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Abstract 

Background With the rapid growth of healthcare services, health insurance fraud detection has become an impor-
tant measure to ensure efficient use of public funds. Traditional fraud detection methods have tended to focus on the 
attributes of a single visit and have ignored the behavioural relationships of multiple visits by patients.

Methods We propose a health insurance fraud detection model based on a multilevel attention mechanism that we 
call MHAMFD. Specifically, we use an attributed heterogeneous information network (AHIN) to model different types 
of objects and their rich attributes and interactions in a healthcare scenario. MHAMFD selects appropriate neighbour 
nodes based on the behavioural relationships at different levels of a patient’s visit. We also designed a hierarchical 
attention mechanism to aggregate complex semantic information from the interweaving of different levels of behav-
ioural relationships of patients. This increases the feature representation of objects and makes the model interpretable 
by identifying the main factors of fraud.

Results Experimental results using real datasets showed that MHAMFD detected health insurance fraud with better 
accuracy than existing methods.

Conclusions Experiment suggests that the behavioral relationships between patients’ multiple visits can also be of 
great help to detect health care fraud. Subsequent research fraud detection methods can also take into account the 
different behavioral relationships between patients.

Keywords Health insurance, Fraud detection, Heterogeneous graph, Graph neural network

Background
The popularisation of health insurance has provided 
many people with easy access to healthcare and medical 
protection for the public. In various countries, the rapid 
development of the medical services sector is inseparable 
from governmental support for healthcare. In the United 
States, healthcare generated about 3.5 trillion USD in 
2017 [1], of which Medicare contributed about 20% or 
702 billion USD [2]. However, health insurance fraud 
is also increasing, which poses a serious threat to the 
proper use of public funds. According to a survey by the 
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Global Healthcare Anti-Fraud Network, approximately 
260 billion USD is lost globally to health insurance fraud 
each year, which is equivalent to 6% of global healthcare 
spending [3]. According to the Coalition Against Insur-
ance Fraud, the annual financial losses due to Medi-
care fraud in the United States is equivalent to 3–10% 
of healthcare expenditures [3], or 21-70 billion USD. A 
large number of medical claims are made every day and 
fraud can be committed in many ways, such as the ille-
gal administration of drugs and consumables, purchase 
and resale of drugs and falsification of bills for medical 
services. Such fraud seriously harms the interests of users 
and service providers. In response, researchers have been 
developing methods to detect health insurance fraud. 
In China, 339 million USD was recovered from cases of 
health insurance fraud in 2020 alone [4]. In 2020, 1 USD 
= 6.58 RMB [5]. The main approach has been manual 
detection by government-organised experts, which is 
effective but requires a major expenditure of time and 
effort. It relies on sufficient a priori knowledge and it can-
not detect incidents of health insurance fraud consist-
ently and automatically. In addition, there are many types 
of health insurance fraud and methods relying on manual 
detection can have difficulty coping with complex and 
changing patterns. To address these limitations, another 
approach is to apply machine learning to finding incidents 
of health insurance fraud automatically. This approach 
finds outliers in the data, which represent incidents of 
fraud and uses data mining to identify special patterns 
of anomalous data that differ significantly from the rest 
of the data. Most methods based on machine learning 
extract statistical features from the user data such as 
the user’s access trajectory, behaviour and cost. These 
methods then use such statistical features for prediction 
and classification by neural networks, random forests or 
other classifiers. Such methods rarely make full use of 
the interaction between users. However, many entities 
(i.e. objects) are involved in healthcare, such as patients, 
hospitals, departments and drugs. There are rich interac-
tions between these objects that can be very important 
for detecting health insurance fraud. Some research-
ers have started to use graph embedding to incorporate 
user interactions. However, most graph embedding based 
models are black-box models and solving a specialised 
domain problem such as health insurance fraud detec-
tion often requires a certain degree of interpretability. In 
addition, previous approaches to health insurance fraud 
detection have tended to focus only on the characteris-
tic attributes of a single visit. The behavioural attributes 
of multiple visits have been neglected. Such behavioural 
relationships can be modelled by a heterogeneous graph 
approach, which can also be used to find anomalies in 
the topology of the graph neural network. Graphs are 

widely used to model complex relationships between 
objects in many fields [6], including computer vision [7], 
natural language processing, anomaly detection [8], aca-
demic network analysis and recommendation systems [9]. 
Figure 1(a) shows a general scenario of medical treatment, 
which has several important objects such as the patient, 
doctor, hospital, department and medicine. In addi-
tion to attribute information, such objects also possess 
rich interactive information, such as the patient going to 
the hospital on a certain date or drugs being prescribed 
to a patient by a particular department. Integrating the 
patient’s attribute information requires expanding the 
traditional heterogeneous information network (HIN) 
into an attributed HIN (AHIN) so that the objects in the 
heterogeneous information network can possess charac-
teristics. Figure 1(b) shows the architecture of the AHIN 
for the medical treatment scenario, which contains the 
objects and their interactions. However, there are still 
several challenges. First, if health insurance data are 
modelled by an AHIN, the complexity of the data will 
lead to a large number of useless nodes in the graph. A 
graph neural network works by representing a learn-
ing task as the propagation and aggregation of attributes 
among nodes. A large number of noisy nodes will inevita-
bly affect the results. Second, fraudulent users need to be 
distinguished from innocent patients. The results of the 
detected need to be interpretable considering its poten-
tial application in a professional setting. Finally, distin-
guishing which behavioural relationship of a medical visit 
is important for analysis is another challenge. We pro-
pose a health insurance fraud detection model based on a 
multilevel attention mechanism that we call MHAMFD. 
The basic idea of MHAMFD is to enhance the user rep-
resentation by considering interactions between objects 
through neighbour nodes obtained from multilevel 
behavioural relationships in an AHIN. Specifically, we 
build bridges between patient nodes through behavioural 
relationships for medical visit scenarios. The different 
behavioural relationships are used to construct a medical 
multi-relational graph network. Meanwhile, we propose a 
multi-level graph neural network which is used to model 
multiple behavioural relationships within the network 
for fraud detection. The model has several advantages: 
(1) Using different levels of behavioural relationships in 
a way to select appropriate neighbour nodes to form dif-
ferent isomorphic graphs. This can effectively reduce the 
graph structure and can integrate the semantic informa-
tion interwoven with multiple behavioural relationships 
[10]. It is also possible to obtain a comprehensive fraud 
detection result. (2)Due to the effectiveness of attention 
mechanism in various machine learning tasks [11, 12], we 
design a hierarchical attention mechanism. The first level 
of intra-relationship aggregation (intra-relation AGG) is 
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an attention mechanism that can effectively associate dif-
ferent attributes of different neighbours. The second level 
of inter-relationship aggregation (inter-relation AGG) 
can effectively correlate different behavioural relation-
ships of patients. The third layer of hierarchical behav-
ioural aggregation (hierar-relation AGG) can aggregate 
complex semantic information from the interweaving of 
different levels of behavioural relationships of patients. 
This effectively reflects which levels of behavioural rela-
tionships are more important for the final task. This 
attention-based model can improve interpretable results 
to provide more insights about the health care fraud 
detection task and outcomes. In summary, the contribu-
tions of our study can be summarised as follows:

• To the best of our knowledge, MHAMFD is the first 
to sample multiple behavioural relationships among 
neighbours to obtain a heterogeneous network of 
healthcare attributes. The interactions between dif-
ferent types of objects are learned by capturing struc-
tural information between objects in real healthcare 
scenarios.

• We designed a hierarchical attention mechanism for 
automatically learning the importance of different 
patient access behaviours in the healthcare domain 
for fraud detection.

• Extensive experiments with two real datasets showed 
that MHAMFD performed better at fraud detection 
than existing graph representation learning methods.

a

b

Fig. 1 AHIN of the scenario of medical payment service: a Scenario of medical payment service; b Heterogeneous Network
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Related work
Health insurance fraud detection
Health insurance fraud has a significant impact on 
healthcare and daily life. Early research on fraud detec-
tion focused on a rule-based approach. Bauder and Kho-
shgoftaar [13] concluded that health insurance fraud has 
some obvious behavioural signals, which can be detected 
by defining some combination of rules. Because of the 
simplicity and interpretability of rule-based approaches, 
they have long been used for fraud detection [14]. How-
ever, designing such rules depends on a priori knowledge. 
In addition, there are so many ways to commit health 
insurance fraud that this approach has difficulty in deal-
ing with complex and changing patterns. Recent methods 
have started using machine learning to find the intrinsic 
patterns in data indicating fraud automatically. Current 
detection methods can be classified into two general cat-
egories [15, 16]: unsupervised and supervised learning. 
Methods based on unsupervised learning depend on the 
data distribution. Machine learning is used to find outli-
ers in the data, which indicate fraud and data mining is 
used to find abnormal data that differ significantly from 
general data for a specific mode. However, such methods 
are limited because they examine fraudulent behaviour 
according to a specific model. For example, Zhang and 
He [17] examined outliers in the treatment of diseases 
and the costs incurred to identify fraud related to falsi-
fied expenses. However, health insurance-related busi-
nesses are becoming increasingly detailed and fraudulent 
behaviour is becoming increasingly complex, changeable 
and concealed. New patterns of fraud continue to appear 
and anomaly detection algorithms based on fixed pat-
terns lack immunity to these new patterns. Thus, fraud 
detection methods based on fixed patterns have difficulty 
with meeting current needs [18]. Predictive models based 
on supervised learning require large amounts of labelled 
data, but the data of actual scenarios are generally unla-
belled and less data are available to protect patient pri-
vacy. Bauder and Khoshgoftaar [19] used random forest 
to classify unbalanced data. Pandey et al. [20] proposed 
using rule-based scoring systems, logistic regression 
models and decision trees, all of which strongly rely on a 
large amount of training data.

Graph‑based learning
Our proposed model is related to graph-based methods. 
Network embedding is an effective method for modelling 
graph structures. Representation learning is performed 
by mapping the network nodes into a low-dimensional 
vector space. Then, low-dimensional dense vectors are 
used to represent any node in the network, which can 
be flexibly applied to different data mining tasks. Many 
early studies focused on representation learning with 

homogeneous networks, where existing deep models 
were combined with network features to learn feature 
representations of nodes or edges. DeepWalk [21] com-
bines random walk and the skip-gram model to learn 
network node representation. LINE [22] adds a second-
order similarity based on first-order neighbour similar-
ity to learn strongly distinguished node representation 
for large scale sparse networks. SDNE [23] uses a deep 
autoencoder to extract nonlinear characteristics of a 
network structure. However, homogeneous network 
modelling often extracts only part of the information of 
an actual interactive system or does not distinguish the 
heterogeneity of objects and their relationships, which 
results in irreversible information loss [24, 25]. In con-
trast, heterogeneous network modelling provides two 
benefits. First, a heterogeneous network is an effective 
tool for fusing information: not only different types of 
objects and their interactions but also information from 
heterogeneous data sources [26]. Second, the coexistence 
of multiple types of objects and relationships in hetero-
geneous networks contains rich structural and semantic 
information, which provides a precise and interpretable 
new way of discovering hidden patterns. Further methods 
have been proposed that use meta-paths [27] to explore 
the network topology and node characteristics. Some 
models guide the selection of neighbours by defining 
multiple meta-paths in a heterogeneous graph. However, 
such models only consider the importance of nodes and 
meta-paths and ignore the structural information of dif-
ferent levels of relationships intertwined in heterogene-
ous graphs. This can lead to underutilisation of structural 
information in the graph. In our study, one of our aims 
was to use the structural information obtained from the 
hierarchy of different behavioural relationships to learn 
the implicit interactions among objects in the healthcare 
services domain to improve the fraud detection accuracy.

Preliminaries
A HIN is an information network that contains multiple 
types of objects and multiple types of links [6]. Because 
actual patient data have information on certain attributes, 
the HIN can be extended into an AHIN to integrate these 
attributes. Here we define several terms necessary for 
understanding the explanation of our proposed model.

Heterogeneous graph
A heterogeneous graph is a special information network 
that can be denoted as a graph G = {V , ε,X} comprising 
the set of nodes V, set of links and attribute information 
matrix X ∈ R|v|×k . A heterogeneous graph is associated 
with a node type mapping function ∅ : V → A and link 
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type mapping function ϕ : ε → R , where A and R denote 
the sets of predefined object types and link types, respec-
tively. Normally, a network can be considered a heteroge-
neous graph when the number of node types |A| and link 
types |R| meet the condition |A| + |R| > 2 . Otherwise, it 
is a homogeneous graph.

Multiple behavioural relationship paths
The behavioural relationship paths in the medical 
domain can be used to capture rich semantic informa-
tion for the heterogeneous graph. A behavioural rela-
tionship path is an abstract sequence of node types 
connected by link types that is denoted in the form of 
A1

M1R1
−→A2

M2R2
−→A3

M3R3
−→ · · ·

MlRl
−→Al+1 , which can be abbre-

viated as A1A2A3 · · ·Al+1 . It describes a composite rela-
tionship MR = M1R1

◦M2R2
◦ · · ·◦MlRl between node 

types A1 and Al , where ◦ denotes the composition opera-
tor of relationships. Depending on the number of edges 
connecting two adjacent patient nodes, the behavioural 
relationship can be classified as single-level or multilevel.

Neighbours according to multiple behavioural relationships
For a given user u in a HIN with a given attribute, the 
neighbours of the behavioural relationship paths are 
defined as the aggregate neighbour set for a given 
behavioural relationship path of the user u in the AHIN.

Multi‑relational medical graph
A heterogeneous medical graph is a HIN extracted 
from health insurance data. To prevent the loss of het-
erogeneous information between different types of 
nodes and to reduce the size of the graph, we can map 
this to multi-relationship medical graph that only keeps 
the patient nodes. This converts the heterogeneous 
graph to an isomorphic graph while preserving the rich 
interaction information.

Node selection
The different levels of impurities in different behav-
ioural relationships in a multi-relationship graph will 
affect the embedding results. There may be cases where 
the neighbours of a patient node are connected by dif-
ferent numbers of edges. To analyse which behavioural 
relationship or composite behavioural relationship has 
a greater impact on identifying health insurance fraud, 
we can first sample different behavioural relationships 
and then find neighbour nodes connected with the 
same behavioural relationship. Figure 2 shows the pro-
cess of decomposing and reconstructing a heterogene-
ous graph. As an example, Phase b in Fig. 2 shows that 
the p2, p4 and p5 nodes are connected to the patient 
node p1 through the single-level behavioural relation-
ship PDP. Only the p2 node is connected by the multi-
level behavioural relationship PDTMP.

Fig. 2 Process of decomposing and reconstructing heterogeneous graphs
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Health insurance fraud detection problem with an AHIN
The health insurance fraud detection problem can be 
defined by modelling different objects and their interac-
tions in a real medical treatment scenario as the AHIN 
G = {V , ε,X} . In our experiments, the patient node set 
was a subset of the node set denoted as U ⊂ V  . In the 
dataset, each patient u ⊂ V  had the label Yu ∈ {0, 1} to 
indicate whether the patient was fraudulent. For a given 
AHIN G = {V , ε,X} and training set D = {(u,Yu)} , the 
ultimate goal is to predict the probability that a patient 
in the test set is fraudulent.

Methods
Theory
Here, we present the proposed model MHAMFD, 
which uses a hierarchical attention mechanism for 
fraudulent user detection. Figure  3 shows the general 
architecture of MHAMFD. The basic concept is to 
enhance the user’s representation by making full use of 
interactions with neighbour nodes based on multilevel 
behavioural relationships in an AHIN.

Observations of real data
Intuitively, fraudulent users of health insurance tend to 
cluster closely through different types of interactions. 
For example, in the AHIN shown in Fig. 1(a), fraudulent 
users tend to make medical visits to specific departments 
or use health insurance cards on a large scale at a uni-
form point in time. To aggregate the diverse behavioural 

relationships of fraudulent users, we conducted experi-
ments on a real dataset. First, we collected path-based 
neighbours for each user according to two different 
paths: PDP (i.e. the user visited the same department) 
and PDTMP (i.e. the user visited the same department on 
the same day, and both users picked up the same medi-
cation). For each path, we counted the number of neigh-
bours who are users and divided all users into groups 
based on the number of fraudulent neighbours. The 
probability of health insurance fraud was calculated for 
each group. Figure 4 shows the percentage boost in fraud 
rate for the user groups with and without fraudulent 
neighbours for both paths. The different paths produced 
different percentage boosts. This confirmed to us that 
different behavioural relationships have different levels of 
importance to users, which can be captured by an atten-
tion mechanism.

Intra‑relational aggregation
To better guide the embedding of a multi-relational 
graph neural network, we propose aggregation based on 
different levels of behavioural relationships. The overall 
aggregation process of MHAMFD is divided into three 
parts depending on the type of relationship: intra, inter 
and hierarchical. For the intra-relational aggregation 
process, the selected neighbours of a node play differ-
ent roles in node embedding based on the behavioural 
relationship. In other words, each neighbour node has 
a different importance. For example, in the neighbour 

Fig. 3 Architecture of the MHAMFD model
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Fig. 4 Lifting percentages of fraud rate in users with different amount of Medicare fraudster neighbours against users without any Medicare 
fraudster neighbour in two behaviour relationships: a Behavioural relationship PDTMP; b Behavioural relationship PDP
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set based on the behavioural relationship PDP, the fea-
ture similarity varies between the target node and each 
neighbour node. This affects the feature representa-
tion of the target node that can be learned from the 
neighbour nodes. Therefore, we use the self-attention 
mechanism in the intra-relational aggregation pro-
cess. We aggregate the embedding representations of 
meaningful neighbours, which forms node embedding 
representations that are specific to a certain behav-
ioural relationship. Concretely, we use the self-attention 
mechanism to learn the importance of each neighbour-
ing node to the target node. Corresponding weights are 
assigned to different neighbour nodes. Given a pair of 
nodes (i, j) connected by the behavioural relationship l, 
we can define the importance of the neighbour node j 
to the target node i as El

ij . The importance of the node 
pair (i, j) based on the relationship l can be expressed as 
follows,

where xi and xj respectively represent the embeddings 
of nodes i and j, and l represents the behavioural rela-
tionship connecting the two nodes. Attintra represents 
the deep neural network that implements the attention 
mechanism for intra-relational aggregation. For a given 
behaviour relationship l, all node pairs share Attintra . 
This is because the neighbours of all target nodes are 
selected by the same behavioural relationship. However, 
because of the asymmetry of the heterogeneous graph, 
El
ij is asymmetric. This means that the importance of 

node i to node j differs from the importance of node j to 
node i. The importance of a node depends on its charac-
teristics. When the target node changes, El

ij also changes 
because the neighbour nodes of the target node based 
on the behavioural relationship l have changed. This can 
be expressed as j ∈ Nl

i  and i ∈ Nl
j  , where Nl

i  represents 
the neighbour of node i based on the behavioural rela-
tionship l. Afterwards, normalisation is performed with 
the Softmax function. This facilitates the embedding of 
aggregated neighbours, which is expressed by,

The attention mechanism in intra-relation aggregation 
is a single-layer feedforward neural network. Here, we 
need to add LeakyReLU function for nonlinear activation 
and we set the slope to 0.2. Calculating the importance 
of neighboring nodes using LeakyReLU, we can pay more 
attention to neighboring nodes that are more positively 
related to the target node. The weight coefficients of (i, j) 
depend on their characteristics. The weight coefficient αl

ij 

(1)El
ij = Attintra xi, xj; l

(2)�
l
ij
= softmaxj

�

El
ij

�

=

exp
�

LeakyReLU
�

El
ij

��

∑

p∈Nl
i
exp

�

LeakyReLU
�

El
ip

��

is also asymmetric, which means that the contributions 
of nodes i and j to each other also differ. This is because 
the target node changes, which changes the neighbour 
domain. Nodes i and j have different neighbours, so the 
normalisation term (denominator) differs. After the 
importance of all neighbouring nodes for the target node 
i is obtained, we can aggregate the attribute features of 
all neighbours connected by the behavioural relationship 
l with the corresponding coefficients,

where xli is the embedding representation learned by 
node i for the behavioural relationship l and σ is the 
activation function. Because heterogeneous graphs have 
scale-free characteristics, the variance of the graph data 
is relatively large. To reduce the variance, we can use 
multiple attention heads to make the training process 
more stable. Specifically, we repeat the attention mecha-
nism k times and we concatenate the embeddings learned 
each time,

Given the feature vector x and the set of behavioral 
relationships 

{

l1, l2, . . . , lm
}

 , the Intra-relational atten-
tion of MHAMFD generates m behavior-specific vector 
representations of the target node, which are denoted as 
{

xl1 , xl2 , . . . , xlm
}

.

Inter‑relational aggregation
Node embeddings specific to a certain behavioural rela-
tionship can only reflect node information one way. For a 
more comprehensive representation of node embeddings, 
information about these behavioural relationships needs to 
be fused. For health insurance fraud detection, each behav-
ioural relationship has a different impact on node embed-
ding. The behavioural relationships connecting target 
nodes in the heterogeneous graph have different meanings. 
For example, the set of patient nodes selected by the behav-
ioural relationship PDP differs from the set of patient nodes 
selected by PTP and the embeddings learned by both are 
not the same. These have different degrees of importance 
for determining whether the target patient is fraudulent. 
Therefore, we use an attention mechanism in the inter-
relational aggregation process to automatically learn the 
weights of different behavioural relationships and aggregate 
them. This is done by nonlinear transformation of the node 
vectors that have undergone intra-relational aggregation 
and then averaging them. The importance of each behav-
ioural relationship is given by,

(3)xli = σ

(

∑

j∈Nl
i

αl
ij · xj

)

(4)xli =
K
�

k=1
σ

(

∑

j∈Nl
i

αlk
ij · x

k
j

)
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where ωli is the importance of a behavioural relation-
ship, q0 is the attention vector, W0 is the weight matrix 
and b0 is the bias vector. For a meaningful comparison of 
the importance of different behavioural relationships, all 
of the above parameters are shared. Then, normalisation 
is performed by the Softmax function. The weight coef-
ficient can be obtained as follows,

After the attention weights are obtained for each behav-
ioural relationship, the attention weights of each behav-
ioural relationship and the embedding representations 
between relationships are weighted and summed,

In summary, for a given embedding of nodes specific 
to a certain behavioural relationship, the contribution 
of each behavioural relationship can be expressed by 
Eq. (7). Attinter represents the deep neural network that 
performs the attention mechanism. In summary, given 
a group behavior-specific vector embedding as input, 
the contribution of each behavioral relationship can be 
denoted as follows,

After getting the importance of behavioral rela-
tionships, the behavioral relationships of each level 
are aggregated and generated n level-specific vector 
embedding, denoted as 

{

xm1 , xm2 , . . . , xmn

}

.

Hierarchical relational aggregation
We perform a clipped reconstruction of the nodes and 
edges in the multi-relationship graph for health insur-
ance fraud detection. Finally, isomorphic graphs are 
obtained with only single rows representing single-
level, two-level and three-level behavioural relation-
ships. After the intra-relational and inter-relational 
aggregations, we have obtained graph embedding rep-
resentations of the target nodes based on three levels 
of behavioural relationships. Our observations of a 
real health insurance dataset indicated that the dif-
ferent levels of behavioural relationships are relevant 
for fraud detection. For more comprehensive node 
embedding representation, the information of the 

(5)ωli =
1

|V |

∑

i∈V
qT0 · tanh

(

W0 · x
l
i + b0

)

(6)βli = softmax
(

ωli

)

=
exp

(

ωli

)

∑l
i=1 exp

(

ωli

)

(7)xm =

l
∑

i=1

βli · xli

(8)
(

βl1 ,βl2 , · · · ,βlm
)

= Attinter
(

xl1 , xl2 , · · · , xlm
)

different levels of behavioural relationships needed 
to be fused. Therefore, we designed a relational 
aggregation mechanism that captures the semantic 
information from the hierarchy of the behavioural 
relationships. For a given set of embeddings, if the 
degree of influence of different levels of behavioural 
relationships on the final task is added, then this can 
be represented as follows,

where �mi is the level of importance of a behaviour, q1 
is the attention vector, W1 is the weight matrix and b1 is 
the bias vector. Specifically, a larger �mi means that the 
behaviour at level mi is more important for the final task. 
Finally, we need to aggregate the information contained 
at each level to obtain the final node embedding H,

We can apply the final embedding H to different 
downstream tasks. We can use cross-entropy as the loss 
function and optimise the model weights by backpropa-
gation of the minimisation function. The cross-entropy is 
expressed as,

where yS is the set of node indices with labels, Hs and 
YS are the embeddings of labelled nodes and the cor-
responding labels and W is the classifier. We can use 
the hierarchical attention mechanism to aggregate 
information at each level and obtain meaningful node 
embeddings.

Experimental
We conducted experiments to evaluate the proposed 
model with real datasets, compare it against some base-
line methods and use visualisation methods for a more 
intuitive presentation of the results. Here, we briefly 
describe the basic experimental setup. We performed 
ablation experiments to compare the effects of different 
modules. Finally, we analysed the effect of the hierarchi-
cal attention mechanism on the final task.

(9)

(

γm1 , γm2 , · · · , γmn

)

= Att hierar
(

xm1 , xm2 , · · · , xmn

)

(10)�mi =
1

|N |

∑

i∈N
qT1 · tanh

(

W1 · xmi + b1
)

(11)γmi = softmax
(

�mi

)

=
exp

(

�mi

)

∑n
i=1 exp

(

�mi

)

(12)H =

n
∑

i=1

γmi · xmi

(13)L = −
∑

s∈yS

YS ln
(

W ·Hs
)
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Datasets
We used two real datasets from a certain municipal 
health insurance bureau in China in 2018: Medical-1 
and Medical-2. The fraud samples in the datasets were 
the same: patients detected because of abnormal kidney 
disease, repeated prescriptions, prescription of senile 
dementia drugs in their 80s and simultaneous outpatient 
hospitalisation. The main difference was that Medical-1 
contained balanced samples with a ratio of positive to 
negative samples of 1:2. Medical-2 contained unbalanced 
samples with a ratio of positive to negative samples of 
about 1:70. Table 1 presents the detailed information on 
the two datasets.

Baselines
We compared the performance of our proposed 
MHAMFD against multiple advanced methods, includ-
ing those based on graph structures and graph neu-
ral networks. The following baseline models were 
considered:

• Metapath2vec [28]: A heterogeneous graph embed-
ding method that combines random walk guided by a 
meta-path with a skip-gram model. We tested differ-
ent meta-paths to obtain the best performance.

• GCN [29]: A variant of a graph neural network 
designed for isomorphic graphs. It is a semi-super-
vised graph convolutional network. We tested all 
paths to obtain the best performance.

• GAT [30]: A variant of a graph neural network 
designed for isomorphic graphs. It is a semi-super-
vised neural network with an attention mechanism. 
We tested all paths to obtain the best performance.

• HAN [31]: A heterogeneous graph neural net-
work for graph embedding. This model learns node 
embeddings specific to a meta-path from different 
isomorphic graphs and uses a two-level attention 
mechanism to aggregate them into a vector embed-
ding that represents each node in the network.

• MHAMFD : The proposed model. It is a semi-
supervised graph neural network that uses a nested 
aggregation mechanism to simultaneously learn the 
importance of each object in a heterogeneous graph.

• MHAMFDhierar : A variant of MHAMFD that 
removes the hierarchical attention mechanism and 
assigns the same weight to each level of behavioural 
relationships.

• MHAMFDsingle : A variant of MHAMFD that only 
uses single-level behavioural relationships for node 
selection.

• MHAMFDmulti : A variant of MHAMFD that use 
two- and three-level behavioural relationships for 
node selection.

Parameter settings
For Metapath2vec, we conducted a random walk for 
the patient nodes in the order of patient → medicine 
→ patient → date → patient → hospital department → 
patient. Each patient node was randomly sampled 20 
times and the number of negative samples was set to 
5. For the semi-supervised graph neural networks (i.e. 
GCN, GAT and HAN), we used the same training set, 
validation set and test set for each to ensure fairness. 
For a fair comparison, we set the embedding dimension 

Table 1 Dataset used in the experiment

Dataset Node Positive samples Negative samples Behavior-
Relationship

Medical-1 Patient(P):440 152 288 PDP

Time(T):351 PTP

Medicine(M):2328 PMP

Department(D):708 PDTP

PDMP

PTMP

PDTMP

Medical-2 Patient(P):10647 152 10495 PDP

Time(T):364 PTP

Medicine(M):4718 PMP

Department(D):2751 PDTP

PDMP

PTMP

PDTMP
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to 64 for all of the above algorithms. For MHAMFD, we 
used the Adam optimisation algorithm and set the learn-
ing rate to 0.005, number of attention heads to 8. We set 
the dimensions of the attention vectors and to 128. In 
order to cope with the small training set, regularization is 
widely used in the model to prevent over-fitting. In train-
ing, we adopt L2 regularization and set the regularization 
parameter � to 0.001. We introduce L2 regularization to 
make some restrictions. When the weight parameters 
are updated, the absolute values of the weight param-
eters are continuously reduced to prevent over-fitting. 
Meanwhile, we set the dropout parameter to 0.6, which 
makes the data in each batch inconsistent, so it can be 
simply regarded as many different models for training, 
so as to get more robust weights, achieve multi-model 
fusion, improve the generalization of models and reduce 
the over-fitting rate of models. Also, we set an early stop 
parameter patience to 50. If the loss of the model does 
not decrease and the accuracy does not improve in 50 
consecutive training cycles, the training will be termi-
nated early. In this way, the problems of too long training 
and over-fitting can be prevented.

Results and Discussion
Node classification
To evaluate the effectiveness of MHAMFD, we started 
with node classification. First, we conducted experi-
ments with Medical-1 to compare the performances of 
different models. We divide the dataset into three sub-
sets: training, validation and test. The F-score (f1) and 
accuracy (acc) were used as validation metrics. We used 
end-to-end training for all models. A multilayer percep-
tron was connected to the end of a model, which was 
then optimised by using the cross-entropy loss function. 
Table  2 presents the node classification results. We can 
see that the performance of our proposed MHAMFD 
model is better than the baseline. Our MHAMFD model 
has statistical significance in all three evaluation indexes 
(two-tailed t test, α = 0.01, P < 0.01). The overall effec-
tiveness of Metapath2vec was quite different from that of 
the other models. This means that only using structural 
information for a small number of samples did not result 

in learning better embedding representations. GAT, 
GCN and HAN all used meta-paths to find groups of 
identical behavioural trajectories. In contrast, MHAMFD 
mined the same behavioural trajectories to obtain dif-
ferent levels of behavioural relationships. Differences 
between patient nodes were detected by mining the deep 
semantic information of heterogeneous graphs through 
multilevel behavioural relationships. On average, f1 was 
6% higher for MHAMFD than for the other models. This 
indicates that single-level relational paths are not enough 
to explore the structure of heterogeneous graphs and that 
the structural information of different levels of relation-
ships needs to be mined.

Anomaly detection
Next, the above models were evaluated in terms of anom-
aly detection. We used Medical-2 for the experiment. We 
used the weighted cross-entropy loss function for train-
ing and obtained the embedding representation of each 
model with different training sets. Table  3 presents the 
anomaly detection results. Unlike for Medical-1, which 
had balanced samples, in this experiment the effective-
ness of GCN was greatly reduced. This is because GCN 
treats all neighbours equally during aggregation, so the 
large proportion of non-fraudulent patients introduced 
a large amount of noise. The representations learned by 
GCN did not cope well with the task of anomaly detec-
tion. Overall, Metapath2vec was more effective with a 
large number of samples with rich structural informa-
tion than with a small number of samples. Metapath2vec 
includes some structural information of the network but 
ignores the characteristic information of nodes, so the 
performance was generally mediocre. Both MHAMFD 
and HAN have an attention mechanism that allows nodes 
to distinguish the importance of neighbours. However, 
HAN cannot extract different levels of complex behav-
ioural relationships, at least within the medical domain. 
These different levels of behavioural relationships have 
a significant impact on node embedding representation. 
MHAMFD considers more complex semantic infor-
mation that it obtains from different levels of behav-
ioural relationships and it aggregates more complex 

Table 2 Classification effectiveness with balanced sample nodes

Train:Val:Test Metrics Metapath2Vec GAT GCN HAN MHAMFDhierar MHAMFD

1:1:3 f1 0.5595 0.7979 0.7914 0.791 0.8197 0.8694

acc 0.7196 0.8523 0.8523 0.8598 0.8611 0.8961

2:1:2 f1 0.5964 0.7273 0.7547 0.7455 0.8354 0.8566

acc 0.7386 0.8295 0.8523 0.8409 0.8678 0.8905

3:1:1 f1 0.6349 0.72 0.7772 0.7407 0.8123 0.8439

acc 0.7386 0.8409 0.8371 0.8409 0.8423 0.8757
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information from neighbours. MHAMFD considers 
compound semantic relationships from interweaving dif-
ferent levels of behavioural relationships, which improves 
the quality of the selected neighbours of the target node. 
The results showed that MHAMFD performed the best 
with the different training set regardless of the metric (i.e. 
F1, Recall and Precision).

Model analysis
Some previous graph embedding models have been 
based on the assumption that the learning performance 
increases with the contribution of the path to node 
embedding. In a graph constructed for health insurance 
fraud detection, two patient nodes may be connected by 
more than a single-level behavioural relationship. For 
nodes that are intertwined and connected by multilevel 
behavioural relationships, the semantic relationships are 
often more complex. We argue that different levels of 
behavioural relationships have different degrees of influ-
ence on the final embedding of patient nodes. Figure  5 
shows the results with the hierarchical attention mecha-
nism, the dual-level behavior relationship has the greatest 
contribution, while the triple-level behavior relationship 
has the worst contribution. This shows that the neighbor 
nodes obtained from the dual-level behavior relationship 
are more similar to the target nodes and make greater 
contributions to the final task. The triple-level behavior 
relationship has the least influence, because the number 
of neighbor nodes connected by the target node through 
the triple-level relationship is far less than that of the 
single-level relationship and the dual-level relationship. 
The target node gets less information from neighbor-
ing nodes, which leads to the influence of the triple-level 
behavior relationship is not as good as that of the other 
two levels. The specific attention results are shown in 
Table  4. In the results of the attention value for behav-
ior relationship, we can see that behavioral relationship 
PDTP has the greatest influence on node embedding in 
the dual-level behavior relationship. This means that 

the characteristics of patients who have seen a doctor 
in the same department on the same day are similar to 
each other and highly correlated. The table shows that 
the degree of attention may reflect the interpretability of 
the model. This can be used to select neighbour nodes 
according to the appropriate hierarchy of behavioural 
relationships.

Ablation experiment
To validate each component of our proposed model, 
we performed further experiments with different vari-
ants of MHAMFD (see the ‘Baselines’ section). Figure 6 
compares the performances of the different variants. The 
horizontal axis shows the variants and the vertical axis 
represents the performance. The performance was evalu-
ated according to the following metrics: f1, recall and 
precision. The results are presented for 20%, 40% and 60% 
of the training set of Medical-2. Between MHAMFDsingle 
and MHAMFDmulti , the latter performed slightly better. 
This indicates that the multilevel behavioural relationship 
path contains more complex and accurate information 
about the nodes and confirms the accuracy of selecting 
neighbour nodes with different levels of behavioural rela-
tionships. The results for MHAMFDhierar , MHAMFDsingle 
and MHAMFDmulti showed that the model performance 
was significantly improved by aggregating different levels 
of behavioural relationships simultaneously. Finally, the 
results for MHAMFD and MHAMFDhierar showed that 
different levels of behavioural relationships had different 
impacts on the final task and that an attention mecha-
nism was needed to learn these impacts and obtain better 
results.

Visualisation
For a more intuitive comparison, we visualised the 
learned embeddings in two-dimensional space. This 
allows the node distribution to be represented in a low-
dimensional space. We used t-distributed stochastic 
neighbour embedding (t-SNE) to visualise patient nodes 

Table 3 Anomaly detection effectiveness with balanced sample nodes

Train:Val:Test 1:1:3 2:1:2 3:1:1

Metrics F1 Recall Precision F1 Recall Precision F1 Recall Precision

Metapath2vec 0.795 0.7191 0.8888 0.8037 0.7166 0.9148 0.7384 0.6857 0.8

GCN 0.6067 0.6175 0.6296 0.5737 0.5908 0.5894 0.6036 0.6304 0.6121

HAN 0.7658 0.7762 0.8051 0.7543 0.7695 0.796 0.7896 0.8025 0.8138

MHAMFDhierar 0.8014 0.8131 0.9022 0.8095 0.8658 0.9194 0.8662 0.8346 0.9143

MHAMFDsingle 0.7611 0.7917 0.8908 0.7979 0.8391 0.8948 0.7942 0.8417 0.9021

MHAMFDmulti 0.7981 0.8014 0.8989 0.8048 0.8490 0.8748 0.7816 0.8392 0.8846

MHAMFD 0.8361 0.8764 0.9194 0.8679 0.8813 0.9386 0.8806 0.8692 0.9435
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embedded in Medical-2 for each model. For convenience 
of observation, we took all of the positive samples and 
randomly selected 500 nodes from the negative samples. 
Figure  7 shows the results. Metapath2vec performed 
poorly and could not distinguish the node distribution. 
GAT and GCN could mostly distinguish between posi-
tive and negative samples, but there was no sharp bound-
ary and a considerable number of positive and negative 
samples were mixed together. HAN and MHAMFDhierar 
perform better than GAT and GCN. This is because 
HAN used multiple meta-paths and thus could obtain 
more semantic information. Meanwhile, MHAMFDhierar 
not only used single-level behavioural relationships to 
sample neighbour nodes but also added multilevel behav-
ioural relationships to select appropriate neighbour 

nodes. Overall, MHAMFD performed the best. It clearly 
distinguished between different classes and there was a 
clear boundary between positive and negative samples. 
These results further illustrate the effectiveness of adding 
different levels of aggregation modules.

Hyper-parameter analysis
We further studied the sensitivities of several key 
hyper-parameters by varying them in different scales. 
We first tested the effect of the dimension of the final 
embedding Z, and the result is shown in Fig.  8(a). We 
set the dimensional range of the final embedding Z 
to Z ∈ (16, 32, 64, 128, 256, 512) . From Fig.  8(a), we 
observed that the performance of the model improves 
when the value of Z is gradually increased from 16 to 128. 

Fig. 5 Attention values (%) for different levels of behavioural relationships

Table 4 Attention result in Medical-1 datasets

Levels of behavioural relationship Single relationship Dual-level relationship Triple-level 
relationship

Attention value for levels of behavioural relationship 0.129 0.698 0.173

Behavioural relationship PDP PTP PMP PDTP PDMP PTMP PDTMP

Attention value for behavioural relationship 0.475 0.346 0.179 0.619 0.302 0.079 1
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Fig. 6 Experimental results (%) with different variants of MHAMFD

Fig. 7 Visualisation of the learned node embeddings with the Medical-2 dataset



Page 15 of 17Lu et al. BMC Medical Informatics and Decision Making           (2023) 23:62  

Fig. 8 Hyper-parameter sensitivity analysis of MHAMFD: a Dimension of the final embedding Z; b Number of attention head K 
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However, when the value of Z is increased further from 
128, the performance of the model starts to decrease. 
This is because MHAMFD needs a suitable dimension to 
encode the behavioral relationship information. And as 
the dimension increases further, it may introduce addi-
tional redundancy. We explored and analyzed the perfor-
mance of MHAMFD with various number of attention 
head. We set the value of K to K ∈ (1, 2, 4, 6, 8) and the 
result is shown in Fig.  8(b). We observed that the per-
formance of MHAMFD is basically improved as the 
attention head increases. Meanwhile, we also find that 
multihead attention can make the training process more 
stable.

Conclusion
In this study, we considered the problem of health insur-
ance fraud detection. We used a real healthcare dataset 
to explore different behavioural relationships of visits 
by patients. The impact of interactions between differ-
ent objects in a healthcare scenario on fraud detection 
was analysed. These interactions were captured by an 
AHIN in a model called MHAMFD. Different levels of 
behavioural relationships are used to select appropri-
ate neighbours, which considers the composite semantic 
information from the interweaving of different relation-
ships and improves the quality of neighbour nodes. The 
embedding representation of target nodes is compre-
hensively learned by the aggregation of behavioural rela-
tionships within, between and at different levels. The 
effectiveness of MHAMFD at health insurance fraud 
detection was verified through experiments using real 
medical data. In future work, we will conduct explana-
tory studies on applying MHAMFD to health insurance 
fraud detection in different scenarios.
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