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Abstract 

Background Machine-learning models are susceptible to external influences which can result in performance dete-
rioration. The aim of our study was to elucidate the impact of a sudden shift in covariates, like the one caused by the 
Covid-19 pandemic, on model performance.

Methods After ethical approval and registration in Clinical Trials (NCT04092933, initial release 17/09/2019), we devel-
oped different models for the prediction of perioperative mortality based on preoperative data: one for the pre-pan-
demic data period until March 2020, one including data before the pandemic and from the first wave until May 2020, 
and one that covers the complete period before and during the pandemic until October 2021. We applied XGBoost 
as well as a Deep Learning neural network (DL). Performance metrics of each model during the different pandemic 
phases were determined, and XGBoost models were analysed for changes in feature importance.

Results XGBoost and DL provided similar performance on the pre-pandemic data with respect to area under receiver 
operating characteristic (AUROC, 0.951 vs. 0.942) and area under precision-recall curve (AUPR, 0.144 vs. 0.187). Valida-
tion in patient cohorts of the different pandemic waves showed high fluctuations in performance from both AUROC 
and AUPR for DL, whereas the XGBoost models seemed more stable. Change in variable frequencies with onset of 
the pandemic were visible in age, ASA score, and the higher proportion of emergency operations, among others. Age 
consistently showed the highest information gain. Models based on pre-pandemic data performed worse during the 
first pandemic wave (AUROC 0.914 for XGBoost and DL) whereas models augmented with data from the first wave 
lacked performance after the first wave (AUROC 0.907 for XGBoost and 0.747 for DL). The deterioration was also visible 
in AUPR, which worsened by over 50% in both XGBoost and DL in the first phase after re-training.

Conclusions A sudden shift in data impacts model performance. Re-training the model with updated data may 
cause degradation in predictive accuracy if the changes are only transient. Too early re-training should therefore be 
avoided, and close model surveillance is necessary.
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Introduction
In the spring of 2020, the Covid-19 pandemic rapidly 
changed clinical routines in our hospitals with staff 
redeployment and elective procedures postponed due 
to increased demand for ICU beds. The surgical spec-
trum shifted to emergencies. During the lockdown, 
the number of trauma cases declined, and some cen-
tres reported fewer surgeries outside normal operat-
ing hours [1]. Patients who still underwent surgery 
were, on average, older and sicker than before the pan-
demic. Such changes in surgical spectrum and patient 
characteristics can lead to shifts in feature importance 
and affect the performance of machine learning mod-
els [2]. In the medical field, there are few studies on 
the degradation of predictive models due to evolving 
data [3]. In general, it is known that models perform-
ing well initially can degrade as the data changes in 
course of the progress [4]. This so-called “data drift” 
is gradual in most cases, however, external events can 
cause a sudden change in feature distribution, i.e., a 
covariate shift. Another issue is the incidence of the 
endpoint which may also be affected if, for example, 
mortality risk increases [5]. To handle covariate shifts, 
some researchers suggest that past data should be “for-
gotten” or down-weighted [4]. The question of whether 
and at what intervals a model needs to be re-trained 
is difficult to answer. Many models used in economics 
experience automatic updates at specific time inter-
vals. However, it is not clear whether this approach is 
also the right one for models in the clinical setting [6]. 
This is all the more important as predictive models in 
surgical medicine have their practical value especially 
in times of rapidly approaching resource scarcity. An 
important aspect in this context is, for example, to sup-
port responsible and at the same time efficient operat-
ing room and intensive care unit (ICU) bed planning 
based on individual patient risk. The aim of our study 
was to analyse the predictive quality of machine-learn-
ing models in different time periods of the pandemic 
and to identify whether re-training with updated data 
helps to make predictions more reliable.

To address this question, we developed machine 
learning algorithms to predict perioperative mortal-
ity based on preoperatively available data. We did 
this by creating XGBoost models and Deep Learning 
neural networks (DL) for three different time periods: 
one with pre-pandemic data, one with pre-pandemic 
and first-wave data through May 2020, and one with 
data from the complete period before and during the 
pandemic until October 2021. We compared the per-
formance metrics of each model during the different 
pandemic phases and examined changes in feature 
importance.

Patients and methods
Patient collective and data
The study to generate the prediction model was approved 
by the Ethics Committee of the Medical Faculty of the 
Technical University of Munich (TUM) (253/19 S-SR, 
11/06/2019), registered in Clinical Trials (NCT04092933, 
initial release 17/09/2019) and conducted at the Uni-
versity Hospital rechts der Isar of TUM. Informed con-
sent was waived due to the retrospective nature of the 
study in accordance with German legal regulations. The 
study was performed in conformity with ethical guide-
lines, the Declaration of Helsinki and recommendations 
of the German Ethics Council. In accordance with legal 
data protection requirements, only de-identified data has 
been used.

The study was designed in concordance to the TRIPOD 
guidelines for reporting predictive model studies [7].

Data from all patients who underwent noncardiac sur-
gery between June 2014 and October 2021 were included 
in the final analysis. Only the first surgery of each patient 
was of interest; subsequent surgeries were not consid-
ered further. Both elective and urgent procedures were 
included. Patients admitted to the ICU before the first 
surgery were excluded, as were patients who had a non-
surgical procedure (e.g., diagnostic) or an outpatient 
procedure.

The data set was divided into different time periods: 
Patients treated before the Covid-19 pandemic (06/2014 
– 03/2020), patients treated during the first pandemic 
wave (04/2020 – 05/2020), between the first and second 
pandemic waves (06/2020 – 09/2020), during the second 
pandemic wave (10/2020 – 05/2021), and after the sec-
ond pandemic wave (06/2021 – 10/2021). Figure 1 shows 
the respective time period in context of the pandemic, 
Fig.  2 provides an overview of the patient numbers in 
each time period.

The dataset used included all available preoperative 
information from the hospital information system (SAP 
i.s.h.med), the laboratory information system (swisslab 
Lauris) and the anaesthesia patient data management 
system for the pre-anaesthesia visit (QCare, HIM-
Health Information Management GmbH, Bad Hom-
burg, Germany). Data that were not already available 
in tabular or coded form were structured using a quan-
tity-based search algorithm, and drugs were assigned to 
their respective anatomical therapeutic chemical (ATC) 
code and summarized into groups, each with the same 
first four digits of the ATC code.

Development of the XGBoost model
In total, we had over 12,000 parameters at our disposal, 
including 9300 surgical codes according to the German 
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Fig. 1 Pandemic course. Daily new infections, moving average over 7 days. Colour coded are the defined time periods of our study
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Fig. 2 Strobe diagram. The area of the bar of “Source Collective” is proportional to the total number of patients in the given period, and the height 
is proportional to the number of patients per day
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operation and procedure codes (OPS) and 780 laboratory 
values. Parameters such as medical history (241), move-
ments within the hospital (24), medications (199), and 
preoperative orders from the blood depot (13) were also 
included in the final models. We did not impute miss-
ing values but created dichotomous variables about their 
availability and included this information in the model.

Models were trained and tested using datasets from 
three selected time periods. The datasets used for this 
purpose were stratified in a 3:1:1 ratio as a training 
cohort, a test cohort and an internal validation cohort. 
Randomization into training, test, and validation cohorts 
was performed in a way that the frequency of the mortal-
ity endpoint was the same in each cohort.

A total of three models were developed:

1. a model using the pre-pandemic dataset (06/2014—
03/2020)

2. a model using the pre-pandemic data set and that of 
the first wave (06/2014—05/2020)

3. a model using data from the entire period (06/2014–
10/2021).

After randomization, the proportion of patients from 
the first wave in training, testing, and validation cohorts 
of the second model was 2.0, 2.2, and 1.8%, respectively.

The predictive models were built using Extreme Gra-
dient Boosting (XGBoost) with the following hyper-
parameters: “learning rate,” “minimum loss reduction,” 
“maximum depth of each tree,” “proportion of features,” 
“proportion of training samples,” “scale of positive 
weights,” and “minimum of instance weight” [8].

The limits of the hyperparameters were set as fol-
lows: Learning rate (0.01—0.2), minimum loss reduc-
tion (0—6), maximum depth of each tree (3—30 levels), 
proportion of features (0.5—1), proportion of training 
samples (0.5—1), scale of positive weights (0.01—10), 
and minimum sum of instance weights (0—20). Con-
fidence intervals for each prediction were calculated 
using 100 bootstrap samples. Hyperparameter tuning 
was performed separately for each model using the 
Bayesian optimization method. After setting up the 
hyperparameter plane, 64 runs of parameter optimiza-
tion were performed. The five best runs yielded very 
similar AUC values, ranging between 0.9329–0.9334, so 
the search was terminated at this point. Hyperparam-
eter settings are provided in table A1 of supplementary 
file 1. After training, testing and internal validation, 
data from the different phases of the pandemic were 
used as external validation sets to compare the perfor-
mance of the model in the different time periods. Eval-
uation plots of the XGBoost models are shown in figure 
F1 of supplementary file 1.

Development of the deep learning model
With the same dataset and using the approximately 
12,000 parameters mentioned above, Deep Learn-
ing (DL) neural networks were trained using the H2O 
framework in the R environment. An exhaustive grid 
search was performed using common hyperparameters 
such as learning rate, batch size, number of hidden lay-
ers, number of neurons per layer, activation and loss 
function, regularization and dropout rate. In this way, 
three DL models were created according to the time 
periods defined above using the same training, test and 
validation cohorts as for the XGBoost model.

Statistical analysis
All analyses were performed using R, version 4.2.1 (R 
Foundation for Statistical Computing, Vienna, Austria). 
Models were compared based on their area under the 
receiver operating characteristic (AUROC) and area 
under precision-recall curve (AUPR) [95% confidence 
interval]. To further characterize the XGBoost models, 
a cut-off probability value for mortality was determined 
on the training sets using the Youden index. Based on 
this cut-off value, sensitivity, specificity, positive pre-
dictive value, and negative predictive value could be 
determined in each period to compare the performance 
of the models. Additionally, we calculated feature 
importance, i.e., the information gain of each feature as 
well as cover and frequency for each feature used in the 
XGBoost models.

Results
Patient characteristics and surgical spectrum
Patient characteristics in the different periods are shown 
in Table  1. The percentage of patients who died ranged 
from 0.8% before the pandemic to 1.0% during the sec-
ond pandemic wave. Patients during and after the first 
and second wave were older than patients before the 
pandemic. During the pandemic, more patients fell into 
the American Society of Anaesthesiologists (ASA) 3 and 
4 categories and were thus considered more severely ill 
overall. The number of emergencies was proportionally 
higher especially during the first wave. In terms of spe-
cialty departments, the proportion of patients in gynae-
cology/obstetrics and neurosurgery increased during the 
first wave of the pandemic. The frequency of surgeries 
performed outside regular operating hours (here from 
08:00 to 18:00) and on weekends was highest during the 
first wave. Overall, changes were greatest during the first 
wave of the pandemic and partially normalized by the 
end of the study period. Median differences and percent-
age changes of the individual parameters in the pandemic 
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Table 1 Patient characteristics and feature distribution in the respective timeframes

pre-pandemic 1st wave after 1st wave 2nd wave after 2nd wave

time period 6/2014–3/2020 4/2020–5/2020 6/2020–9/2020 10/2020–5/2021 6/2021–10/2021

number of cases 107,468 2251 6504 12,112 8042

mortality 883 (0.8) 22 (1.0) 61 (0.9) 125 (1.0) 65 (0.8)

age—years 56 [38, 70] 58 [40, 72] 57 [39, 71] 57 [39, 72] 57 [38, 72]

female sex 49,282 (45.9) 1065 (47.3) 2896 (44.5) 5815 (48.0) 3789 (47.1)

BMI missing 34,276 (31.9) 484 (21.5) 1114 (17.1) 2061 (17.0) 1329 (16.5)

BMI – kg/m2 25.2 [22.5, 28.6] 24.9 [22.2, 28.4] 25.4 [22.6, 28.7] 25.3 [22.6, 28.7] 25.3 [22.5, 28.7]

ASA missing 31,407 (29.2) 440 (19.5) 1058 (16.3) 1917 (15.8) 1212 (15.1)

ASA
 1 21,204 (27.9) 415 (22.9) 1392 (25.6) 2498 (24.5) 1637 (24.0)

 2 38,999 (51.3) 889 (49.1) 2667 (49.0) 5021 (49.2) 3417 (50.0)

 3 15,113 (19.9) 474 (26.2) 1317 (24.2) 2561 (25.1) 1700 (24.9)

 4 695 (0.9) 33 (1.8) 70 (1.3) 109 (1.1) 76 (1.1)

 5 50 (0.1) 0 0 6 (0.1) 0 

 Mallampati available 42,492 (39.5) 747 (33.2) 1634 (25.1) 2804 (23.2) 1624 (20.2)

Mallampati
 I 27,210 (41.9) 677 (45.0) 2358 (48.4) 4243 (45.6) 2906 (45.3)

 II 28,633 (44.1) 603 (40.1) 1893 (38.9) 3824 (41.1) 2666 (41.5)

 III 7242 (11.1) 177 (11.8) 495 (10.2) 1043 (11.2) 720 (11.2)

 IV 1891 (2.9) 47 (3.1) 124 (2.5) 198 (2.1) 126 (2.0)

 count of preop consults 2 [1, 3] 3 [2, 4.25] 3 [2, 4] 3 [2, 5] 3 [2, 5]

department
 bone&joint 19,153 (17.8) 334 (14.8) 1145 (17.6) 2037 (16.8) 1433 (17.8)

 gyn/obstetric 10,692 (10.0) 293 (13.0) 647 (10.0) 1351 (11.2) 803 (10.0)

 head&neck 25,171 (23.4) 402 (17.9) 1378 (21.2) 2406 (19.9) 1647 (20.5)

 neurosurgery 10,259 (9.6) 315 (14.0) 720 (11.1) 1353 (11.2) 895 (11.1)

 outpatient 9582 (8.9) 201 (8.9) 707 (10.9) 1347 (11.1) 880 (10.9)

 surgery 20,397 (19.0) 421 (18.7) 1104 (17.0) 2087 (17.2) 1382 (17.2)

 urology 12,160 (11.3) 285 (12.7) 801 (12.3) 1530 (12.6) 1002 (12.5)

admission
 from external hospital 2269 (2.1) 54 (2.4) 119 (1.8) 233 (1.9) 142 (1.8)

 child birth 4236 (4.0) 103 (4.6) 258 (4.0) 496 (4.1) 327 (4.1)

 elective case 77,843 (72.6) 1491 (66.8) 4704 (72.5) 8680 (71.9) 5689 (70.9)

 emergency 19,342 (18.0) 509 (22.8) 1190 (18.3) 2306 (19.1) 1543 (19.2)

 new-born 5 (0.0) 0 0 0 0 

 other 661 (0.6) 21 (0.9) 61 (0.9) 151 (1.3) 166 (2.1)

 polyclinic 2853 (2.7) 54 (2.4) 154 (2.4) 213 (1.8) 159 (2.0)

 out-of-hour 7810 (7.3) 204 (9.1) 480 (7.4) 887 (7.3) 577 (7.2)

 weekend 4658 (4.3) 115 (5.1) 242 (3.7) 516 (4.3) 323 (4.0)

 PRCs ordered 29,212 (34.3) 849 (41.7) 2163 (36.8) 4023 (36.5) 2292 (31.0)

 if yes: number 4 [2, 4] 4 [2, 4] 4 [2, 4] 4 [2, 4] 2 [2, 4]

 FFPs ordered 22,724 (26.7) 621 (30.5) 1590 (27.0) 2676 (24.2) 1301 (17.6)

 if yes: number 4 [2, 4] 4 [2, 4] 4 [2, 4] 4 [2, 4] 4 [2, 4]

 PCC ordered 441 (0.5) 12 (0.6) 40 (0.7) 91 (0.8) 47 (0.6)

 if yes: number 4 [3, 4] 4 [4, 6] 4 [4, 6] 4 [3, 6] 4 [2, 4]

 CRP missing 49,466 (46.0) 879 (39.0) 2419 (37.2) 4579 (37.8) 2937 (36.5)

 CRP—mg/L 3.0 [1.0, 10.0] 3.0 [1.0, 16.0] 3.0 [1.0, 10.0] 3.0 [1.0, 10.0] 3.0 [1.0, 10.0]

 leukocytes missing 25,031 (23.3) 267 (11.9) 734 (11.3) 1312 (10.8) 758 (9.4)

 leukocytes – 106/µL 7.3 [5.9, 9.1] 7.2 [5.8, 9.2] 7.2 [5.8, 9.0] 7.2 [5.8, 9.1] 7.2 [5.8, 9.1]



Page 6 of 12Andonov et al. BMC Medical Informatics and Decision Making           (2023) 23:67 

waves compared with the pre-pandemic period are 
shown in table A2 of supplementary file 1.

XGBoost vs. deep learning neural network
For model comparison, we calculated both receiver oper-
ating characteristic (ROC) and precision-recall (PR) 
curves for each of the models, as the precision-recall-
trade-off is a more suitable measure to determine model 
quality than AUROC in an imbalanced dataset [9].

XGBoost as well as the Deep Learning neural network 
(DL) show comparable AUROCs on the pre-pandemic data 
(0.951 [0.941–0.962] vs. 0.942 [0.921–0.962]). The preci-
sion-recall-trade-off is slightly better in DL. Both pre-pan-
demic models deteriorate when applied to first wave data in 
AUROC as well as in AUPR. The XGBoost model improves 
again in the post-wave one phases and shows stable perfor-
mance overall, while DL improves, especially in terms of 

precision-recall trade-off, but continues to show fluctua-
tions in AUROC. Similar results are observed for model 
two from pre-pandemic and first wave data. The XGBoost 
model trained on the entire data performs much better 
than the DL model. The performances of XGBoost and DL 
models are compared in Figs. 3 and 4 as well as in Table 2.

XGBoost feature importance
The XGBoost models, which show higher stability than the DL 
models in our study, are characterized in more detail below.

In total, of the more than 12,000 possible features, 587 
are used in the model from pre-pandemic data, 275 in the 
model from pre-pandemic and first wave data, and 923 in 
the model of the entire period. The most important fea-
tures of each of the XGBoost models and their percent-
age share in the prediction are depicted in Fig. 5. In the 
pre-pandemic phase (model 1), age, number of packed 

Data are given as numbers (%) or median [interquartile range]. The laboratory values refer to those determined preoperatively

BMI Body-mass-index, ASA American Society of Anaesthesiologists Physical Score, PRCs Packed red cells, FFPs Fresh frozen plasma units, PCCs Platelet concentrates, 
CRP C-reactive protein

Table 1 (continued)

pre-pandemic 1st wave after 1st wave 2nd wave after 2nd wave

 albumin missing 98,097 (91.3) 1976 (87.8) 5804 (89.2) 10,726 (88.6) 7168 (89.1)

 albumin—g/L 44 [39, 46] 43 [38, 47] 44 [39, 47] 43 [37, 46] 43 [38, 46]

 Quick missing 25,443 (23.7) 283 (12.6) 772 (11.9) 1372 (11.3) 794 (9.9)

 Quick value—% 103 [95, 112] 116 [107, 120] 108 [99, 115] 107 [98, 114] 106 [98, 113]
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Fig. 3 ROC- (first row) and PR-curves (second row) of the three XGBoost models. The dashed line shows the baseline mortality rate according to the 
performance of a random classifier
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red cells (PRCs) ordered and number of preoperative 
consults are the top three variables. The model includ-
ing data from the first wave (model 2) shows an increas-
ing importance of age and number of ordered packed 

red cells, whereas preoperative c-reactive protein (CRP) 
displaces the number of preoperative consults. In this 
model, the top three factors account for approximately 
30% of the prediction. Throughout the period (model 3), 
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Fig. 4 ROC- (first row) and PR-curves (second row) of the three DL models. The dashed line shows the baseline mortality rate according to the 
performance of a random classifier

Table 2 Model performance measured by area under the receiver operating characteristic (AUROC-) and area under precision recall 
(AUPR-) curves [95% CI]

training set validation 
parameter

validation set

pre-pandemic 1st wave after 1st wave 2nd wave after 2nd wave

06/2014–03/2020 04/2020–05/2020 06/2020–09/2020 10/2020–05/2021 06/2021–10/2021

XGBoost
pre-pandemic (model 1) AUROC 0.951 [0.941–0.962] 0.914 [0.871–0.957] 0.931 [0.909–0.953] 0.944 [0.929–0.959] 0.944 [0.927–0.961]

AUPR 0.144 [0.140–0.149] 0.074 [0.064–0.086] 0.150 [0.141–0.159] 0.177 [0.171–0.184] 0.118 [0.111–0.125]

pre-pandemic + 1st wave 
(model 2)

AUROC 0.923 [0.907–0.940] 0.907 [0.870–0.943] 0.942 [0.924–0.959] 0.937 [0.917–0.958]

AUPR 0.142 [0.138–0.147] 0.052 [0.041–0.066] 0.174 [0.169–0.179] 0.136 [0.129–0.144]

whole set (model 3) AUROC 0.941 [0.927–0.954]

AUPR 0.168 [0.164–0.173]

 
Deep Learning

pre-pandemic (model 1) AUROC 0.942 [0.921–0.962] 0.914 [0.855–0.975] 0.907 [0.861–0.953] 0.958 [0.945–0.971] 0.899 [0.854–0.945]

AUPR 0.187 [0.182–0.192] 0.074 [0.064–0.085] 0.160 [0.151–0.169] 0.193 [0.186–0.200] 0.145 [0.138–0.153]

pre-pandemic + 1st wave 
(model 2)

AUROC 0.877 [0.850–0.905] 0.747 [0.608–0.887] 0.912 [0.888–0.935] 0.884 [0.838–0.930]

AUPR 0.080 [0.076–0.083] 0.041 [0.032–0.054] 0.106 [0.101–0.112] 0.073 [0.068–0.079]

whole set (model 3) AUROC 0.885 [0.862–0.908]

AUPR 0.089 [0.085–0.092]
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age, ASA and number of preoperative consults are most 
important, however, individual importance decreases so 
that only age has an importance greater than 5%. Here, 
the three most important factors account for only 13% of 
the prediction. A table showing cover and frequency as 
well as the gain of all parameters used in the models are 
provided in supplementary file 2.

XGBoost cut-off and performance metrics
Furthermore, we set a cut-off value based on the Youden-
indices of the ROC curves of the three XGBoost mod-
els. In the first model, the threshold for predicting the 
death of a patient was set at a probability of 16.11, and 
in the second and third model, it was set at 18.05 and 
12.96 respectively. At these thresholds, we determined 
the metrics of sensitivity, specificity, positive predictive 
value, and negative predictive value for each validation 
period. This consistently showed poor positive predic-
tive value with acceptable sensitivity and good specificity 
while negative predictive value was consistently high. The 
specificity of the first model decreased significantly when 
applied to the first wave data. The other changes were 
not significant because of the wide confidence intervals. 
However, the second model is expected to lose sensitiv-
ity when applied to data from after the second wave. The 
cut-off values and metrics are shown in Table 3.

Discussion
We developed machine-learning algorithms to predict 
perioperative mortality based on pre-operatively avail-
able data. Such models can aid decision-making during 
periods of scarce resources, like during the Covid-19 
pandemic when intensive care beds for non-Covid 
patients were lacking. This makes the question of how 
robust such a model is to external influences all the more 
important. To address this issue, we developed three 
models with data from different phases before and dur-
ing the pandemic using an XGBoost algorithm and a 

Deep Learning neural network. Our results show that 
precision-recall-trade-off was poor in both XGBoost and 
DL which is mostly due to an imbalanced data set: Mor-
tality, as the end point of the study, is a very rare event 
with a frequency between 0.8 and 1.0%. AUPR decreases 
when the pre-pandemic models are used on first-wave 
data and recovers in the course. The same observation 
can be made after the first wave when the pre-pandemic 
and first wave data model is applied. In this respect, 
XGBoost and DL behave very similarly. The AUROC 
of the XGBoost models perform consistently very good 
with values > 0.9 while the DL model shows strong fluc-
tuations in the individual pandemic phases, but both can 
recover fully or partially after an initial worsening.

To make the changes a little more descriptive, we have 
determined cut-off values for mortality prediction of the 
XGBoost models based on the Youden index. This illus-
trates that the proportion of false positive predictions is 
quite high, whereas the models perform very well by pre-
dicting negatives. It is evident that specificity and sensi-
tivity show fluctuations in the different pandemic phases.

Gradient boosting methods are among the most com-
monly used algorithms in the field of perioperative 
medicine and often show excellent performance [10, 11]. 
However, there is evidence in the current literature that 
deep learning methods are superior to XGBoost with 
respect to AUROC [12] which made us use both meth-
ods. However, our results cannot support the superiority 
hypothesis for DL. Foremost, the DL models in our study 
showed much more pronounced fluctuations in AUROC 
than XGBoost, and our results show that the phenome-
non of performance degradation under covariate shift is 
not limited to the XGBoost method.

It is generally assumed that different models react dif-
ferently to changes. Overall, logistic regression models 
appear to be more vulnerable than machine learning 
algorithms [13]. Davis et al. studied the effects of a case 
mix shift on predictions and showed that neural networks 

Fig. 5 Importance of the top ten features of each model measured by the average gain of the feature if it is used in trees. PRCs = packed red cells, 
ASA = American Society of Anaesthesiologists Physical Score, EVD = external ventricular drain
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are relatively robust, while random forests are moderately 
and most logistic regression models are strongly affected 
[14]. Unfortunately, XGBoost models, which are among 
the most frequently used algorithms for predictive mod-
els in perioperative medicine [10], were not examined in 
their study. However, from our data we can conclude that 
XGBoost as well as DL models may exhibit at least mod-
erate susceptibility to covariate shift.

From our results it can be concluded that the restric-
tions of the first pandemic wave have a massive impact 
on model performance when taking into account that 
the patient population in this period is only a small frac-
tion of the total population. This is caused by a change in 
patient characteristics and surgical spectrum with a shift 
towards urgent and emergency procedures which causes 
a covariate shift that affects model quality [15]. However, 
this problem is not new. For example, it is well known 
from economics that customer preferences change, mak-
ing models based on old data inconsistent [16]. A change 
in the data on which the model is based can occur grad-
ually, in the field of medicine, for example, as examina-
tion and treatment methods change over time. This can 
be addressed by removing older data from the data set or 
by applying factors so that old data is weighted weaker. 
Abrupt changes such as those caused by the Covid-19 
pandemic, however, are more difficult to deal with and, 
although this problem seems obvious and might be clini-
cally relevant, there is not much preliminary work so far 
on this issue.

The pandemic-related changes in the general condi-
tions in our hospitals are manifold: Especially in the first 

phase of the Covid-19 pandemic, the surgical spectrum 
at our hospitals changed due to the rescheduling of elec-
tive procedures and a resulting proportional increase 
in emergency procedures with a significant decrease in 
hospital admissions and outpatient procedures. Case-
mix-index and mortality rates increased [17]. There is 
evidence of worsening patient outcomes and a reduction 
in trauma cases during the first phase of the Covid pan-
demic [1, 18]. Less obvious changes involve a negative 
effect on the enrolment of patients in clinical trials [19] as 
well as a decrease in publications and scientific output of 
non-infectiology disciplines [20]. With the ongoing pan-
demic, conditions returned to normal [21]. As the pan-
demic progressed, delayed elective procedures that had 
accumulated, the so-called surgical back-log, had to be 
performed nonetheless, and so the numbers of surgeries 
normalized again [22].

These manifold dynamics which have the potential 
to cause significant covariate shift are reflected in our 
data. During the first wave, there were fewer elective 
cases, patients had higher ASA scores, and the surgical 
spectrum shifted toward departments that usually per-
form a greater proportion of urgent procedures, such as 
obstetrics or neurosurgery. In contrast to other reports, 
the number of out-of-hours surgeries in our institu-
tion increased, a fact that might also have contributed 
to poorer outcomes [23]. Looking at the figures after 
the second wave, they almost approached the pre-pan-
demic state again. Some changes remained, such as bet-
ter documentation of presumed important information 
like the ASA score. Anaesthesiologists seemed to attach 

Table 3 Statistical assessment of different classifiers [95% CI] at the respective cut-off-values for the XGBoost models

training set validation 
parameter

validation set cut off from 
training set

pre-pandemic 1st wave after 1st wave 2nd wave after 2nd wave

06/2014–03/2020 04/2020–05/2020 06/2020–09/2020 10/2020–05/2021 06/2021–10/2021

pre-pandemic 
(model 1)

Sensitivity 0.722 [0.664–0.774] 0.773 [0.546–0.922] 0.672 [0.540–0.787] 0.760 [0.675–0.832] 0.677 [0.549–0.788] 0.1611

Specificity 0.927 [0.924–0.930] 0.894 [0.880–0.906] 0.932 [0.925–0.938] 0.921 [0.916–0.926] 0.940 [0.935–0.946]

PPV 0.086 [0.075–0.098] 0.067 [0.039–0.105] 0.085 [0.062–0.114] 0.091 [0.074–0.110] 0.085 [0.062–0.112]

NPV 0.997 [0.996–0.998] 0.997 [0.994–0.999] 0.997 [0.995–0.998] 0.997 [0.996–0.998] 0.997 [0.996–0.998]

F1 Score 0.153 [0.135–0.1723] 0.123 [0.07–0.173] 0.151 [0.107–0.192] 0.163 [0.134–0.191] 0.151 [0.109–0.190]

pre-pan-
demic + 1st wave 
(model 2)

Sensitivity 0.730 [0.660–0.792] 0.462 [0.192–0.749] 0.753 [0.685–0.812] 0.662 [0.534–0.774] 0.1805

Specificity 0.915 [0.912–0.919] 0.927 [0.911–0.941] 0.920 [0.916–0.923] 0.933 [0.927–0.938]

PPV 0.065 [0.055–0.076] 0.061 [0.023–0.129] 0.082 [0.069–0.096] 0.074 [0.054–0.099]

NPV 0.998 [0.997–0.998] 0.994 [0.988–0.998] 0.997 [0.997–0.998] 0.997 [0.996–0.998]

F1 Score 0.119 [0.101–0.138] 0.108 [0.027–0.180] 0.148 [0.128–0.179] 0.134 [0.095–0.166]

whole set 
(model 3)

Sensitivity 0.258 [0.204–0.319] 0.1296

Specificity 0.992 [0.991–0.993]

PPV 0.221 [0.173–0.275]

NPV 0.994 [0.992–0.994]

F1 Score 0.238 [0.185–0.288]
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more importance to the ASA when the pandemic began, 
and documented this more frequently in the premedi-
cation protocol. This higher accuracy of documentation 
remained during the whole observation period.

Taken together, in the present study we face an abrupt 
onset of change in the data underlying the model which 
partially recedes after a period of several months.

Recently, Duckworth and colleagues developed an 
XGBoost model for prediction of hospital admission 
from the emergency department and examined data 
drift caused by the Covid-19 pandemic. In contrast to 
our study, they found a drop in AUROC after the onset 
of the pandemic whereas the AUPR increased [2]. How-
ever, these changes were caused by a shift in their tar-
get variable, admission rate, which increased markedly 
during the pandemic. In contrast, the target variable in 
our study, mortality, showed only fluctuations between 
0.8 and 1.0%.

The study of Duckworth and colleagues also reports 
changes in feature importance. As an example, respi-
ration rate rose in importance at the beginning of the 
lockdown and decreased during the course [2]. In our 
work we could observe similar phenomena. Regarding 
feature importance in our XGBoost models, the top var-
iables are mostly the same, only in a different order. This 
is not surprising: age is an important variable in many 
models and scores for mortality prediction [24, 25]. 
The number of preoperative consults reflects a patient’s 
comorbidities, which correlate with mortality just like 
the ASA score [26], while the number of blood products 
provided correlates with the severity of surgery. Only 
the importance of each variable and its place in the 
ranking of the top variables changes over the different 
phases of the pandemic.

Whether early re-training improves the predictive 
quality of the model remains a subject of discussion. 
There is some evidence that it might not be enough 
to just re-train the model with new data. Lacson and 
colleagues addressed the question whether re-training 
a model with new data will be sufficient or a newly 
developed model performs better. They came to the 
conclusion that a completely new developed model 
outperforms a model that was simply re-trained with 
augmented data [27]. We addressed this point by 
developing three different models for the respective 
periods using not only augmented data for updating 
but also performing hyperparameter optimization for 
each model.

Taken together, we can conclude that the performance 
of both DL and XGBoost models suffers due to shifts in 
the data. As a consequence, model performance has to be 
monitored to detect gradual as well as sudden data drift 
to regulate model updating cycles [3].

Strengths and limitations
As a weakness could be considered that we provide mod-
els based on single-centre data with a relatively small 
number of patients in the first pandemic wave. However, 
at the onset of the Covid pandemic, patient numbers 
generally declined due to regulatory restrictions, and to 
our knowledge, no multicentre-generated models exist 
on this topic to date.

Furthermore, we chose mortality as a clearly defined 
endpoint that could easily be determined from routine 
data. As in-hospital death after surgery is a relatively 
rare event with a frequency of about 1%, this choice 
resulted in a highly imbalanced dataset. As a conse-
quence, we received consistently good AUROCs but low 
precision-recall rates, and our models perform very well 
in predicting survivors at the price of a high false posi-
tive rate. However, it is precisely this weakness that illus-
trates the influence of data drift on performance metrics 
by causing a drastic decline in precision-recall trade-off 
with AUROCs being almost unaffected, at least in the 
XGBoost models.

Theoretically, the distribution shift in the data must 
be taken into account in model building, and appropri-
ate techniques such as covariate shift adaptation should 
be used. We did not focus on this aspect in our work, 
because the onset of the Covid pandemic brought sud-
den unpredictable changes that were difficult to respond 
to in reality. The true extent of Covid-related changes 
in the patient and surgical spectrum in our hospitals is 
only now being analysed and published [28]. Any con-
sideration of adjusting or controlling for the covariates 
therefore remains necessarily speculative. The fact that 
conditions in our case largely returned to normal after a 
few months was also not foreseeable at the beginning of 
the pandemic.

To date, there are few papers from the medical field 
that address the problem of sudden covariate shift [2]. 
Our work is intended to sensitize to this problem and 
supports the fact that further research is needed in this 
area.

Conclusions
The present study has shown that a newly developed 
model with augmented data can perform worse under 
altered conditions after the initial phase of acute 
change. XGBoost models and Deep Learning neu-
ral networks are both susceptible to covariate shift, 
whereas XGBoost seems to be more stable in case 
of sudden changes, at least under the conditions we 
studied.

These findings tell us that updating a model too early 
can lead to a noticeable degradation in performance. 
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Therefore, continued monitoring of a model’s predictive 
ability is necessary even after updating. A viable practical 
approach might be to use the old and updated models in 
parallel for a period of time after the update and compare 
their results. If the changes are only temporary, a model 
may regain its original predictive power.
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