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Abstract 

Background  Breast cancer (BC) is one of the most common cancers among women. Since diverse features can be 
collected, how to stably select the powerful ones for accurate BC diagnosis remains challenging.

Methods  A hybrid framework is designed for successively investigating both feature ranking (FR) stability and cancer 
diagnosis effectiveness. Specifically, on 4 BC datasets (BCDR-F03, WDBC, GSE10810 and GSE15852), the stability of 
23 FR algorithms is evaluated via an advanced estimator (S), and the predictive power of the stable feature ranks is 
further tested by using different machine learning classifiers.

Results  Experimental results identify 3 algorithms achieving good stability ( S ≥ 0.55 ) on the four datasets and gen-
eralized Fisher score (GFS) leading to state-of-the-art performance. Moreover, GFS ranks suggest that shape features 
are crucial in BC image analysis (BCDR-F03 and WDBC) and that using a few genes can well differentiate benign and 
malignant tumor cases (GSE10810 and GSE15852).

Conclusions  The proposed framework recognizes a stable FR algorithm for accurate BC diagnosis. Stable and effec-
tive features could deepen the understanding of BC diagnosis and related decision-making applications.

Keywords  Breast cancer diagnosis, Feature ranking stability, Machine learning, Decision making

Background
Breast cancer (BC) is one of the most frequently diag-
nosed cancers among women worldwide. In 2020, it 
caused 2.26 million new cases and 0.68 million deaths [1]. 
As a transitioning country, China is facing a growing bur-
den, since the number of new cases is near 0.42 million 
[2]. Much worse is transitioning countries have lower 

incidence rates but much higher death rates than transi-
tioned countries [1]. The substantial BC burden in devel-
oping and low-resource countries calls for cost-effective 
screening and diagnostic services to improve survival 
rates and quality of life [3].

Many techniques have been developed for BC screen-
ing and diagnosis [4, 5]. Mammography (MAM) is the 
gold standard for BC screening. Due to high-resolution 
imaging of internal anatomy, it benefits the observation 
of suspicious lesions. To make a diagnosis of cancer, fine 
needle aspiration (FNA) biopsy test is needed. It obtains 
a sample of breast lump cells, and a pathologist checks 
whether the sample contains any cancer cells [4]. Gene 
expression profiling tests analyze genes within cancer 
cells and can help decide whether a patient is expected to 
benefit from additional treatment after surgery [5]. Some 
other modalities, such as ultrasound tomography [6], are 
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under pre-clinical trial for investigating BC diagnosis and 
prognosis.

Computer-aided diagnosis (CAD) models have also 
been built to facilitate BC diagnosis [7, 8]. A CAD model 
consists of feature extraction, feature selection, and 
malignancy prediction. Feature extraction is to design 
or collect variables or predictors for breast tumor repre-
sentation. The features can be computed from intensity 
analysis, shape description and texture quantification [7]. 
Since the feature dimensionality grows dramatically, fea-
ture selection becomes increasingly important, and its 
purpose is to find a subset of features by removing redun-
dant and irrelevant ones [9]. According to the output 
type, feature selection methods can be categorized into 
feature ranking (FR) and subset feature selection (SFS) 
groups [9]. To differentiate benign and malignant cases, 
popular classifiers not limited to artificial neural network 
(ANN), K-nearest neighbors (KNN), linear discriminant 
analysis (LDA), naive Bayes (NB), random forest (RF) and 
support vector machine (SVM) are used [10]. Recently, 
deep learning has updated CAD performance [11]. It 
fuses feature extraction, feature selection and cancer 
prediction into a seamless optimization procedure [12]. 
Novel architectures have been designed, and technical 
strategies have also been suggested [8].

However, two shortcomings are observed in the under-
standing of FR/SFS algorithms for decision-making 
applications. Firstly, the stability has rarely been studied. 
Specifically, few of FR/SFS algorithms are evaluated [13–
16], and stability estimators are not yet comprehensive 
[17]. Secondly, the superiority of an FR/SFS algorithm is 
overwhelmingly determined by its predictive power and 
thus, performance-oriented. The underestimation of sta-
bility decreases user confidence and hampers the deploy-
ment of FR/SFS algorithms in real-world applications.

To well address the above-mentioned shortcomings, a 
hybrid framework is proposed for investigating both FR/
SFS stability and diagnosis effectiveness. To the best of 
our knowledge, this is the first work devoted to evaluat-
ing the stability and effectiveness of more than twenty 

FR algorithms on BC data analysis (BCDR-F03, WDBC, 
GSE10810 and GSE15852). The contributions of this 
work can be summarized as follows: 

1.	 A hybrid framework is designed in which both the 
FR/SFS stability and the diagnosis effectiveness can 
be evaluated successively.

2.	 The stability of 23 FR algorithms is assessed on 4 BC 
datasets via an advanced estimator, and 3 FR algo-
rithms are identified stable.

3.	 The predictive power of stable ranks is tested, and 
generalized Fisher score (GFS) leads to superior per-
formance regardless of classifiers.

4.	 GFS ranks suggest shape features are vital in image 
analysis (BCDR-F03 and WDBC) and using a few 
of genes can well differentiate malignant cases from 
benign ones (GSE10810 and GSE15852).

Related work
In most studies, the superiority of FR/SFS algorithms is 
defined by the predictive power as shown with solid-line 
arrows in Fig.  1. For instance, performance comparison 
of SFS methods and classifiers on glioma grading is quan-
tified by using the balanced accuracy and the area under 
the curve [10], and FR outcomes followed by classifiers 
are evaluated using precision, sensitivity and F-measure 
for finding the most significant features [18].

Few studies have explored FR/SFS stability and predic-
tive power at the same time. For BC risk forecasting, 6 
methods are assessed via correlation coefficient and Jac-
card index [13]. For colorectal cancer prediction, 6 meth-
ods are evaluated using 3 similarity-based measures [14]. 
On gene datasets, 6 methods are analyzed with 3 esti-
mators [15]. And on small-sample data analysis, relative 
weighted consistency, partially adjusted average Tani-
moto index and correlation-based similarity measures 
are used [16].

However, these studies [13–16] are not comprehensive, 
because the estimators used lack one or more properties 

Fig. 1  The performance-oriented (solid-line arrows) and the proposed stability-first FR/SFS (dashed-line arrows) frameworks for building a CAD 
model. (The figure can be enlarged for viewing)
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a good estimator should possess [17], and subsequently, 
the conclusions might be untenable. Therefore, build-
ing a hybrid framework to investigate both stability and 
effectiveness of FR/SFS algorithms is meaningful. Table 1 
shows from the number of FR/SFS algorithms and esti-
mators involved and from whether the estimators satisfy 
the full propertiers of a good estimator [17].

This study differs from the previous studies [13–16]. 
Overall, 23 algorithms are evaluated, surpassing that of 
each previous study. Meanwhile, an advanced estima-
tor [17] is used, and the dynamic change of FR stability 
is quantified regarding the number of selected features. 
Moreover, on 4 BC datasets, stable algorithms are iden-
tified, and their effectiveness is assessed on malignancy 
prediction of breast tumor cases. In addition, selected 
features are analyzed as potential BC signatures by lit-
erature screening, and the findings may pave the way for 
understanding the disease occurrence and diagnosis.

Materials and methods
In this section, data collection, FR algorithms, stability 
estimator, machine learning classifiers and experimental 
design are described. To preserve the readability, major 
notations are summarized in Table 2.

Data collection
Four datasets are analyzed. BCRD-F03 [19] includes 406 
breast lesions (230 benign and 176 malignant) and 736 
MAM images. For lesion representation, 17 features are 

derived from intensity analysis (mean, median, stand-
ard error, maximum, minimum, kurtosis, and skewness), 
shape description (area, perimeter, x-center, y-center, cir-
cularity, elongation, and form) and texture quantification 
(contrast, correlation, and entropy). To avoid one lesion 
with multiple images, the first feature record of each 
lesion is used.

Wisconsin Diagnostic Breast Cancer (WDBC) [20] 
contains 357 benign and 212 malignant instances. For a 
FNA image, 10 features (radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave points, 
symmetry, and fractal dimension) are computed. Besides 
mean values, the standard error and the “worst” (or larg-
est) values of features are collected.

Other datasets are from the Gene Expression Omnibus 
(GEO) [21]. GSE10810 comprises 31 tumor samples and 
27 control samples of breast specimens, and 18,382 gene 
profiles are provided for each sample [22]. GSE15852 
provides 43 tumor samples and 43 control samples of 
Malaysian women, and 22,283 gene expression data 
points are collected [23].

Table  3 shows the dataset information. The goal is to 
recognize malignant samples from benign ones by using 
medical images (BCDR-F03 and WDBC), or gene profiles 
(GSE10810 and GSE15852).

FR algorithms
Twenty-three methods in the matFR toolbox [24] are 
evaluated, and the other methods beyond time expec-
tation ( ≥ 0.5 hour per iteration) on GSE15852 are dis-
carded. In general, the core ideas of used algorithms are 
based on absolute values of t-test [25], relative entropy 
[26], Bhattacharyya distance [27], the area between the 
empirical receiver operating characteristic curve and ran-
dom classifier slope [28], absolute values of Mann-Whit-
ney test [29], ReliefF [30], the least absolute shrinkage 
and selection operator [31], correlation analysis [32], gen-
eralized Fisher score (GFS) [33], Gini score [34], Kruskal-
Wallis test [35], pairwise feature proximity (PWFP) [36], 
min-max local structure information [37], local learning-
based clustering [38], eigenvector centrality [39], proba-
bilistic latent graph-based measure space [40], concave 

Table 1  Comparison of related works

FR/SFS estimators satisfied

[13] 6 2 no

[14] 6 3 no

[15] 6 3 no

[16] 1 3 no

Ours 23 1 yes

Table 2  Main notations

Notation Description

S the value of a stability estimator

K the number of nearest neighbors

(X, y) a sample of features (X) and its label y

fi,k the index of the kth feature after the ith ranking

m the number of features in stability analysis

N the number of feature ranking experiments

n the number of features used for BC diagnosis

M the number of BC diagnosis experiments

Table 3  Summary of the datasets used in this study

benign (training/
testing)

malignant 
(training/
testing)

feature 
number 
(p)

source

BCDR-F03 230 (141/89) 176 (141/35) 17 MAM

WDBC 357 (170/187) 212 (170/42) 30 FNA

GSE10810 27 (22/5) 31 (22/9) 18382 gene

GSE15852 43 (34/9) 43 (34/9) 22283 gene
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minimization and SVM [41], the convergence proper-
ties of the power series of matrices [42], Laplacian score 
[43], L 2,0-norm equality constraints (LNEC) [44], adap-
tive structure learning [45], robust spectral learning of 
the spectrum information of the graph Laplacian [46], 
and L 2,1-norm minimization on processes of both label 
learning and feature learning [47]. Full details of the algo-
rithms can be found in the original publications.

Stability estimator
The stability estimator proposed in [17] is used, and it 
possesses the full properties a good estimator should 
hold. It recasts the procedure of FR/SFS stability measure 
as the estimation of a random variable, and correspond-
ing population parameters are explicitly embedded. After 
the sampling distribution is identified, tools are provided 
to estimate the confidence intervals and to perform the 
hypothesis tests. Importantly, the estimator allows for 
reliable comparison across different FR/SFS procedures.

In addition, stability values (S) above 0.75 represent 
excellent agreement of feature sets beyond chance, the 
values below 0.40 reveal poor agreement between sam-
pled feature sets, and the values in the range of 0.40 and 
0.75 indicate intermediate to good agreement.

Machine learning classifiers
To avoid potential over-fitting, simple classifiers are used. 
ANN is with one hidden layer (ANN01) and with two 

hidden layers (ANN02), and 10 neurons are embedded in 
each hidden layer. KNN is a nonparametric classifier, and 
a new instance is grouped based on the class labels of the 
majority of K nearest neighbors. LDA is to find a linear 
combination of features for separating new instances. NB 
is a probabilistic classifier based on the basic Bayes theo-
rem with an independence assumption between features 
and class labels. Linear SVM is a supervised learning 
classifier and groups new instances into different classes 
by using optimized hyper-planes.

Evaluation metrics
To quantify the prediction performance, area under the 
receiver operating characteristic curve (AUC), accuracy 
(ACC), sensitivity (SEN), specificity (SPE), negative pre-
dictive value (NPV), F-measure and Matthews correla-
tion coefficient (MCC) are used.

The metrics have been widely used in binary classifica-
tion problems ( y ∈ {0, 1} ), and higher values indicate bet-
ter prediction results. In this study, the label of a benign 
case is y = 0 , and the label of a malignant case is y = 1.

Experimental design
Estimation of FR stability
Figure  2 shows how to estimate FR stability. In each 
iteration, a dataset {(X , y)} is divided into a training set 
{(Xtrain, ytrain)} and a testing set {(Xtest , ytest)} , and each 
FR method yields a feature rank on the training set. 

Fig. 2  The procedure of FR stability estimation. On a given dataset, N iterations of feature ranking are conducted that yield average feature ranks 
and stability values S. (The figure can be enlarged for viewing)



Page 5 of 18Yu et al. BMC Medical Informatics and Decision Making           (2023) 23:64 	

Moreover, < fi,1, ..., fi,k , ..., fi,p > is the output of the ith 
running of the p features, and fi,k is the ranking index 
of the kth feature. Finally, feature ranks are averaged as 
an output.

The other output is the stability value (S) when top-
m features are selected. Notably, an FR algorithm gen-
erates a feature rank in a descending order in terms of 
feature importance. When the number (m) of features 
is defined, it yields a subset of features. In this study, 
N = 30 , and m ranges from 3 to 10 with equal interval 

of 1. Specifically, when m = 3 and S ≥ 0.55 , an FR algo-
rithm is assumed to be stable on the dataset.

As shown in Table 3, when a dataset is divided into two 
subsets, the number of benign and malignant cases is set 
equal in the training set ( ≈ 80% of the group with fewer 
cases).

Effectiveness of feature ranks on BC diagnosis
For a stable FR algorithm, its N-times of feature ranks 
are averaged, and then, the predictive power of top-m 
features is explored on BC diagnosis. Figure 3 shows the 

Fig. 3  The procedure of estimating the effectiveness of feature ranks on BC diagnosis. On a given dataset, top-m features are incrementally added 
and M iterations of data splitting are conducted for machine learning based malignancy prediction. (The figure can be enlarged for viewing)
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procedure, the value of m increases incrementally, and 
linear SVM is an example of classifiers.

After a model is trained, the optimal number (n) of 
features is determined by balancing model complex-
ity and prediction performance, i.e. feature number vs. 
AUC value, on the testing set. Notably, M = 50 , the fea-
ture number progresses from 1 to 10, and the prediction 
results and selected features are analyzed.

Statistical analysis
The Wilcoxon rank sum test is used to analyze the val-
ues of evaluation metrics. It is non-parametric for test-
ing two populations with independent samples. The 
p-value less than 0.05 is defined as the significance level 
to reject the null hypothesis of equal medians between 
two distributions.

Implementation and platform
The proposed framework runs on a Win10 system (one 
Intel (R) Core (TM) i9-11980HK CPU (3.20 GHz), and 
64.0 GB RAM). Algorithms are implemented with MAT-
LAB R2018a (MathWorks, Natick, MA, United States). 
FR algorithms are from matFR1, the stability estimator 
is from github2, and classifiers and statistical analysis 
are implemented with embedded functions. In addition, 
except for K = 5 (KNN), the other parameters of FR 
methods, estimator, classifiers and Wilcoxon rank sum 
test are set to default values.

Results
Estimated FR stability
Stability values are shown in Tables  4 and 5, and val-
ues with S ≥ 0.55 when m = 3 are in red. Table 4 shows 
most algorithms achieving good stability (BCDR-F03 and 
WDBC). The S values of [25, 35, 36, 39, 43, 46, 47] are 
near or larger than 0.80 on both datasets. On contrast, 
[32, 37] on BCDR-F03 and [32, 41] on WDBC are highly 
sensitive to data perturbation.

Table 5 shows several algorithms with good stability on 
the gene datasets. On GSE10810, [27, 33, 36, 41, 44] are 
stable with 0.58 ≤ S ≤ 0.78 . On GSE15852, [33, 35, 36, 
39, 42–44] have S values within [0.56, 0.85]. Notably, S 
values of some algorithms are close to zero, such as [32, 
38, 40, 45] on GSE10810 and [32, 40, 45] on GSE15852.

According to the rule of S ≥ 0.55 when m = 3 , there 
are 19, 20, 5, and 7 algorithms showing good stabil-
ity on BCDR-F03, WDBC, GSE10810 and GSE15852, 
respectively. It is also found that PWFP is strongly stable 
( ≥ 0.70 ) on all the datasets, LNEC obtains strong stability 

on BCDR-F03 and WDBC and good stability ( ≥ 0.60 ) on 
GSE10810, while the S values of GFS are relatively lower. 
Moreover, compared to S values on the gene datasets 
(GSE10810 and GSE15852), FR algorithms obtain much 
higher values on medical image datasets. Further obser-
vation reveals 3 FR algorithms (GFS [33], PWFP [36] and 
LNEC [44]) obtaining good stability on all the datasets, 
and the algorithms are focused on in follow-up analysis.

Effectiveness of feature ranks on BC diagnosis
The predictive power of feature ranks on BC diagnosis is 
shown in Figs. 4 (BCDR-F03), 5 (WDBC), 6 (GSE10810) 
and 7 (GSE15852). In the figures, AUC values marked 
as solid lines with blue crosses, dashed lines with brown 
triangles and dot-dashed lines with yellow stars stand 
for the results from the ranks of GFS, PWFP and LNEC, 
respectively. In each plot, the horizontal axis denotes 
the number (m) of the features, and the vertical axis 
shows the AUC values using a specific machine learning 
classifier.

On the BCDR‑F03
Figure 4 shows the prediction results on BCDR-F03 using 
different feature subsets. AUC values from GFS ranks 
are correspondingly larger than those from the other 
feature ranks on average. Based on GFS ranks, NB and 
SVM achieve better performance using 3 and 2 features, 
respectively. Meanwhile, using LDA as the classifier, 
LNEC leads close performance to GFS when 3 features 
are used. Out of the 17 image features, GFS prefers the 
“contrast”, “circularity” and “perimeter”.

On the WDBC
Figure  5 shows AUC values when different feature sub-
sets are used on WDBC. Comparatively, PWFP ranks 
cause worse results, and GFS and LNEC ranks lead to 
superior results. From the perspective of model simplic-
ity, KNN with LNEC (2 features), LDA with GFS (2 fea-
tures), NB with GFS (2 features), and SVM with GFS (2 
features) or LNEC (2 features) achieve good results (AUC 
≥ 0.90 ). Out of the 30 image features, GFS ranks top of 
“the largest concave points”, “the largest perimeter” and 
“concave points”.

On the GSE10810
The change of AUC values along with selected features on 
GSE10810 is shown in Fig. 6. It suggests that GFS might 
identify a subset of discriminative features since the AUC 
values reach AUC ≈ 0.95 when few features are used. In 
addition, when classifiers change, the prediction per-
formance remains good. In contrast, feature ranks from 
PWFP and LNEC cause poor AUC values ( ≤ 0.80). Out of 1  https://​github.​com/​NicoY​uCN/​matFR

2  https://​github.​com/​nogue​irs/​JMLR2​018

https://github.com/NicoYuCN/matFR
https://github.com/nogueirs/JMLR2018
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Table 4  Estimated FR stability values on medical image datasets (BCDR-F03 and WDBC)

Values with S ≥ 0.55 when m = 3 are highlighted with red color

top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10

BCDR-F03 [25] 0.85 0.77 0.76 0.77 0.78 0.74 0.71

[26] 0.81 0.80 0.69 0.66 0.68 0.64 0.63

[27] 0.82 0.80 0.68 0.66 0.67 0.63 0.63

[28] 0.79 0.89 0.79 0.73 0.71 0.71 0.79

[29] 0.76 0.84 0.80 0.82 0.93 0.84 0.78

[30] 0.46 0.39 0.37 0.39 0.39 0.40 0.39 0.36

[31] 0.59 0.54 0.50 0.46 0.43 0.47 0.47

[32] 0.06 0.08 0.07 0.10 0.11 0.14 0.14 0.12

[33] 0.74 0.77 0.83 0.84 0.80 0.86 0.80

[34] 0.82 0.77 0.73 0.63 0.59 0.59 0.61

[35] 0.81 1.00 1.00 1.00 1.00 1.00 1.00

[36] 0.89 0.90 0.91 0.92 0.92 0.99 0.90

[37] 0.24 0.27 0.35 0.36 0.35 0.36 0.38 0.36

[38] 0.89 0.85 0.91 1.00 0.92 0.91 0.80

[39] 1.00 0.88 0.75 0.70 0.73 0.73 0.79

[40] 0.52 0.62 0.63 0.62 0.62 0.54 0.48 0.44

[41] 0.82 0.79 0.84 0.75 0.68 0.71 0.71

[42] 1.00 0.87 0.78 0.78 0.79 0.83 0.80

[43] 1.00 0.93 0.89 1.00 0.99 0.92 0.88

[44] 0.80 0.94 0.85 0.99 0.88 0.88 0.99

[45] 0.80 0.82 0.78 0.82 0.79 0.69 0.66

[46] 0.90 0.93 0.94 0.87 0.91 0.89 0.86

[47] 0.85 1.00 1.00 1.00 0.96 0.89 1.00

WDBC [25] 1.00 1.00 0.95 0.92 0.89 0.92 1.00

[26] 0.76 0.78 0.86 0.88 0.86 0.85 0.88

[27] 0.71 0.84 1.00 0.88 0.95 0.94 0.92

[28] 0.87 1.00 0.94 0.90 0.89 0.97 0.93

[29] 1.00 0.88 0.86 0.80 0.86 0.91 1.00

[30] 0.59 0.56 0.53 0.53 0.51 0.50 0.48

[31] 0.63 0.57 0.54 0.50 0.47 0.47 0.45

[32] 0.08 0.12 0.14 0.17 0.21 0.22 0.25 0.27

[33] 0.98 0.97 0.91 0.92 0.95 0.97 1.00

[34] 0.78 1.00 0.88 0.82 0.85 0.88 0.90

[35] 0.97 1.00 0.89 1.00 0.94 1.00 0.96

[36] 1.00 1.00 1.00 1.00 1.00 1.00 0.92

[37] 0.95 0.96 1.00 0.91 1.00 0.98 0.90

[38] 0.86 0.90 0.83 0.80 0.78 0.80 0.84

[39] 1.00 0.88 0.99 1.00 0.96 0.98 0.98

[40] 0.97 0.91 0.85 0.87 0.95 0.93 0.99

[41] 0.19 0.22 0.23 0.23 0.23 0.23 0.25 0.26

[42] 1.00 0.88 0.98 1.00 0.96 0.97 0.98

[43] 0.87 1.00 0.98 1.00 0.98 0.95 0.98

[44] 1.00 0.90 0.90 0.96 1.00 1.00 0.98

[45] 0.47 0.57 0.66 0.72 0.77 0.81 0.83 0.88

[46] 0.87 1.00 1.00 1.00 0.98 0.92 1.00

[47] 0.86 0.77 0.75 0.73 0.80 0.82 0.86
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Table 5  Estimated FR stability values on gene expression datasets (GSE10810 and GSE15852)

Values with S ≥ 0.55 when m = 3 are highlighted with red color

top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10

GSE10810 [25] 0.44 0.55 0.54 0.52 0.52 0.51 0.50 0.50

[26] 0.87 0.81 0.77 0.73 0.71 0.72 0.73

[27] 0.44 0.52 0.52 0.49 0.49 0.50 0.50 0.49

[28] 0.52 0.51 0.46 0.44 0.43 0.44 0.47 0.47

[29] 0.21 0.26 0.25 0.25 0.25 0.25 0.25 0.26

[30] 0.43 0.42 0.41 0.41 0.41 0.41 0.42 0.41

[31] 0.15 0.20 0.20 0.20 0.21 0.23 0.24 0.24

[32] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[33] 0.50 0.49 0.48 0.48 0.47 0.49 0.48

[34] 0.52 0.51 0.46 0.44 0.43 0.44 0.47 0.47

[35] 0.31 0.40 0.39 0.39 0.37 0.39 0.39 0.41

[36] 0.77 0.82 0.85 0.86 0.84 0.84 0.85

[37] 0.11 0.12 0.13 0.16 0.18 0.21 0.22 0.24

[38] 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

[39] 0.46 0.51 0.59 0.66 0.73 0.78 0.80 0.82

[40] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

[41] 0.56 0.52 0.50 0.46 0.45 0.44 0.43

[42] 0.46 0.50 0.59 0.66 0.71 0.78 0.80 0.81

[43] 0.25 0.28 0.30 0.30 0.33 0.35 0.36 0.37

[44] 0.64 0.64 0.65 0.67 0.66 0.66 0.67

[45] 0.05 0.05 0.07 0.09 0.09 0.09 0.09 0.10

[46] 0.51 0.52 0.50 0.48 0.51 0.54 0.57 0.59

[47] 0.17 0.18 0.18 0.21 0.22 0.23 0.24 0.26

GSE15852 [25] 0.40 0.49 0.51 0.52 0.59 0.61 0.61 0.61

[26] 0.51 0.51 0.56 0.60 0.61 0.60 0.62 0.63

[27] 0.47 0.51 0.57 0.59 0.58 0.57 0.57 0.58

[28] 0.28 0.33 0.38 0.40 0.40 0.42 0.44 0.47

[29] 0.48 0.52 0.59 0.65 0.70 0.73 0.76 0.76

[30] 0.31 0.41 0.46 0.52 0.55 0.58 0.60 0.61

[31] 0.16 0.21 0.21 0.20 0.20 0.21 0.21 0.22

[32] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[33] 0.56 0.57 0.61 0.66 0.71 0.75 0.73

[34] 0.21 0.24 0.26 0.30 0.32 0.35 0.38 0.40

[35] 0.62 0.62 0.67 0.73 0.78 0.81 0.83

[36] 0.88 0.88 0.86 0.88 0.88 0.89 0.90

[37] 0.24 0.26 0.24 0.26 0.27 0.28 0.30 0.31

[38] 0.53 0.46 0.44 0.42 0.43 0.42 0.43 0.42

[39] 0.97 0.89 0.88 0.85 0.87 0.86 0.89

[40] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[41] 0.25 0.28 0.27 0.29 0.31 0.31 0.32 0.32

[42] 0.96 0.89 0.89 0.86 0.86 0.88 0.89

[43] 0.65 0.66 0.74 0.80 0.88 0.87 0.82

[44] 0.54 0.56 0.57 0.59 0.60 0.61 0.63

[45] 0.05 0.05 0.06 0.07 0.06 0.07 0.07 0.07

[46] 0.54 0.58 0.56 0.55 0.55 0.55 0.55 0.55

[47] 0.16 0.18 0.22 0.24 0.26 0.27 0.29 0.31
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Fig. 4  Predictive power of feature ranks on BCDR-F03. A plot shows the results of one classifier combined with different FR feature ranks. (The figure 
can be enlarged for viewing)

Fig. 5  Predictive power of feature ranks on WDBC. A plot shows the results of one classifier combined with different FR feature ranks. (The figure 
can be enlarged for viewing)
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Fig. 6  Predictive power of feature ranks on GSE10810. A plot shows the results of one classifier combined with different FR feature ranks. (The 
figure can be enlarged for viewing)

Fig. 7  Predictive power of feature ranks on GSE15852. A plot shows the results of one classifier combined with different FR feature ranks. (The 
figure can be enlarged for viewing)
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18,382 genes, GFS prefers “206930_at”, “243311_at” and 
“222083_at” as the most important ones.

On the GSE15852
Figure  7 shows the AUC values on GSE15852. Again, 
AUC values from GFS ranks are much better than those 
from the other two feature ranks, and using 2 to 4 features 
leads to AUC ≥ 0.80. Out of the 22,283 gene profiles, GFS 
ranks top of the genes of “204997_at”, “210298_x_at” and 
“222317_at”.

Summary of the BC diagnostic performance
Table  6 presents the prediction results on the data-
sets when using different feature ranks, classifiers and 
selected features, and * denotes p-value < 0.05 of each 
metric within a feature rank. Generally, GFS ranks lead 
to higher metric values over the ranks from PWFP and 
LNEC when using same classifiers. Notably, the superior-
ity of GFS ranks is observed from the gene data analysis 
with significantly better results (p-values < 10−8 ) regard-
less of classifiers. In summary, for malignancy predic-
tion, GFS ranks induce superior results when using 4 
features as the NB input on BCDR-F03, using 2 features 
as the NB input on WDBC, using 2 genes as the SVM 
input on GSE10810 and using 4 genes as the NB input on 
GSE15852.

Representative achievement on the BC datasets
Table  7 shows current achievement using FR/SFS and 
classifiers. On BCDR-F03, using 17 features [19] achieves 
0.06 higher AUC over the present study. On WDBC, using 
2 features in the present study achieves slightly lower 
AUC, ACC and SPE but higher SEN than that using 6 
features with genetic algorithm [48]. On GSE10810, using 
2 features from GFS leads to much better ACC over that 
using 80 features from the t-test in [49]. On GSE15852, 
using 4 features in the present study results in lower ACC 
than that using 235 features [50] and that using 10 fea-
tures [51], while it achieves ACC close to that using 33 
features [23] and to that using 50 features [52]. In general, 
GFS ranks lead to competitive or better performance as 
other FR/SFS methods when using much fewer features.

Computational complexity analysis
The computational complexity of the proposed frame-
work is from the FR/SFS algorithms ( Ofr ), the stability 
estimator ( Oes ) and the classifier ( Oclass ), which can be 
generally formulated as Ofr +Oes +Oclass.

In the proposed model, GFS is the FR algorithm, and 
Ofr = OGFS = O(T (cns + s logm)) in which T is the 
number of iteration, s is the number of nonzero features 
among the training samples, c is the number of classes, 
n is the number of data samples, and m is the number of 

selected features [33]. The complexity of the estimator is 
Oes = O(Mp) in which M is the number of feature sets 
and p is the feature dimensionality [17]. As to classifiers, 
the testing complexity of NB is O(cp) and that of linear 
SVM is O(p).

Thus, the time cost of the proposed model is mainly 
laid on GFS algorithm. Figure 8 shows the time consump-
tion for ranking features. It reveals that GFS is the fastest, 
and on GSE15852, its average time cost is ≈ 0.12 second 
per iteration.

Discussion
A hybrid framework is proposed to identify stable FR 
algorithms for accurate BC diagnosis. Twenty-three algo-
rithms have been evaluated on four datasets. It reveals 
that three algorithms show consistent stability, and GFS 
leads to superior prediction results.

Three algorithms show consistently good stability on 
the four datasets. Initially, 19 out of 42 algorithms handle 
GSE15852 [23] not well own to tens of thousands of gene 
features. Secondly, nearly all the remaining algorithms 
obtain stable feature ranks on BCDR-F03 and WDBC 
(Table  4), while substantially fewer algorithms show 
good stability on GSE10810 and GSE15850 (Table  5). 
The reason may come from the data sufficiency. It is easy 
to observe that there are more than eighteen samples 
to describe a feature on medical image dataset (BCDR-
F03, 406 samples vs. 17 features; WDBC, 569 samples 
vs. 30 features), while on gene datasets, samples are far 
from sufficient (GSE10810, 58 samples vs. 18,382 genes; 
GSE15852, 86 samples vs. 22,283 genes) (Table  3). This 
finding might suggest that sufficient samples are neces-
sitated for the construction of measure spaces before the 
estimation of feature importance [16]. Among the stable 
algorithms, GFS is the most efficient and it takes around 
0.12 second to complete an iteration of the GSE15852 
dataset (Fig. 8).

GFS ranks lead to superior diagnosis performance over 
the other two feature ranks (Table  6). On the medical 
image datasets, the evaluation metrics of GFS ranks show 
higher values over those of PWFP or LNEC rank with 
no significant difference (p-values > 0.05). For instance, 
GFS rank followed by KNN classifier (0.59±0.05) causes 
inferior SPE values in comparison to LNEC ranks with 
KNN classifier (0.61±0.06). On the gene expression data-
sets, GFS ranks result in significantly better performance 
over the other two ranks (p-values < 10−8 ) regardless of 
classifiers. On another perspective, by using same clas-
sifiers, such as NB, on the datasets with sufficient sam-
ples (BCDR-F03 and WDBC), LNEC and PWFP ranks 
cause slightly inferior evaluation metric values in com-
parison to GFS ranks; while on gene expression datasets 
(GSE10810 and GSE15852), GFS ranks lead to much 
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Table 6  Summary of BC diagnosis performance (* denotes p-value < 0.05 of one metric within a feature rank)

n AUC​ ACC​ SEN SPE NPV F-measure MCC

BCDR-F03 GFS KNN 3 0.61±0.04 0.60±0.04 0.62±0.08∗ 0.59±0.06 0.80±0.04 0.47±0.03 0.46±0.05

LDA 3 0.70±0.04 0.75±0.03 0.59±0.08 0.82±0.02 0.84±0.05 0.57±0.03 0.54±0.04

NB 4 0.71±0.04 0.77±0.03 0.59±0.10 0.84±0.05 0.84±0.07 0.59±0.03∗ 0.58±0.03∗

SVM 2 0.70±0.03 0.78±0.03 0.53±0.07 0.87±0.04∗ 0.83±0.07 0.57±0.02 0.56±0.03

ANN01 2 0.65±0.05 0.72±0.03 0.52±0.09 0.83±0.03 0.81±0.09 0.52±0.03 0.51±0.03

ANN02 3 0.65±0.01 0.74±0.03 0.56±0.06 0.84±0.04 0.83±0.07 0.56±0.02 0.52±0.04

PWFP KNN 2 0.56±0.04 0.54±0.04 0.60±0.08 0.52±0.05 0.77±0.03 0.43±0.03 0.44±0.03

LDA 4 0.67±0.04 0.70±0.03 0.60±0.04 0.74±0.05 0.82±0.03 0.53±0.06 0.50±0.04

NB 4 0.68±0.05 0.72±0.06 0.60±0.13 0.76±0.12 0.83±0.09 0.54±0.03 0.51±0.04

SVM 4 0.66±0.04 0.72±0.04 0.52±0.07 0.80±0.06∗ 0.81±0.09 0.51±0.02 0.50±0.03

ANN01 3 0.61±0.05 0.69±0.06 0.51±0.05 0.76±0.07 0.78±0.07 0.47±0.05 0.48±0.04

ANN02 4 0.64±0.03 0.71±0.03 0.55±0.03 0.78±0.04 0.81±0.04 0.55±0.03 0.52±0.03

LNEC KNN 3 0.60±0.04 0.60±0.04 0.58±0.08 0.61±0.06 0.79±0.04 0.45±0.03 0.43±0.04

LDA 3 0.69±0.04∗ 0.70±0.04 0.67±0.07 0.71±0.05 0.84±0.05∗ 0.56±0.03∗ 0.54±0.03∗

NB 3 0.63±0.04 0.72±0.05∗ 0.43±0.15 0.83±0.10∗ 0.79±0.07 0.45±0.03 0.44±0.04

SVM 4 0.58±0.13 0.56±0.18 0.62±0.17 0.54±0.28 0.75±0.13 0.45±0.08 0.43±0.05

ANN01 3 0.56±0.01 0.69±0.03 0.69±0.04∗ 0.72±0.04 0.78±0.03 0.52±0.04 0.50±0.04

ANN02 3 0.66±0.01 0.62±0.06 0.61±0.09 0.60±0.06 0.73±0.07 0.43±0.06 0.41±0.05

WDBC GFS KNN 2 0.89±0.03 0.90±0.02 0.89±0.06 0.90±0.02 0.97±0.05 0.76±0.01 0.72±0.03

LDA 2 0.93±0.02 0.95±0.01 0.90±0.05 0.96±0.01∗ 0.98±0.01 0.87±0.03∗ 0.83±0.05

NB 2 0.94±0.02 0.94±0.01 0.94±0.03∗ 0.94±0.02 0.98±0.01 0.85±0.03 0.82±0.04

SVM 2 0.92±0.02 0.92±0.01 0.91±0.05 0.93±0.02 0.98±0.01 0.81±0.03 0.80±0.05

ANN01 3 0.92±0.03 0.94±0.02 0.91±0.05 0.92±0.02 0.96±0.01 0.83±0.04 0.82±0.05

ANN02 2 0.92±0.03 0.93±0.03 0.89±0.05 0.91±0.03 0.95±0.01 0.80±0.05 0.78±0.03

PWFP KNN 3 0.87±0.03 0.89±0.02 0.85±0.06 0.90±0.03 0.96±0.06 0.74±0.01 0.72±0.02

LDA 2 0.89±0.03 0.93±0.01 0.83±0.06 0.95±0.01 0.96±0.01 0.81±0.04 0.80±0.03

NB 2 0.89±0.03 0.92±0.01 0.85±0.06 0.94±0.01 0.97±0.01 0.81±0.03 0.79±0.03

SVM 1 0.86±0.03 0.88±0.02 0.84±0.06 0.88±0.02 0.96±0.02 0.71±0.05 0.68±0.04

ANN01 4 0.85±0.01 0.88±0.02 0.82±0.05 0.89±0.02 0.95±0.01 0.79±0.04 0.75±0.03

ANN02 2 0.90±0.01 0.92±0.03 0.83±0.07 0.87±0.03 0.94±0.03 0.77±0.05 0.74±0.03

LNEC KNN 2 0.93±0.02 0.94±0.01 0.91±0.05 0.94±0.02 0.98±0.01 0.84±0.03 0.80±0.03

LDA 3 0.92±0.03 0.93±0.01 0.89±0.05 0.94±0.01 0.97±0.01 0.83±0.04 0.81±0.04

NB 1 0.90±0.03 0.94±0.02 0.84±0.06 0.97±0.02∗ 0.96±0.01 0.84±0.05 0.81±0.02

SVM 2 0.92±0.03 0.94±0.02 0.90±0.05 0.95±0.02 0.98±0.01 0.85±0.04 0.83±0.03

ANN01 2 0.83±0.03 0.88±0.02 0.90±0.05 0.95±0.03 0.97±0.01 0.86±0.04 0.82±0.02

ANN02 3 0.91±0.02 0.92±0.02 0.89±0.05 0.93±0.02 0.96±0.01 0.82±0.04 0.79±0.03
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better results over the other two feature ranks. The com-
parison might reveal that GFS is able to discover signa-
tures from high-dimensional small-sample gene datasets 
for improved BC diagnosis.

The proposed framework yields state-of-the-art perfor-
mance (Table 7). On the gene expression datasets, using 

fewer gene features in this study exceeds some other 
methods on BC diagnosis. In [49], 80 genes cause infe-
rior results on GSE10810. In [52], using 50 genes leads to 
worse performance on GSE15852. On the medical image 
datasets, using fewer features achieves comparable per-
formance. On WDBC, 6 features lead to better result [48] 

Values in bold and with indicate higher mean values with significant difference p-value < 0.05), and values in bold denote relatively higher mean values or denote 
equal mean values with lower standard deviations

Table 6  (continued)

n AUC​ ACC​ SEN SPE NPV F-measure MCC

GSE10810 GFS KNN 1 0.95±0.05 0.96±0.04 0.98±0.04 0.92±0.10 0.97±0.07 0.97±0.03 0.96±0.02∗

LDA 1 0.95±0.06 0.97±0.04 1.00±0.00 0.90±0.12 1.00±0.00 0.98±0.03 0.94±0.02

NB 1 0.94±0.05 0.95±0.04 0.97±0.05 0.92±0.10 0.95±0.08 0.96±0.03 0.93±0.03

SVM 2 0.96±0.05 0.97±0.04 0.99±0.03 0.92±0.10 0.99±0.04 0.98±0.03 0.94±0.02

ANN01 3 0.93±0.04 0.94±0.04 0.96±0.03 0.92±0.08 0.96±0.04 0.97±0.03 0.94±0.02

ANN02 3 0.95±0.06 0.93±0.05 0.95±0.03 0.90±0.13 0.95±0.05 0.94±0.04 0.92±0.03

PWFP KNN 3 0.70±0.11 0.65±0.12 0.52±0.16 0.88±0.14∗ 0.51±0.10 0.64±0.15 0.60±0.10

LDA 1 0.62±0.12 0.61±0.11 0.59±0.16 0.66±0.22 0.47±0.13 0.65±0.12 0.58±0.09

NB 2 0.76±0.12∗ 0.75±0.11∗ 0.71±0.14∗ 0.81±0.18 0.62±0.15∗ 0.78±0.11∗ 0.72±0.06∗

SVM 3 0.61±0.10 0.56±0.11 0.43±0.17 0.79±0.18 0.44±0.09 0.54±0.14 0.56±0.12

ANN01 3 0.65±0.06 0.67±0.04 0.57±0.03 0.77±0.08 0.58±0.09 0.66±0.13 0.61±0.10

ANN02 3 0.66±0.05 0.64±0.05 0.51±0.08 0.74±0.12 0.56±0.11 0.62±0.12 0.60±0.11

LNEC KNN 3 0.62±0.13 0.61±0.12 0.59±0.12 0.65±0.21 0.47±0.12 0.66±0.11 0.63±0.10

LDA 5 0.76±0.10∗ 0.74±0.11∗ 0.69±0.15∗ 0.84±0.14 0.62±0.12∗ 0.77±0.11∗ 0.73±0.11∗

NB 4 0.69±0.12 0.64±0.13 0.51±0.20 0.87±0.16 0.52±0.14 0.62±0.18 0.61±0.13

SVM 3 0.62±0.09 0.56±0.10 0.42±0.17 0.82±0.17 0.45±0.08 0.53±0.13 0.54±0.10

ANN01 3 0.68±0.06 0.63±0.09 0.49±0.11 0.79±0.11 0.56±0.07 0.58±0.11 0.57±0.09

ANN02 4 0.63±0.03 0.64±0.11 0.50±0.13 0.84±0.12 0.51±0.10 0.56±0.10 0.55±0.11

GSE15852 GFS KNN 2 0.84±0.08 0.84±0.08 0.89±0.08 0.79±0.14 0.89±0.08 0.85±0.07 0.83±0.05

LDA 3 0.83±0.08 0.83±0.08 0.98±0.05 0.68±0.16 0.97±0.02 0.85±0.06 0.82±0.05

NB 4 0.89±0.07∗ 0.89±0.07∗ 0.96±0.07 0.81±0.13 0.96±0.07 0.90±0.06 0.88±0.06∗

SVM 4 0.87±0.07 0.87±0.07 0.96±0.06 0.77±0.13 0.96±0.06 0.88±0.06 0.85±0.05

ANN01 5 0.83±0.04 0.85±0.06 0.90±0.08 0.79±0.09 0.92±0.07 0.84±0.09 0.80±0.10

ANN02 3 0.85±0.02 0.86±0.05 0.93±0.05 0.75±0.11 0.94±0.05 0.85±0.06 0.82±0.07

PWFP KNN 1 0.54±0.10 0.54±0.10 0.56±0.14 0.52±0.16 0.54±0.11 0.54±0.11 0.56±0.10

LDA 1 0.59±0.11 0.59 ±0.11 0.65±0.15 0.54±0.16 0.61±0.12 0.61±0.11 0.58±0.11

NB 3 0.57±0.11 0.57±0.11 0.70±0.17 0.44±0.15 0.62±0.18 0.61±0.12 0.59±0.10

SVM 1 0.57±0.09 0.57±0.09 0.67±0.14 0.48±0.15 0.59±0.11 0.61±0.10 0.60±0.11

ANN01 3 0.68±0.06∗ 0.71±0.09∗ 0.76±0.09∗ 0.78±0.10∗ 0.68±0.09∗ 0.61±0.09 0.60±0.10

ANN02 4 0.65±0.05 0.68±0.08 0.72±0.06 0.70±0.13 0.63±0.08 0.65±0.09∗ 0.63±0.10∗

LNEC KNN 2 0.57±0.11 0.57±0.11 0.66±0.14 0.48±0.15 0.59±0.13 0.60±0.10 0.58±0.11

LDA 4 0.61±0.12 0.61±0.12∗ 0.66±0.14 0.56±0.18 0.63±0.15 0.63±0.11 0.61±0.10

NB 2 0.57±0.10 0.57±0.10 0.73±0.15 0.41±0.16 0.61±0.16 0.63±0.09 0.59±0.10

SVM 4 0.53±0.11 0.53±0.11 0.50±0.18 0.56±0.18 0.53±0.11 0.50±0.14 0.48±0.12

ANN01 2 0.60±0.01 0.58±0.11 0.70±0.08 0.52±0.10 0.55±0.10 0.61±0.13 0.58±0.11

ANN02 3 0.57±0.09 0.59±0.07 0.65±0.16 0.52±0.14 0.60±0.09 0.59±0.11 0.53±0.10
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than the present study using 2 features. On BCDR-F03, 
compared to the baseline work using 17 features [19], the 
present study using 4 features causes 0.06 AUC decrease. 
In general, using fewer features and simpler classifier in 
this study outperforms the other complex CAD mod-
els, such as hierarchical clustering RF [54] and particle 
swarm optimization [55], and the main contribution 
might come from the effective GFS feature ranks.

The selected features for accurate BC diagnosis have 
already been witnessed in previous studies or guide-
lines. On BCDR-F03, “circularity”, “perimeter” and 
“contrast” are found beneficial to breast image analysis. 

This finding is in consistent with the guideline of breast 
imaging-reporting and data system descriptor [58], and 
clinical studies identify that malignant lesions in MAM 
images are prone to show irregular shapes (“circularity” 
and “perimeter”) and inhomogeneous intensity (“con-
trast”). On WDBC, “concave points”, “the largest concave 
points” and “the largest perimeter” are vital in malig-
nancy prediction. In an FNA image, “concave points” are 
the concave portions of the contour [20], and the pres-
ence of more concave points indicates a more irregu-
lar shape of a nucleus. The findings on BCDR-F03 and 
WDBC suggest that shape features should be paid 

Table 7  Representative achievement on the BC datasets

n FR/SFS Classifier AUC​ ACC​ SEN SPE

BCDR-F03 [19] 600 SVM 0.77±0.03

[19] 17 SVM 0.77±0.02

[53] 4 elastic net SVM 0.69±0.05 0.74±0.05 0.56±0.10 0.81±0.08

Ours 4 GFS NB 0.71±0.04 0.77±0.03 0.59±0.10 0.84±0.05

WDBC [54] 24 variable importance hierarchical clustering RF 0.9896 0.9705 0.9477 0.9841

[55] 14 genetic algorithm particle swarm optimization 0.966 0.975 0.937

[48] 6 genetic algorithm kernel-based Bayesian 0.994 0.971 0.924 1.000

[56] 14 genetic algorithm rotation forest 0.993 0.9948

[57] 9 interaction dominance 0.9966

Ours 2 GFS NB 0.94±0.02 0.94±0.01 0.94±0.03 0.94±0.02

GSE10810 [22] 8088 false discovery rate 1.000

[49] 80 t-test SVM 0.7789

Ours 2 GFS SVM 0.96±0.05 0.97±0.04 0.99±0.03 0.92±0.10

GSE15852 [23] 33 paired t-test hierarchical cluster analysis 0.88 0.86 0.91

[51] 10 logistic regression RF 0.9311

[52] 50 prioritization analysis SVM 0.87

Ours 4 GFS NB 0.89±0.07 0.89±0.07 0.96±0.07 0.81±0.13

Fig. 8  Average time cost per iteration for ranking features (GFS, red bar; PWFP, green bar; and LNEC, blue bar). (The figure can be enlarged for 
viewing)
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more attention to MAM and FNA image analysis. On 
GSE10810, BC occurrence is highly related with genes 
“206930_at” and “222083_at” (both glycine-N-acyltrans-
ferase, GLYAT) and “243311_at” (defensin beta 132, 
DEFB132). Notably, the expression level of “206930_at”, 
“222083_at” and “243311_at” decrease from the normal 
(7.19±1.36, 7.59±1.07, and 7.12±1.81) to the tumor 
group (3.88±0.42, 4.89±0.43, and 4.22±0.40), with a sig-
nificant difference (p-values < 10−11 ). Existing studies 
have revealed that GLYAT-encoded proteins catalyze the 
transfer of acyl groups from acyl-CoA to glycine to pro-
duce acyl glycine and coenzyme A. The product acyl-CoA 
is an important resource for oxidative phosphorylation 
and lipogenesis that is necessary for normal cell metabo-
lism. In particular, downregulation of GLYAT expression 
is associated with a variety of malignant tumors, includ-
ing BC tumors [59]. DEFB132 is a member of the alarm 
element family. It mainly involves in the transmission of 
danger signals and may play a role in tumorigenesis [60]. 
On GSE15852, BC development is found in relation to 
genes “204997_at” (glycerol-3-phosphate dehydrogenase 
1, GPD1), “210298_x_at” (four and a half LIM domains 1, 
FHL1), and “222317_at” (phosphodiesterase 3B, PDE3B). 
The expression level of the genes is significantly reduced 
from control cases to malignant cases (p-values < 10−6 ). 
GPD1 encodes cytoplasmic NAD-dependent glycerol 
3-phosphate dehydrogenase 1, a key element connect-
ing carbohydrate and lipid metabolism. Existing stud-
ies have shown that GPD1 may inhibit the proliferation, 
migration, and invasion of breast cancer cells [61]. FHL1 
has been identified as a suppressor gene for a variety of 
malignant tumors and exerts antitumor effects by inhib-
iting tumor differentiation, proliferation, invasion, and 
metastasis, and low FHL1 expression is closely related 
to the invasion and metastasis of breast cancer [62]. In 
addition, PDE3B-mediated cAMP hydrolysis limits the 
antiangiogenic potential of PKA in endothelial cells, sug-
gesting PDE3B regulates angiogenesis and inhibits the 
occurrence and metastasis of breast cancer by controlling 
the invasion ability of endothelial cells [63].

In addition, selecting an appropriate classifier seems 
helpful when feature ranks are not so effective by com-
paring the classifiers. Taking LNEC ranks as an example, 
using LDA classifier generally obtains fair good results 
on the datasets (Table  6). In other words, using same 
feature subset from LNEC ranks, LDA generally out-
performs the other classifiers in mapping features to the 
labels. It is also found that ANN with two hidden layers 
(ANN02) has no much improvement over that with one 
hidden layer (ANN01). The reason might come from the 
limited representation of quantitative features [19, 20] 
or the limited numbers of data samples [22, 23]. When 
feature ranks are fixed, which classifier is suitable for a 

specific task is a performance-oriented problem, which 
may require basic analysis, systematic experiments and 
empirical experience. Meanwhile, it is feasible to merge 
feature ranks into an optimization procedure for ensem-
ble feature selection and malignancy prediction [64].

FR/SFS stability is crucial in cancer diagnosis, signature 
discovery and many other related applications. In the era 
of deep learning, FR/SFS stability provides a novel way to 
improve user confidence when deep networks are applied 
for high-risk decision-making tasks. It is known that 
deep networks can perform as feature extractors to gen-
erate massive hierarchical features [8, 12]. However, these 
features are so abstract that the decision-making proce-
dures become uninterpretable. Alternatively, the stability 
or preference of deep features can be quantified as the 
frequency of features activated in the training stage [65], 
as the reproducibility of features when error rate is con-
trolled via paired-input nonlinear knockoffs [66], or as 
the difference of propagating activation when decompos-
ing the output prediction of a deep network based on a 
specific input of learned features [67]. Most importantly, 
FR/SFS stability should be considered before translat-
ing lab research findings to clinical practice, since only 
the features that have been stably identified as potential 
signatures deserve labor and time for further clinical 
investigation.

Several limitations exist in the current study. Firstly, on 
datasets with hundreds of samples, the impact of training 
size change on the stability estimation is an interesting 
topic. However, own to insufficient samples in gene data-
sets, the size of training samples is fixed. In our future 
study, the impact of training sizes will be explored. Sec-
ondly, using one estimator to assess the stability seems 
not convincing, while the estimator possesses all the 
properties of a good stability measure [17]. One desirable 
approach is to develop more estimators and to conduct 
comprehensive evaluation. Meanwhile, a decrease of the 
stability threshold can identify more FR algorithms, while 
it poses difficulty to follow-up data analysis, and thus, 
S ≥ 0.55 is a trade-off. Thirdly, more advanced classifi-
ers could be employed, such as deep learning networks 
[8], while to maintain good interpretability, six simple yet 
effective classifiers are applied. In our future work, more 
classifiers will be considered. On the other hand, instead 
of direct use of classifiers, one promising way is to embed 
feature ranks into an optimization procedure for sig-
nature discovery and cancer diagnosis [64]. Fourthly, 
retrieval and meta-analysis of discovered genes are help-
ful for understanding cancer occurrence, development 
and prognosis, while these topics fall outside of the 
scope of this study. In addition, using different data split-
ting strategies, such as k-fold cross validation and data 
percentage split criteria, might change the prediction 
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results, while retaining the numbers of benign and malig-
nant cases in the training set can avoid data imbalance 
and prediction bias. Last but not least, more efforts can 
be made to finely stratify patient cases from clinical data 
and cancer staging for personalized medicine.

Conclusions
This study proposes a hybrid framework to investigate 
both the stability and effectiveness of FR algorithms on 
BC data analysis. Three algorithms exhibit good stabil-
ity consistently on the datasets, and GFS feature ranks 
lead to superior classification performance. The GFS 
ranks suggest that shape features are vital in medical 
image analysis (BCDR-F03 and WDBC) and using a few 
of genes can help differentiation of benign and malignant 
cases (GSE10810 and GSE15852).

FR/SFS stability is important in real-world decision-
making applications. This study indicates that few FR 
algorithms demonstrate stable feature preference on 
high-dimensional small-sample data analysis. To address 
this challenge, developing stable FR/SFS algorithms is 
preferred. Meanwhile, an effective reduction of feature 
dimensionality is also helpful for accurate estimation of 
feature importance. In addition, collecting sufficient sam-
ples is a primary consideration to determine the data dis-
tribution and to facilitate the stability estimation.

The proposed model could recognize stable FR/SFS 
algorithms and effective feature subsets. However, it 
is restricted to the input of quantitative features. The 
future scope of the model could be broadened into the 
deep learning field by concatenating low-, middle-, and 
high-level features of interest as the input. In the future, 
experiments will be conducted by involving more FR/SFS 
algorithms, machine learning classifiers, stability estima-
tors and medical datasets for finding out stable and dis-
criminative features for cancer diagnosis and signature 
discovery.
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