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Abstract 

Background Accurately classifying complex diseases is crucial for diagnosis and personalized treatment. Integrating 
multi-omics data has been demonstrated to enhance the accuracy of analyzing and classifying complex diseases. This 
can be attributed to the highly correlated nature of the data with various diseases, as well as the comprehensive and 
complementary information it provides. However, integrating multi-omics data for complex diseases is challenged by 
data characteristics such as high imbalance, scale variation, heterogeneity, and noise interference. These challenges 
further emphasize the importance of developing effective methods for multi-omics data integration.

Results We proposed a novel multi-omics data learning model called MODILM, which integrates multiple omics data 
to improve the classification accuracy of complex diseases by obtaining more significant and complementary infor-
mation from different single-omics data. Our approach includes four key steps: 1) constructing a similarity network for 
each omics data using the cosine similarity measure, 2) leveraging Graph Attention Networks to learn sample-specific 
and intra-association features from similarity networks for single-omics data, 3) using Multilayer Perceptron networks 
to map learned features to a new feature space, thereby strengthening and extracting high-level omics-specific 
features, and 4) fusing these high-level features using a View Correlation Discovery Network to learn cross-omics 
features in the label space, which results in unique class-level distinctiveness for complex diseases. To demonstrate 
the effectiveness of MODILM, we conducted experiments on six benchmark datasets consisting of miRNA expression, 
mRNA, and DNA methylation data. Our results show that MODILM outperforms state-of-the-art methods, effectively 
improving the accuracy of complex disease classification.

Conclusions Our MODILM provides a more competitive way to extract and integrate important and complementary 
information from multiple omics data, providing a very promising tool for supporting decision-making for clinical 
diagnosis.
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Background
With the continuous development and refinement of 
high-throughput sequencing technology, a large amount 
of omics data has been generated, which is of great 
importance for people to deeply study and reveal the 
mystery of life. Earlier, many studies were conducted on 
single-omics data for disease analysis. However, due to 
the inherent complexity of biological systems, it is diffi-
cult to gain insight into the complex biological processes 
of complex diseases using single-omics data. Research-
ers can now easily access various levels and types of 
biological omics data and collect many types of biologi-
cal omics data based on the same set of samples, which 
provides multi-omics data with unprecedented details 
at the molecular level for disease diagnosis and disease 
mechanism research [1, 2]. Compared to single-omics 
types, integrated analysis of multi-omics data can pro-
vide a comprehensive and in-depth study of biomedical 
data and can even complement any missing or unreliable 
information in single-omics data. It can also effectively 
exploit the relationships and complementary information 
between omics data for a broader and comprehensive 
analysis of complex diseases, which in turn can improve 
the accuracy of patient clinical outcome prediction [3–5]. 
Therefore, the use of multi-omics data integration tech-
niques to analyze complex diseases has become a new 
direction for researchers to explore complex disease 
mechanisms.

Previously, researchers mainly conducted an integrated 
analysis of single omics based on statistical methods [6] 
and traditional machine learning methods [7]. However, 
only a fraction of the characteristics of the biological sys-
tem can be captured by each omics data due to the inher-
ent complexity of biological systems, leading to relatively 
one-sided results [8, 9].

In recent years, the integrated analysis of multi-
omics data using new machine learning and deep 
learning methods has achieved state-of-the-art per-
formance in the field of disease classification [10–12]. 
To improve the performance of cancer classification 
tasks, Ma B et  al. [13] proposed an eXtreme Gradient 
Boosting (XGBoost) classification method to integrate 
the mRNA and miRNA expression data for the separa-
tion of early-stage and late-stage tumors. Lin Y et  al. 
[14] and Elmarakeby et  al. [15] proposed Deep Neu-
ral Networks Based On Multi-Omics Data (DeepMO) 
model and Deep Neural Network For Prostate Cancer 
Discovery (P-NET) model respectively to classify can-
cer subtypes. El-Nabawy et al. [16] proposed a Cascade 
Deep Forest (CDForest) to integrate multi-omics data 
for breast cancer subtype classification. Xu et  al. [17] 
proposed a new Hierarchical Integration Deep Flex-
ible Neural forest framework (HI-DFNForest) based 

on stacked autoencoders, which successfully subtyped 
invasive breast cancer, glioblastoma multiforme, and 
ovarian cancer using miRNA, DNA methylation, and 
gene expression data. However, the methods above do 
not consider the similarity between omics samples, 
resulting in limited performance improvement. To 
solve this problem, some researchers used graph neu-
ral networks to link omics samples in order to improve 
cancer classification. Wang B et  al. [18] proposed a 
Similarity Network Fusion method (SNF) to construct 
network samples for each type of omics data and fuse 
the different graphs into a final graph, using the results 
for clustering, which can classify cancers into differ-
ent subtypes. Ma T et  al. [19] proposed an Affinity 
Network Fusion method (ANF) based on SNF, where 
ANF considers each type of omics data as a view of the 
patient and learns the fusion affinity matrix for cluster-
ing. Wang T et al. [20] proposed a Multi-Omics Graph 
Convolutional Network (MOGONET), which utilized 
multiple similarity graph convolutional networks to 
effectively integrate multi-omics data for biomedical 
classification. Li et al. [21] also proposed a Multi-Omics 
Integration Method based on Graph Convolutional 
Network (MOGCN) for cancer classification, whose 
idea is to use AE to reduce dimensionality and SNF to 
build a similarity network of patients, and then input 
feature vectors and Patient Similarity Network (PSN) 
into Graph Convolutional Networks (GCN) for training 
and testing.

In conclusion, the existing methods boosted the com-
plex disease classification to some extent, but two issues 
remain unresolved. Firstly, the existing methods either 
rely on fully connected neural networks or utilize similar-
ity networks. The former does not effectively exploit cor-
relations between samples, while the latter does exploit 
correlations but ignores the importance of the features 
between samples. Secondly, Current deep learning-based 
methods integrate different omics data into the input 
or feature space, but they ignore that different types of 
omics data can present unique features in the high-level 
feature space.

To this end, we proposed a novel Multi-omics Data 
Integration Learning Model (MODILM) for multi-omics 
data integration learning to improve complex disease 
classification. MODILM makes full use of the latent rep-
resentations learned in the exclusive subspace of each 
omics data. The core idea of MODILM is to use a net-
work framework based on similarity networks, Graph 
Attention Networks (GAT), Multilayer Perceptron Net-
works (MLP), and a View Correlation Discovery Net-
work (VCDN) to integrate and learn important feature 
information from multi-omics data in order to capture 
the specificity knowledge in single-omics data and the 
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interrelationships of multi-omics data. So that MODILM 
can offer a comprehensive and rational decision for the 
classification of complex diseases.

The main contributions can be summarized as follows:

1) We proposed a novel feature extraction method 
based on cosine similarity network and GAT and 
MLP for omics data, which can well learn the sam-
ple-specific features and intra-association features 
of single-omics to produce high-level omics-specific 
features.

2) Based on (1) coupled with VCDN, we developed 
a multi-omics data integration learning model 
(MODILM) for improving complex disease classifi-
cation. MODILM can exploit intra-omics features in 
the underlying subspace and the higher-level cross-
omics features in the label space to provide unique 
class-level distinctiveness for the classification of 
complex diseases.

3) We conducted extensive comparison experiments 
against 11 baseline and state-of-the-art models on six 
publicly available datasets. The experimental results 
show that our MODILM achieves state-of-the-art 
performance, which demonstrates the rationality and 
effectiveness of MODILM.

Materials and methods
Method
Overview of MODILM
The MODILM model is developed to better integrate and 
learn multi-omics features, so as to improve complex dis-
ease classification and boost biomedical diagnosis. The 
main working mechanism of MODILM is presented in 
Fig. 1. MODILM mainly consisted of three parts: a data 
preprocessing module, a feature extraction module, and 
a feature fusion module. In the data preprocessing mod-
ule, we clean the original omics data to remove invalid 
data and redundant data. The feature extraction module 
includes three components: similarity network, GAT, 
and MLP. The similarity networks represented by adja-
cency matrices are constructed using cosine similarity to 
exploit the intra-association features of the single-omics 
data. GAT and MLP are used to extract features. In the 
feature fusion module, each omics feature representa-
tion obtained in the feature extraction module is used to 
construct a cross-omics discovery tensor, then a VCDN 
is used to fuse the features of the upper multi-omics to 
output the final prediction labels.

Data preprocessing
There are many invalid and redundant data in the original 
omics dataset, which can interfere with the experiment. 

Therefore, it is required to clean the data before conduct-
ing the experiments so as to reduce the influence of bad 
data on the experimental results [22]. In this section, we 
will introduce the specific method in the data preproc-
essing module.

Firstly, if the sample data belongs to one of the follow-
ing two cases, it is called invalid data and needs to be 
removed. One case is that the sample data contains null 
values, NaN, INF, etc. The other case is that the data 
value is 0, which needs to be judged according to the 
proportion of 0 values in the sample data volume. If the 
number of 0 values is more than 10% of the total amount 
of sample data, the sample data will be removed.

Secondly, for redundant data, we use the ANOVA 
F-value to judge whether the sample data is redundant. 
Different thresholds of variance (0.1 for mRNA expres-
sion data and 0.001 for DNA methylation data) are used 
for different types of omics data because different types 
of omics data have different ranges. For miRNA expres-
sion data, we only remove samples with the ANOVA 
F-value of 0 due to its relatively small amount of data 
and limited available samples. In addition, we use the 
ANOVA F-value to assess the relationship between dif-
ferent samples in the same dataset. The specific process-
ing procedure is as follows. For each classification task, 
we calculate the ANOVA F-value of its sample features 
to evaluate whether the features are significantly differ-
ent between various categories. The size of the ANOVA 
F-value determines the number of features obtained after 
data filtering. However, if the number of features is too 
large, it will introduce too much noise into the model. If 
it is too small, the model will be unable to learn comple-
mentary information about features. Therefore, we finally 
decide to use data with ANOVA F-values smaller than 
0.5.

After the above two steps of data processing, one can 
get the data that better express the omics information.

Feature extraction
In order to effectively obtain more representative fea-
tures from the omics data and improve the perfor-
mance of the model prediction, we designed a feature 
extraction module in this work. To extract the internal 
relationships and features of single-omics data, this 
work treats each data sample of the single-omics data 
as a node in a similarity network of the omics data. We 
first introduce cosine similarity in MODILM and set 
a threshold to construct a similarity network for each 
omics, so as to preliminarily judge the degree of cor-
relation of node features and obtain topological infor-
mation of omics data. Then, we use GAT to extract 
structural information and important features of the 
omics, and finally feed the obtained features into MLP 
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to uniformly map them into a new feature space. In this 
way, it can further enhance and extract the high-level 
omics-specific features of omics data and produce bet-
ter single-omics representation vectors.

(1) Construction of omics Similarity Networks

To preliminarily assess the degree of correlation 
between node features and capture the topological infor-
mation in omics data, MODILM first calculates the 
similarity between node pairs using the cosine similarity 
measure. It constructs a similarity network using the orig-
inal adjacency matrix A and then retains the edges with 
cosine similarity greater than a given threshold θ . Here, Aij 
is the adjacency relationship between node i and node j , 
and the calculated results are shown in Eqs. (1) and (2).

where, xi and xj are the feature vectors of node i and node 
j , and C xi, xj  denotes the cosine similarity between 
node i and node j . The threshold θ is determined by the 
parameter k which denotes the average number of edges 
retained by each node, including self-connections. k is 
calculated as Eq. (3).
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Fig. 1 Overview of MODILM
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where, f (·) is an indicator function and N   is the num-
ber of nodes. Note that the same value of k is used for all 
experiments on the same dataset.

(2) GAT + MLP extracts rich omics features

A key issue in the classification of complicated dis-
eases is how to obtain the features of nodes and the 
relationships between nodes in the omics data. GAT is 
able to solve this problem well, as it can naturally inte-
grate the node features and topological information in 
the whole network and capture them without needing 
to know the structure of the network in advance [23]. 
Moreover, GAT implements adaptive matching of dif-
ferent neighboring node weights based on the trained 
multi-head self-attention mechanism, which makes 
adaptive aggregation of neighboring features possi-
ble [24]. There are dynamic changes in human cells 
throughout the life process, and the adaptive weight 
matching of GAT can better simulate the dynamic 
refinement of omics data interactions [25]. There-
fore, we use GAT to learn rich features of nodes and 
topology from single-omics data, which describe sam-
ple-specific features and correlation features of the sin-
gle-omics data.

In this work, GAT learns high-level features of nodes 
in a graph mainly by applying a multi-headed self-
attention mechanism, where each attention head has 
its own parameters. Assuming there are N  nodes in the 
graph, the output of GAT can be expressed as Eq. (4).

The output feature of each node h′i is shown in Eq. (5).

where, Concat(·) denotes the concatenation function, m  
is the number of attention heads, W ∈ R

F
′
×F is a weight 

matrix, F  denotes the number of input features per node, 
and F ′ denotes the number of output features per node. 
The attention factor αi,j between each input node i and its 
first-order nearest neighbor j in the graph is calculated as 
shown in Eq. (6).

where, hi denotes the input features of the node i , as 
shown in Eq. (7).
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where, D̂ is the Â diagonal nodal degree matrix, I is the 
unit matrix, and A is calculated from Eq.  (1). We con-
structed one multi-layer GAT for each type of omics 
data. For the q - th type of omics data, the corresponding 
GAT is trained using the training data X(q) ∈ R

N×d and 
the corresponding adjacency matrix Ã(q) ∈ R

N×N calcu-
lated from Eq. (8). The output feature Y(q) containing the 
feature information of the node and topology is shown as 
Eq. (9).

To build more expressive and discriminating representa-
tions of omics data, MLP is introduced to uniformly map 
the node and topological feature vectors obtained from 
GAT into a new feature space using for further integration 
processing, as shown in Eq. (10).

where, ϕ(q) is the final feature for each type of omics data. 
Eq. (10) can be formalized in detail as Eq. (11).

where, t is the number of hidden layers in MLP, Ŷt is the 
input data t-the layer, wt is the trainable weight matrix,   
bt is the bias, σ is an activation function (LeakyReLU 
function was used in our experiments).

In this work, the cross-entropy loss function was used 
to calculate the loss of the GAT + MLP phase. Specifically, 
considering the label imbalance in the training data, we 
further applied different weights to different categories of 
losses, and the weights of each category respectively corre-
spond to their frequency in the training data. Therefore, the 
final loss is shown in Eq. (12).

where, Q denotes the number of omics types, N  denotes 
the total number of samples, y(q)i   denotes the probabil-
ity distribution of the true label for the i - th sample of 
the q - th type of omics data, and ϕ(q)

i  is the probability 
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)

(10)ϕ(q) = MLP
(

Y(q)
)

(11)Ŷt+1 =
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distribution of the predicted label for the i - th sample of 
the q - th type of omics data. S ∈ R

1×N is a matrix that 
describes the frequency of occurrence of different cate-
gories. It is calculated as Eq. (13).

where, ρ denotes the number of the corresponding cat-
egory of the label, count(ρ) denotes the total number of 
occurrences of class ρ in the label. classes denotes the 
total number of categories.

Feature fusion
Different types of omics data can be considered as differ-
ent views of the patient. Therefore, the fusion of multi-
ple omics data can obtain correlated or complementary 
information from different views of the patient. Multi-
view data fusion can eliminate redundant information 
arising from the correlation between different feature 
sets and help improve the model performance [26]. How-
ever, the existing methods for fusing multi-view data 
mainly involve concatenating features from different 
views [27], integrating weighted features from each view 
[28], and fusing different features in low-dimensional 
space [29]. They ignore the correlation between different 
multi-view data. In this work, we transferred the VCDN 
approach [30] from the image research field to the omics 
data research field to fuse different omics data and per-
form classification, considering the correlation between 
different multi-view data.

VCDN is used to learn the relevance of higher-level 
intra-view and cross-views in the label space. Although 
the original VCDN was designed for samples with two 
views, we generalize it to Q views in this work. For each 
sample of Q types of omics data, we construct a cross-
omics discovery tensor Vi ∈ R

pQ for i-th sample, where 
each term of Vi is calculated as Eq. (14).

where, ϕ(q)
i,a  denotes the a - th term of ϕ(q)

i  omics data. 
We reshape the cross-omics discovery tensor Vi to a pQ 
dimensional vector βi , then feed it into VCDN (·) to pro-
duce a logits vector zi , which is formulated as Eq.  (15). 
The loss function of VCDN (·) is shown in Eq. (16), which 
is used for training VCDN (·).

(13)Sρ =
count(ρ)

N
, ρ ∈ classes

(14)Vi,a1a2...aQ =

Q
∏

q=1

ϕ
(q)
i,aq

, q = 1, 2, ...,Q

(15)zi = VCDN (βi)

where, LCE(·) is the cross-entropy loss function and yi  
denotes the true labels of multi-omics data.

In this work, we use the miRNA expression, mRNA, 
and DNA methylation data (Q = 3) to experiment, and 
we construct a cross-omics discovery tensor Vi ∈ R

p×p×p , 
where each term of Vi is calculated as shown in Eq. (17). 
Thus, VCDN (·) can integrate three types of omics data 
and learn potential cross-view label correlations, help-
ing performance improvements of complex disease 
classification.

Finally, the total loss function for MODILM is formu-
lated as Eq. (18).

where, γ is the trade-off parameter between the omics 
feature extraction loss and the final omics loss of 
VCDN (·) . During training, we train each omics data 
through GAT + MLP, so as to fit VCDN (·) more closely 
and minimize the loss function L . To this end, MODILM 
can learn both the higher-level intra-view and cross-view 
correlations in the label space, providing unique class-
level distinctiveness.

Benchmark datasets
In this paper, we use six publicly available biomedical data-
sets to demonstrate the effectiveness and advantages of the 
proposed model. These six benchmark datasets include the 
Alzheimer’s disease dataset (ROSMAP), the LowGrade Gli-
oma binary classification dataset (LGG-2), the LowGrade 
Glioma multi-classification dataset (LGG-4), the Breast 
Cancer dataset (BRCA), the Melanoma dataset (SKCM), 
and the Lung Squamous Cell Carcinoma datasets (LUSC). 
The different omics data in the ROSMAP dataset are got 
from the AMP-AD Knowledge Portal [31]. Different omics 
data in LGG, BRCA, SKCM, and LUSC are got from the 
TCGA public data at http:// xena. ucsc. edu/, which is pro-
duced by the Johns Hopkins University and the University 
of Southern California TCGA Cancer Genome Represen-
tation Center [32, 33].

Specifically, the ROSMAP datasets, which are made 
up of ROS and MAP and both from the Rush University 
Longitudinal Clinicopathology Cohort Study of AD, are 
utilized to classify patients with Alzheimer’s disease (AD) 

(16)LVCDN =

N
∑

i=1

LCE(softmax(zi), yi)

(17)Vi,a1a2a3 = ϕ
(1)
i,a1

ϕ
(2)
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(18)L = min(
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L
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versus normal controls (NC) [34]. LGG datasets are used to 
grade low-grade gliomas, as generally four grades: grade I, 
II, III, and IV, according to the World Health Organization 
(WHO) classification [35, 36]. In actual clinical practice, 
they can be divided into two categories, low order (Low) 
and high order (Hight), depending on their malignancy 
[37]. Therefore, in this paper, we divide LGG datasets into 
these two cases for discussion. BRCA datasets are used to 
classify the PAM50 subtypes of breast cancer, consisting 
of five categories: Normal-like, Basal-like, HER2-enriched, 
Luminal A, and Luminal B [38, 39]. SKCM datasets are 
used for the classification of melanoma, consisting of the 
Keratin, Immune, and MITF-low categories [40, 41]. LUSC 
datasets are used for the classification of lung squamous 
cell carcinoma, including the categories Basal, Classical, 
Secretory, and Primitive [42].

In this study, we explore the use of three types of 
omics data for classification, including miRNA expres-
sion, mRNA, and DNA methylation data for matched 
samples. Details of the dataset are listed in Table 1. Since 
noisy redundant features might degrade classification 
performance, we must pre-process each omics dataset 
independently. Since noisy redundant features may affect 
the performance of the classification task, we need to 
perform preprocessing for each type of omics data sep-
arately. The resulting number of features used for train-
ing is also listed in Table 1. The "Number of features for 
training" refers to the number of features comprising dif-
ferent omics types in the same sample.

Experimental setup
Evaluation method
We adopted the evaluation metrics used in previous 
studies[43, 44], including accuracy (ACC), F1 score 
(F1), and area under the receiver operating character-
istic curve (AUC), to evaluate the performance of the 
proposed model against 11 comparative models. To 
make a fair comparison, we used ACC, average F1 score 

weighted support (F1-weighted), and macro F1 average 
score (F1-macro) for the multiclass classification task.

Comparative models
We compared the performance of MODILM with three 
baseline models and eight state-of-the-art models. The 
baseline models include K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), and Random Forest 
(RF). The state-of-the-art models include Block PLSDA 
[45], a fully connected Neural Network classifier (NN) 
[46], XGBoost [13], DeepMO [14], CDForest [16], P-NET 
[15], MOMA [47], and MOGONET [20]. Among these, 
DeepMO, CDForest, P-NET, MOMA and MOGONET 
are deep learning models. The following is a brief intro-
duction of the state-of-the-art models follows.

 (I) Block PLSDA. Block PLSDA is a multi-omics inte-
gration method that projects data to latent struc-
tures with discriminant analysis, which integrates 
multiple omics data measured on the same set of 
samples to classify a discrete outcome.

 (II) NN. NN is a fully-connected neural network clas-
sification model based on the principle of feature 
learning using multiple fully-connected layers.

 (III) XGBoost. XGBoost is an extreme gradient boost-
ing tree for classification that continually gener-
ates new trees which are learned based on the dif-
ference between the previous tree and the target 
value.

 (IV) DeepMO. DeepMO is a deep neural network that 
learns features after integrating multiple datasets, 
and finally classifies the results.

 (V) CDForest. CDForest model uses a multi-level cas-
caded deep forest structure to learn features and 
then concatenates the results of each forest for 
classification.

 (VI) P-NET. P-NET is a feed-forward neural network 
model with nodes and edges constraints that learns 

Table 1 Description of the dataset

The second column is the type of samples contained in the dataset. Also, miRNA in the table refers to miRNA expression data. mRNA refers to mRNA expression data. 
meth refers to DNA methylation data

Dataset Categories Number of features Number of features for training

miRNA mRNA meth miRNA mRNA meth

ROSMAP NC:169, AD:182 309 55889 23788 200 200 200

LGG-2 Low:210, Hight:311 2158 20531 485578 557 2000 2000

BRCA Normal-like:115, Basal-like:131, HER2-
enriched:46, Luminal A:436, Luminal B:147

2239 20531 485578 503 1000 1000

SKCM Keratin:98, Immune:163, MITF-low:59 2221 20531 485578 235 2000 2000

LGG-4 I:146, II:138, III:324, IV:120 2158 20531 485578 557 2000 2000

LUSC Basal:10, Classical:16, Secretory:18,
Primitive:8

2214 20531 485578 296 2000 2000
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custom paths, gene sets and modules, and then 
makes classification predictions.

 (VII) MOMA. MOMA consists mainly of a module 
encoder, module attention mechanism, and fully 
connected layer. Features are learned in three 
stages and finally classified for prediction.

 (VIII) MOGONET. MOGONET is composed of GCN 
and cross omics tensor discovery module, which 
learns the features of different omics through the 
GCN, then integrates the data through the Cross 
Omics Tensor Discovery module and finally makes 
classification predictions.

Experimental settings
In our experiment, the feature extraction module con-
sists of 2 GAT layers and an MLP with 2 hidden layers. 
Among them, the number of multi-head attention heads 
in each GAT layer is 8, and the LeakyReLU activation 
function is used after each GAT layer. The learning rate is 
set to 0.0001, and γ is set to 1. Adam is used as the opti-
mization algorithm to train the network. For ROSMAP, 
LGG-2, BRCA, SKCM, LGG-4, and LUSC datasets, k 
(the average number of edges retained by each node) is 
set to 5, 8, 10, 2, 2, and 3, respectively.

Experimental results
In this section, we first compare our MODILM against 
other existing models on the six benchmark datasets, 
then investigate the performance of MODILM under 
different types of omics data. Next, to find their optimal 
values, we evaluate the performance impact of some key 
hyperparameters in the experiment, such as the average 
number of edges retained by each node, the number of 
GAT layers, and the number of hidden layers in the MLP. 

Finally, we conduct an ablation study to investigate the 
impact of GAT and VCDN on MODILM’s performance.

Comparison of experimental results with existing methods 
on different datasets

(1) Results on the binary classification task dataset

Table  2 shows a comparison between MODILM and 
other existing methods on ROSMAP and LGG-2 data-
sets. The results show that our MODILM achieves the 
best performance on both ROSMAP and LGG-2 data-
sets. Among the existing methods, MOMA and MOGO-
NET obtain the best performance on the ROSMAP and 
LGG-2 datasets, respectively, while KNN has the worst 
classification performance on both of these two datasets. 
Our MODILM outperforms MOMA by 2.5%, 2.4%, and 
1.6% in terms of ACC, F1, and AUC on the ROSMAP 
dataset and surpasses MOGONET by 2.4%, 2%, and 3.2% 
in terms of ACC, F1, and AUC on the LGG-2 dataset. On 
the other hand, our MODILM achieves 18.6%, 17.9%, and 
18.2% higher performance than KNN in terms of ACC, 
F1, and AUC on the ROSMAP dataset, and achieves 
24.6%, 24%, and 19.4% better performance than KNN 
in terms of ACC, F1, and AUC on the LGG-2 dataset, 
respectively.

In conclusion, our MODILM wins the best on the data-
sets of binary classification tasks and achieves a lot of 
improvements compared to state-of-the-art methods.

(2) Results on the multi-classification tasks

The comparison results between MODILM and other 
existing methods on four datasets of multi-classification 

Table 2 Comparison results on the datasets of binary classification tasks

Method ROSMAP dataset LGG-2 dataset

ACC F1 AUC ACC F1 AUC 

KNN 0.657 0.671 0.709 0.729 0.738 0.799

SVM 0.770 0.778 0.770 0.737 0.748 0.810

RF 0.726 0.734 0.811 0.756 0.767 0.840

block PLSDA 0.742 0.755 0.830 0.729 0.738 0.799

NN 0.755 0.764 0.826 0.754 0.757 0.754

XGBoost 0.760 0.791 0.837 0.748 0.742 0.823

DeepMO 0.772 0.780 0.801 0.765 0.760 0.786

CDForest 0.778 0.791 0.839 0.843 0.858 0.871

P-NET 0.805 0.810 0.818 0.886 0.890 0.897

MOMA 0.818 0.826 0.875 0.942 0.939 0.950

MOGONET 0.815 0.821 0.874 0.951 0.958 0.961

Our MODILM 0.843 0.850 0.891 0.975 0.978 0.993
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tasks are shown in Table  3. The results show that our 
MODILM outperforms all comparative methods across 
all the metrics on all datasets.

Among the existing methods, MOGONET achieves 
the best performance on all datasets except for MOMA, 
which achieves the best F1-macro on the BRCA and 
LUSC datasets. Compared to state-of-art models, our 
MODILM obtains 1.0% to 21.5%, 1.2% to 21.6%, and 1.3% 
to 43.5% improvement in terms of ACC, F1-weighted, 
and F1-macro on the multi-classification tasks, 
respectively.

In a word, our MODILM outperforms state-of-the-art 
methods on all the datasets of multi-classification tasks.

Performance of MODILM with different types of omics data
In this section, our experiment investigates which kind 
of omics data or their combination in MODILM con-
tributes the most to the classification of complex dis-
eases. We build seven types of omics data combinations 
of comparative experiments using miRNA expression 
data, mRNA data, and DNA methylation data from each 
dataset. The experimental results of each dataset under 
different omics data types are shown in Figs.  2 , 3, 4, 5, 
6,  7, indicating that integration of multi-omics data can 
effectively enhance the classification performance. Spe-
cifically, combining three types of omics data yields bet-
ter classification performance than combining two types 

of omics data across all datasets. In addition, the results 
of the combination of various omics types on the LGG-2 
dataset are not significantly different. Occasionally, 
MODILM with specific omics data types (e.g., mRNA in 
the BRCA and SKCM datasets) can even produce bet-
ter results than that with the combination of three omics 
data. There may be two reasons behind this: 1) the contri-
bution of different types of omics data in distinguishing 
different complex diseases varies; 2) MODILM can cap-
ture the important features from all the datasets, thereby 
improving the performance of classification. This further 
illustrates the effectiveness of the proposed method.

The performance influence of some key hyperparameters

(1) Influence of the average number of edges retained by 
each node

When constructing the cosine similarity networks of 
samples, k (the average number of edges retained by each 
node) can be used to control the sparsity of the num-
ber of edges in the graph, thus allowing it to accurately 
capture the interactions between samples. This provides 
extra information on the relevance of the samples and 
boosts the performance of the model.

This section focuses on the effects of k on MODILM ’s 
performance. We build MODILM for each dataset with 

Fig. 2 Performance of MODILM with different types of omics data in the ROSMAP dataset
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Fig. 3 Performance of MODILM with different omics data types in the LGG-2 dataset

Fig. 4 Performance of MODILM with different omics data types in the BRCA dataset
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Fig. 5 Performance of MODILM with different omics data types in the SKCM dataset

Fig. 6 Performance of MODILM with different omics data types in the LGG-4 dataset
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a range of k values to find the optimal one. The model’s 
performance for each dataset when k varies from 2 to 10 
is depicted in Fig. 8. The results show that MODILM cor-
respondingly has the best classification result on ROS-
MAP, LGG-2, BRCA, SKCM, LGG-4 and LUSC datasets 
when k=5,  k=8,  k=10,  k=2,  k=2, and k=3, repectively. 
These experimental results demonstrate that the hyper-
parameter k does affect the classification performance 
of MODILM and varies with the change of k . If k is too 
low, the similarity network becomes too sparse and some 
significant interactions between samples may be over-
looked. Conversely, if k is too high, the similarity network 
becomes too dense and the correlations between samples 
may be contaminated by noise or human factors. The 
appropriate choice of k depends on the topology of the 
data, which may vary from dataset to dataset.

Therefore, it is important to select the appropriate k for 
different datasets.

(2) Influence of the number of GAT layers

In this section, we investigate the influence of the num-
ber of GAT layers on MODILM’s performance. We build 
MODILM models setting the number of GAT layers to 
2, 3 and 4 on each dataset, respectively. The results are 
shown in Table 4.

Table  4 shows that the performance for each metric 
in both the binary- and multi-classification tasks is the 
best when the number of GAT layers is set to 2. As the 
number of GAT layers gradually increases, the perfor-
mance of MODILM decreases. It reveals that GAT 
would be over-smoothing if the number of GAT layers 
is too large.

Therefore, MODILM can achieve the best performance 
when the number of GAT layers is set to 2 in this work.

(3) Influence of the number of hidden layers of MLP

To investigate the influence of t  (the number of 
hidden layers of the MLP in MODILM) on MODILM 
performance, we set t  from 0 to 4 for each dataset. 
Note that t = 0 means that only the features are lin-
early varying. Figure  9 shows the ACC of MODILM 
on each dataset. As can be seen in Fig.  9, the ACC 
of each dataset is best when t  is 2. This may be due 
to the very limited number of omics data samples 
that can be trained, so the deeper the MLP, the more 
likely all node features will converge to a fixed point, 
increasing the risk of overfitting.

Therefore, in this work, we finally set the number of 
hidden layers to 2.

Fig. 7 Performance of MODILM with different omics data types in the LUSC dataset
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Ablation study

(1) The performance influence of GAT in MODILM

This section will investigate the impact of the GAT 
component on the performance of MODILM. To do this, 

we designed a MODILM–GAT model, which removes 
the GAT component from MODILM and directly maps 
the omics features to an MLP model using a simple linear 
transformation method.

We conducted experiments comparing the MODILM–
GAT and MODILM models on each dataset. The 

Fig. 8 Performance comparison of MODILM with different k . A Results on the ROSMAP dataset; B Results on the LGG-2 dataset; C Results on the 
BRCA dataset; D Results on the SKCM dataset. E Results on the LGG-4 dataset; F Results on the LUSC dataset)
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Table 4 Performance investigation of the model with different numbers of GAT layers

Dataset Method ACC F1 AUC F1_weighted F1_macro

ROSMAP 2-layer MODILM (Ours) 0.843 0.850 0.891 –- –-
3-layer MODILM 0.803 0.811 0.875 –- –-
4-layer MODILM 0.731 0.756 0.839 –- –-

LGG-2 2-layer MODILM (Ours) 0.975 0.978 0.993 –- –-
3-layer MODILM 0.928 0.946 0.917 –- –-
4-layer MODILM 0.849 0.883 0.919 –- –-

BRCA 2-layer MODILM (Ours) 0.845 –- –- 0.840 0.804
3-layer MODILM 0.809 –- –- 0.795 0.713

4-layer MODILM 0.765 –- –- 0.731 0.612

SKCM 2-layer MODILM (Ours) 0.928 –- –- 0.927 0.925
3-layer MODILM 0.902 –- –- 0.902 0.903

4-layer MODILM 0.894 –- –- 0.895 0.894

LGG-4 2-layer MODILM (Ours) 0.954 –- –- 0.954 0.948
3-layer MODILM 0.881 –- –- 0.865 0.838

4-layer MODILM 0.795 –- –- 0.769 0.748

LUSC 2-layer MODILM (Ours) 0.865 –- –- 0.855 0.833
3-layer MODILM 0.768 –- –- 0.687 0.626

4-layer MODILM 0.750 –- –- 0.677 0.621

Fig. 9 The classification accuracy of MODILM with different t  on the benchmark datasets

Table 5 The performance influence of GAT in MODILM (ACC)

Setting ROSMAP LGG-2 BRCA SKCM LGG-4 LUSC

MODILM 0.843 0.975 0.845 0.928 0.954 0.865
MODILM–GAT 0.808 0.885 0.780 0.894 0.932 0.780
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experimental results, shown in Table 5, indicate that the 
classification accuracy of MODILM is much better than 
that of MODILM–GAT in terms of classification accu-
racy on all datasets. It suggests that the GAT component 
plays an important role in MODILM. This is because the 
GAT component, through its graph convolutional net-
work and attention mechanism, can learn richer single 
data features, which helps to improve the classification 
performance of MODILM.

(2) The performance influence of VCDN in MODILM

This section will investigate the impact of the VCDN 
component on the performance of MODILM. To do this, 
we designed a MODILM–VCDN model, which removes 
the VCDN component from MODILM and directly only 
multiplies multiple omics feature matrices with Had-
amard products to integrate multiple omics features.

We conducted experiments comparing the MODILM–
VCDN and MODILM models in terms of ACC on each 
dataset. The experimental results, shown in Table 6, indi-
cate that the classification accuracy of MODILM is much 
better than that of MODILM–VCDN on all datasets. It 
reveals that the VCDN component plays an important 
role in MODILM. This may be because the VCDN com-
ponent can learn the correlation of the intra- and cross-
views at higher levels in the label space.

Conclusion
In this work, we proposed a novel multi-omics data inte-
gration learning model, called MODILM, for more accu-
rate classification of complex diseases. MODILM first uses 
similarity networks and GAT networks to learn important 
intra-view features for each type of omics data and uses 
MLP to map these features into a unified feature space for 
high-level omics-specific feature extraction. MODILM 
then uses VCDN networks to fuse omics-specific features 
and learn cross-view correlations in the label space for 
accurate complex disease classification. Extensive experi-
ments were conducted on six benchmark datasets to 
evaluate the performance of the proposed model against 
state-of-the-art models. The results of the experimental 
comparison show that MODILM achieves state-of-the-
art performance across all metrics in all tasks. It indicates 
that our MODILM can improve complex disease classifi-
cation tasks by exploring the internal correlations between 

different omics data, which makes a great contribution to 
the accurate diagnosis of diseases.

However, the number of layers of GATs in MODILM 
needs to be set appropriately, otherwise, the model 
performance may be degraded. This is because increas-
ing the number of layers in the GATs will increase the 
risk of over-fitting and over-smoothing of MODILM. 
In the future, we will investigate some new methods to 
address the problem of model over-smoothing and fur-
ther improve the performance of complex disease clas-
sification tasks.
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