removed because they are insufficient to explain the survival 
rate. The smaller the difference is between drug dosing given by the models and human clinicians, the better the survival rate of the sepsis patients. 
It can also be seen that the distribution map of the survival rate based on the DDPG algorithm is more concentrated than that based on the DQN 
algorithm. That is, the model based on the DDPG algorithm makes more treatment decisions similar to those of the human clinician than the model 
based on the DQN algorithm
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the results of mortality by VP dosing difference, and the 
same conclusion can be drawn. The lower part of Fig. 3 
shows the results of the DQN model. It can be seen 
that both models, DDPG and DQN, exhibit a typical ‘U’ 
shape, suggesting that the closer the human clinician’s 
dosing strategy align with the suggested dosing strategy 
by models, the greater the survival rate of the patient.

The above results indicated the effectiveness of the dos-
ing strategy given by the DDPG model. However, accord-
ing to Gottesman et  al. [29], such results may also be 
caused by confounding factors and the way actions were 
binned. Therefore, we further explore the effect of the 
two drug dosing combinations on the mortality rate of 
sepsis patients.

Fig. 5 For differences in dosing combinations of IV fluids and VPs, each square represents the difference as a percentage of the total sample size. It 
can be seen that the difference in VP dosing is lower than that of IV fluids. It can be seen that the model is more inclined to make more drug dosing 
decisions. The model based on the DDPG algorithm recommended a sample size of 54.76% to receive more dosing (part a in Fig. 5), whereas the 
model based on the DQN algorithm recommended only 34.82% (part b in Fig. 5)



Page 7 of 12Lin et al. BMC Medical Informatics and Decision Making           (2023) 23:81  

As shown in Fig. 4, two three-dimensional histograms 
based on the DDPG and DQN algorithms were con-
structed to display the relationship between patient sur-
vival rate and the drug dosing combinations. The x-axis 
represents differences in IV fluids, and the y-axis repre-
sents differences in VP dosing, as administered by the 
models and human clinicians. The z-axis represents the 
survival rate of sepsis patients in an ICU. It can be seen 
that when the treatment strategies provided by human 
clinicians and models are more closely aligned, the 
patient’s survival rate tends to be higher [30].

In order to further compare the results of the DDPG 
and DQN models, we drew heat maps for these two 
models, showing the relationship between patient sur-
vival and drug administration combinations, as shown 
in Fig. 5.

When the dose difference value was limited to 
within 2, as shown by the white box in Fig.  5, both the 

DDPG-based and DQN-based model generated about 
42,000 sample sizes, accounting for 74.5% of the total. 
When the dosage of the clinician is exactly the same as 
the dosage recommended by the model, as shown in the 
brown box in Fig. 5, the number of samples obtained by 
the model based on the DDPG algorithm accounts for 
30% of the total number of samples, which is 142.3% 
more than the one based on the DQN algorithm. With 
the gradual increase of the dose difference, the patient 
mortality rate obtained by the model based on the DDPG 
algorithm gradually increased, and the number of sam-
ples gradually decreased until the total number of sam-
ples was consistent with the model based on the DQN 
algorithm. It revealed that medical decisions generated 
by model based on DDPG algorithm tend to be more 
centralized and closer to those of human clinicians com-
pared to DQN algorithm, meanwhile we also observed 
that mortality rate based on DDPG algorithm is smaller 

Fig. 6 The differences in the sample size distribution of IV fluid dosage resulting from the use of the DDPG (part a in Fig. 6) and DQN (part b in 
Fig. 6) algorithms are plotted for a case in which the difference between the model and VP dosing decision of human clinicians is zero. As shown, 
the treatment plan generated by the model based on the DDPG algorithm is closer to the treatment plan generated by a human clinician
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than that based on the DQN algorithm. At the same time, 
it was found that when the dose difference was zero, the 
patient’s mortality rate was the lowest, and the greater 
the dose difference, the higher the patient’s mortality 
rate.

Specifically, when the difference between the VP doses 
administered by the model and those administered by 
a human clinician is zero, the sample size distribution 
of the differences in IV fluid dosage resulting from the 
DDPG and DQN algorithms is as shown in Fig. 6. As the 
figure indicates, the distribution of differences in IV fluid 
dosage resulting from the DDPG algorithm is more con-
centrated, which means that, compared with the DQN 
algorithm, the treatment plan generated by the model 
based on the DDPG algorithm is closer to the treatment 
plan generated by the human clinician.

Table 2 shows the sample size, proportion of samples, 
and mortality rate in different regions corresponding to 
the differences in dosing combination based on the use 
of the DDPG and DQN algorithms. It can be seen that 
model based on the DDPG algorithm produced more 
medical decisions that were closer to doctors than model 
based on the DQN algorithm, and at the same time 
DDPG-based model resulted lower mortality rates of 
patient compared to DQN-based model.

Discussion
Comparison of calculation efficiency
Patients in an ICU are frequently suffering from severe 
and rapidly deteriorating conditions. For patients in an 
ICU, time is of the essence. Using the same parameters 
and configurations as the model developed by the MIT 
and ICL research teams, we trained the AI clinicians 
to make decisions regarding drug dosing combina-
tions for sepsis patients. The training efficiency of our 
model was drastically improved, as shown in Fig.  7, 
and a comparison of the efficiency becomes clearer 
when the number of data applied is larger. In particu-
lar, when a more precise treatment is required for the 
patient, the actions taken by the clinician can be larger 
than those taken by the IV and VP schemes. For the 
model developed by the MIT and ICL research teams, 
it may be difficult to train AI clinicians to apply multi-
ple medical interventions.

Model evaluation
As shown in Fig. 8, we took the parameters of the models 
trained using different steps from the continuous training 
and then tested these models against the test set to cre-
ate a complete graph of hospital patient mortality through 
model training.

Table 2 Comparison of sample size, proportion of samples, and mortality rate in different regions corresponding to differences in 
dosing combination resulting from the use of the DDPG and DQN algorithms

Region Brown Red White Total

Model DDPG DQN DDPG DQN DDPG DQN DDPG DQN

Sample size 17,293 7137 13,852 16,980 10,296 17,706 41,441 41,823

Sample proportion 30.96% 12.77% 24.8% 30.39% 18.43% 31.69% 74.19% 74.85%

Mortality rate 11.59% 14.17% 25.33% 25.94% 30.1% 25.27% 26.58% 25.58%

Fig. 7 Relationship between the training time and training steps of the two models within the same environment. With the same number of steps 
and training under the same parameters and configurations, the time required by the model developed by the research teams from MIT and ICL 
was 1.7-times greater than that of our model
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We analyzed the data on patients in an ICU, as shown 
in Fig. 8, and the patient mortality rate was 15.22% when 
we relied solely on the decision of the clinicians. When 
we added treatment by an AI clinician, the overall mor-
tality rate decreased by approximately 1%. From the 
trend of the line graph, it appears that our AI clinicians 
are more stable than the AI clinicians developed by the 
MIT and ICL research teams and are better suited for 
use in an ICU. In conjunction with Figs. 7 and 8, we can 
see that our model converges at least 10-times faster 
than the model developed by the research teams from 
MIT and ICL.

As shown in Fig. 9, as the model training progressed, 
the TD error in the two models gradually decreased 

and became stable. The TD error of the DDPG model 
was consistently smaller than that of the DQN model 
throughout the training process.

Further studies
As the research progresses, the model can be optimized 
in three additional ways:

(1) Medical interventions lead to dynamic changes in 
the vital characteristics of the patients, preventing 
the model from steadily converging, and causing 
the recommended strategies to fluctuate within a 
small range in terms of the relationship between IV 
fluid volume and mortality.

Fig. 8 Two models with different training steps in the same training set predicted the in-hospital mortality rate after the test in the test set. In 
the first 5000 steps, 50 steps are used as the node to test the model. At this stage, we can see that the DDPG-based AI model has learned how to 
treat sepsis patients with drugs, whether intravenous fluids or vasopressors. The model developed by the research teams from MIT and ICL is still 
exploring the environment and only began to decline at 30,000 steps
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(2) To accurately control the administered dose, the 
output actions are not continuous, an issue that can 
be improved upon later.

(3) It is difficult to optimize the hyperparameters of the 
model based on the actual environmental factors. 
In the future, we can adjust the hyperparameters to 
achieve a lower mortality rate.

Conclusions
With the rapid development of big data and artificial 
intelligence technology, particularly in the medical 
field, the use of such technology is becoming increas-
ingly mature. The application of AI-based technologies 
can help healthcare professionals not only to promptly 
detect clinical problems but also quickly formulate 
clinical treatment plans, which has a positive impact on 
improving the clinical service capability for critically ill 
patients [31].

Our AI decision-making system developed for sepsis 
clinicians can allow patient data to be shared with pre-
trained AI clinicians, allowing the best treatment plan to 
be recommended to physicians. Clinicians can determine 
the final treatment plan by adding their subjective clinical 
judgment. We hope to apply this model to an ICU in the 
near future, improving the efficiency and quality of care, 
and find a treatment plan that is more appropriate for the 
patient.
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