
Wang et al. 
BMC Medical Informatics and Decision Making           (2023) 23:79  
https://doi.org/10.1186/s12911-023-02141-3

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

SIAP: an intelligent algorithm for multiple 
prescription pattern recognition based 
on weighted similarity distances
Yifei Wang1, Julia Xu2, Jie Zhang3, Hong Xu4, Yuzhong Sun5, Yuan Miao4* and Tiancai Wen6*   

Abstract 

Background Clinical practices have demonstrated that disease treatment can be very complex. Patients with chronic 
diseases often suffer from more than one disease. Complex diseases are often treated with a variety of drugs, includ-
ing both primary and auxiliary treatments. This complexity and multidimensionality increase the difficulty of extract-
ing knowledge from clinical data.

Methods In this study, we proposed a subgroup identification algorithm for complex prescriptions (SIAP). We 
applied the SIAP algorithm to identify the importance level of each drug in complex prescriptions. The algorithm 
quickly classified and determined valid prescription combinations for patients. The algorithm was validated through 
classification matching of classical prescriptions in traditional Chinese medicine. We collected 376 formulas and their 
compositions from a formulary to construct a database of standard prescriptions. We also collected 1438 herbal pre-
scriptions from clinical data for automated prescription identification. The prescriptions were divided into training and 
test sets. Finally, the parameters of the two sub-algorithms of SIAP and SIAP-All, as well as those of the combination 
algorithm SIAP + All, were optimized on the training set. A comparison analysis was performed against the baseline 
intersection set rate (ISR) algorithm. The algorithm for this study was implemented with Python 3.6.

Results The SIAP-All and SIAP + All algorithms outperformed the benchmark ISR algorithm in terms of accuracy, 
recall, and F1 value. The F1 values were 0.7568 for SIAP-All and 0.7799 for SIAP + All, showing improvements of 8.73% 
and 11.04% over the existing ISR algorithm, respectively.

Conclusion We developed an algorithm, SIAP, to automatically match sub-prescriptions of complex drugs with cor-
responding standard or classic prescriptions. The matching algorithm weights the drugs in the prescription according 
to their importance level. The results of this study can help to classify and analyse the drug compositions of complex 
prescriptions.
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Background
In clinical practice, diagnosis and treatment are com-
plex processes. Doctors often prescribe a series of drugs 
for patients with chronic diseases, which is particularly 
common in elderly patients [1–4]. In medicinal prescrip-
tions, multiple drugs may be grouped, but indications 
and importance levels are not often recorded. In addi-
tion, variations in patient demographics, infection sites, 
pathogenic bacteria, individual differences, and doctors’ 
experience may affect the drug prescription composi-
tion. Thus, it is difficult to consistently assess the effi-
cacy of drugs and monitor drug‒drug interactions. For 
example, consider a critically ill patient with multiple 
organ failures that is admitted to a hospital with a severe 
lung infection. The doctor prescribes linezolid as the pri-
mary drug (for the most painful symptoms or signs of 
the patient) to treat a Streptococcus pneumoniae infec-
tion [5–7]. The doctor also administers norepinephrine to 
increase the patient’s blood pressure and kidney perfu-
sion [8]. Erythropoietin is also used to maintain haemat-
opoiesis [9]. These are auxiliary medications. In addition, 
the doctor may also prescribe Saccharomyces boulardii as 
a probiotic to repair intestinal dysbiosis [10, 11]. The doc-
tor may also use proton pump inhibitors to prevent new 
lung infections caused by reflux aspiration [12]. In addi-
tion, metoprolol tartrate may be used to help the heart 
[13]. These are once again first-level drugs. The drugs 
have different mechanisms and target various disease 
symptoms and complications to reach an ideal treatment 
outcome. As another example, consider an elderly patient 
with chronic diabetic kidney disease that needs a variety 
of medications to control blood glucose, blood pressure, 
and blood lipids and reduce proteinuria [14, 15]. In West-
ern medicine, there are corresponding guidelines, expert 
consensus, and standard prescriptions in various locali-
ties for single diseases and syndromes. The treatment 
process of traditional Chinese Medicine (TCM) also has 
guidelines, consensus, and treatment protocols, including 
traditional prescriptions for certain diseases. However, in 
clinical practice, the choice of the treatment plan is often 
influenced by factors such as geographic conditions, the 
patient’s physical condition, genetic history, comorbidi-
ties, and the patient’s working and living environment 
[16]. The understanding of this knowledge varies among 
physicians, and patient cases often require variation from 
the guidelines.

Electronic health records are effective documents in 
doctors’ diagnosis and treatment processes depending on 
the patient situation [17, 18]. Electronic records also con-
tain considerable information and knowledge that can be 
used for reference in the treatment of clinically relevant 
diseases. However, there are difficulties in conducting 
research on real-world electronic medical record data. 

In data analyses and research based on electronic medi-
cal records, the dataset size can range from hundreds to 
tens of thousands of data points. Assuming that there are 
ten drugs in a complex prescription with three options 
for each drug, there are nearly 60,000 combinations 
without considering the dose. A few tens of thousands 
of data points are insufficient to support statistical anal-
yses. As an example, if three sub-prescriptions could be 
matched through analyses, with each prescription con-
taining three or four drugs, with a division between the 
primary and secondary medications, the corresponding 
combinations may be reduced to a few dozen, or at most, 
a few hundred. The sub-prescriptions in this study refer 
to combinations of medications recommended by guide-
lines, consensus, or clinical protocols with high clinical 
efficacy and reduced toxicity. An effective algorithm can 
be designed to classify and match complex prescriptions 
with appropriate sub-prescriptions, which would be of 
great significance in acquiring diagnosis and treatment 
knowledge and evaluating drug efficacy and interactions.

Previous studies on the classification of Western medi-
cine prescriptions were mostly limited to single aspects. 
The goals of these studies were mostly to understand the 
correspondence between disease categories and prescrib-
ing patterns or to investigate shared prescribing patterns 
of diseases. For example, using a topic model, Sungrae 
Park et  al. [3] investigated the disease-prescription pat-
terns association model. Vallano A. et  al. [7] calculated 
and compared drug selection by population type. At pre-
sent, there is a lack of research on prescription classifica-
tion methods based on clinical prescription data to obtain 
diagnosis and treatment knowledge. The same problem 
exists in the study of TCM, which involved extracting 
combinations of formulas from TCM records and refer-
encing the corresponding treatment outcomes. The Insti-
tute of Information on Traditional Chinese Medicine of 
the China Academy of Chinese Medical Sciences [19] 
and Hanqing Zhao et  al. [20] proposed the intersection 
set rate (ISR) algorithm to identify and classify classical 
prescriptions in TCM. However, the algorithm can iden-
tify only one formula based on "yes" and "no" conditions, 
does not consider the drug’s weight in the prescription 
and lacks clinically based practical considerations. Thus, 
a prescription classification algorithm that can effectively 
classify and match complex prescriptions to their corre-
sponding sub-prescriptions is still lacking.

In this study, clinical data were integrated to propose 
a subgroup identification algorithm for complex pre-
scriptions (SIAP) based on weighted similarity distance 
calculations. The algorithm automatically understands, 
classifies and divides complex prescriptions from several 
medical information systems into small subsets through 
artificial intelligence or data algorithms and matches 
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these prescriptions to the corresponding sub-prescrip-
tions. The proposed algorithm provides a new and effi-
cient method for rapidly acquiring clinical diagnosis and 
treatment knowledge. Moreover, the proposed algorithm 
can assist young physicians and scholars in more effi-
ciently understanding and exploring experienced doc-
tors’ diagnoses and treatment strategies.

Methodology
In this study, we proposed a subgroup identification algo-
rithm for complex prescriptions (SIAP). The algorithm 
can automatically classify and divide a large number 
of complex prescriptions into small subsets, which are 
then matched to the corresponding sub-prescriptions. 
The algorithm improves the identification and acquisi-
tion of clinical medication knowledge. The proposed 
algorithm can classify and match Western medicines to 
corresponding sub-prescriptions, as well as classify and 
match Chinese herbs to corresponding formulas. We also 
compared the SIAP algorithm with the ISR algorithm to 
evaluate the performance of the SIAP algorithm. The ISR 
algorithm was chosen because there is little research on 
prescription classification algorithms, and the ISR algo-
rithm is currently the only work that has attempted to 
identify matches with typical prescriptions. A related 
platform based on the ISR algorithm has also been 
applied in the field of TCM.

The overall framework of this study is shown in Fig. 1.

(1) A standard prescription database was built based 
on prescriptions composed according to guidelines, 

expert consensus, and expert experience. Real-world 
clinical cases from the archived data system of the 
Chinese Academy of Traditional Chinese Medicine 
Data Centre were extracted to build a collection of 
actual clinical prescriptions.
(2) A logistic regression model was constructed 
based on the distance d between the samples to be 
identified and the corresponding subset of candidate 
prescriptions. Then, the relative importance weight 
w was calculated for each of the five classification 
pairs C1-C5 by prescription recognition. The simi-
larity coefficient sim was calculated, and the recog-
nition classification model was trained.
(3) Based on the above information, a confusion 
matrix between the algorithm recognition results 
and manual marking results was built. The model 
training results were evaluated according to the 
accuracy, recall, and F1 value. A comparative analy-
sis of the performance of the ISR algorithm with two 
SIAP sub-algorithms, SIAP-All and SIAP + All, was 
also carried out.
(4) The model was validated based on a large amount 
of clinical data, and software for identifying TCM 
prescription treatment protocols was developed 
based on the SIAP + All algorithm.

Algorithm design
The prescriptions from guidelines, expert consensus, and 
specialist experience were used to create a standard for-
mulary, and each combination of drugs in the standard 

Fig. 1 The overall framework of the study
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prescription was classified into four levels according to 
importance. Our examination of real-world datasets 
showed that the importance of each level varies in dif-
ferent domains. However, the first two levels are gener-
ally the most important, while the third and fourth levels 
are usually given less weight. The four-level classifica-
tion method is applicable to most situations. The weight 
of each level can be obtained automatically by iterating 
through the corresponding real-world dataset. This pro-
cess reflects the experience of various clinical practices 
and hospitals.

Algorithm framework
In the SIAP algorithm, different drugs are classified into 
five categories based on their weights. The weights in 
this study were defined according to the importance of 
the drug combination in the classical formulary or guide-
lines. C1, C2, C3, and C4 represent the four drug weight 
classes. A prescription including all drugs is defined 
as C5. C5 includes not only the C1-C4 drugs but also 
all drugs not included in C1-C4. This parameter is an 
optional parameter. On this basis, the distance coefficient 
d and weight coefficient w for C1-C5 were constructed. 
Finally, a comprehensive similarity evaluation index was 
constructed by weighted summation to evaluate the 
parameter sim, which is defined as the distance between 
the doctor’s prescription and the standard prescription.

In this algorithm, for any prescription that contains 
multiple herbs, the algorithm first selects the candidate 
prescription set from the standard prescription set. The 
overall distance between the prescription to be identi-
fied and the standard compound is then calculated. The 

distance between C1-C5 is also calculated and multiplied 
by the corresponding weight and sum. Finally, the prob-
ability coefficients of all candidate formulas are obtained. 
The algorithm training process eventually leads to a suit-
able probability coefficient threshold, and the algorithm 
then outputs all standard prescriptions that are larger 
than this threshold (Fig. 2).

Generation of  candidate prescription sets Physicians 
may consider multiple therapeutic drugs when determin-
ing treatment prescriptions in clinical practice. Therefore, 
a simpler prescription pooling algorithm is used to select 
the candidate prescriptions. The algorithm is defined as 
follows:

In the above equation, A represents the set of all drug 
compositions in the prescription to be identified, B rep-
resents the set of all drug compositions in a standard 
prescription, and C(A, B) represents the number of drug 
intersections present in the two sets. When C(A, B) ≥ 1, 
the standard prescription is included in the candidate 
prescription set.

 
Ranking of candidate prescriptions 

Distance coefficient
In the prescription recognition algorithm, the distance 
coefficient is defined as the ratio of the intersection of 
the drug composition set of the prescription to be recog-
nized and the candidate prescription drug composition 

(1)C (A, B) = |A ∩ B|

Fig. 2 Algorithm framework
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set to the drug composition set of the candidate pre-
scription. The distance coefficient is defined as follows:

In the above equation, A represents the set of all drug 
compositions in the prescription to be identified, B rep-
resents the set of all drug compositions in a standard 
prescription, and d represents the proportion of the 
intersection of drugs present in the two sets to the set of 
medicines in the candidate prescription, so d ranges from 
0 to 1.

The proposed algorithm includes five distance coeffi-
cients for different drugs in classes C1-C5. For D (A, B), 
A is the set consisting of all medicines in the prescrip-
tion to be identified, and B represents the set of any class 
C1-C5 in the standard prescription. This formula can be 
applied to obtain the distance coefficients d1 ~ d5 for the 
five different sets.

Weight coefficients
The weight coefficients in this algorithm represent the 
relative importance of the five distance coefficients of 
C1-C5, labelled w1 ~ w5. The estimation was performed 
using the regression coefficient method, which was con-
structed as follows:

According to the definition of the logistic regression 
model, logit(Y) in the above equation is the natural log-
arithm of the quotient of the probability that is present 
prescription is judged correct while being incorrect, 
where β0 is a constant, and β1 ~ β5 are the coefficients 
of d1 ~ d5 in the regression model. To some extent, this 
model reflects the importance of independent variables 
to dependent variables. Variations in the independent 
variables d1 ~ d5 may affect the importance of the inde-
pendent variables to the dependent variables; thus, it is 
necessary to standardize β1 ~ β5 to β1’ ~ β5’ [21]. The pro-
cess is as follows:

where βi represents the regression coefficient in the logis-
tic model, βi’ represents the standardized regression coef-
ficient, and  Si represents the standard deviation of the 
independent variable i, with 1 ≤ i ≤ 5. The standardized 

(2)d = D(A,B) =
|A ∩ B|
|B|

(3)
log it(Y ) = β0+ β1d1 + β2d2 + β3d3 + β4d4 + β5d5

(4)β
′
i = |β i|

√
3Si

π

(5)wi =
β

′
i

β
′
i

regression coefficients βi’ need to be normalized again to 
become the weight coefficients wi used in this algorithm.

Similarity coefficients
To better assess the prescription identification results, 
the proposed algorithm uses a similarity coefficient to 
express the similarity between the prescription to be 
identified and the candidate prescriptions, which is cal-
culated as follows.

where sim represents the similarity between the prescrip-
tion to be identified and the standard candidate prescrip-
tion, with sim ∈ [0,1]. di and wi represent the i-th distance 
and weight coefficients, respectively.

Experimental design
In TCM, prescriptions are often complex and composed 
of multiple herbs and formulas. The components are not 
often marked in clinical medical records, and the impor-
tance of the drugs is not delineated. This study used the 
treatment of diseases by herbal prescriptions as a dataset 
to evaluate the effectiveness of the proposed algorithm. 
In this experiment, 2000 herbal prescriptions from the 
data warehouse of the TCM Data Center of the China 
Academy of Chinese Medical Sciences were randomly 
selected to validate the SIAP algorithm.

Data collection and analysis
The data collation in this study involved constructing 
both a standard dataset and a clinical prescription data-
set. The data were first deduplicated and standardized to 
remove cases with different names for the same medi-
cine, e.g., "Xianlingpi" and "Epimedium" were standard-
ized as "Epimedium". This study involves only prescribed 
medication and does not consider information about the 
medicine dose or frequency.

Standard prescription dataset
The data of 376 formulas containing the information 
of "chief, deputy, assistant and envoy" (4 levels) were 
extracted from the "Chinese medical formulas" (10th edi-
tion) [22] and the Countryside Langzhong website [23] by 
Python 3.6.2. The name, origin, composition, and com-
bined herb information of each formula were extracted, 
and the attributes of each medicine were labelled C1-C4 
(Fig. 3).

Actual clinical prescription dataset
The Chinese medicine prescription data of real-world 
clinical cases were extracted from the data warehouse 

(6)sim =
∑

diwi
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of the TCM Data Center of the China Academy of Chi-
nese Medical Sciences. A total of 2000 herbal prescrip-
tions were randomly selected, and 1438 prescriptions 
remained after duplicate prescriptions were removed. 
Two experienced TCM doctors manually identified the 
1438 cases according to the standard formula dataset and 
marked the names of the standard formulas. If the pre-
scription involved multiple standard formulas, the pre-
scription was marked with multiple names. For example, 
if a prescription consisting of 10 herbs was determined 
to be mainly composed of Important Formula for Pain-
ful Diarrhoea (Tong Xie Yao Fang) and Officinal Mag-
nolia Bark Center-Warming Decoction (Hou Po Wen 
Zhong Decoction), the prescription may fall under sev-
eral groupings. In the Important Formula for Painful 
Diarrhoea, white atractylodes rhizome (Bai Zhu) belongs 
to C1, peony (Bai Shao) belongs to C2, aged tangerine 
peel (Chen Pi) belongs to C3, and saposhnikovia root 
(Fang Feng) belongs to C4. In the Officinal Magnolia 
Bark Center-Warming Decoction, magnolia bark (Hou 
Po) belongs to C1, katsumada’s galangal seeds (Cao Dou 
Kou) belong to C2, aged tangerine peel (Chen Pi), poria 
(Fu Ling), common aucklandia root (Mu Xiang) and fresh 
ginger (Sheng Jiang) belong to C3, and prepared licorice 
root (Zhi Gan Cao) belongs to C4. Aged tangerine peel is 
classified as C3 in both the Important Formula for Pain-
ful Diarrhoea and the Officinal Magnolia Bark Center-
Warming Decoction. Although the constituent herbs of 

common aucklandia root and fresh ginger in the standard 
formula of the Officinal Magnolia Bark Center-Warming 
Decoction did not appear in the present formula, the 
doctors determined that the prescription also contained 
Officinal Magnolia Bark Center-Warming Decoction. The 
reason is that other Chinese herbs in the prescription, 
such as the C1 and C2 drugs, all appeared in the prescrip-
tion (Fig. 4). We randomly selected 70% (n = 1000) of the 
1438 data points as the training set and the remaining 
30% (n = 438) as the test set.

Training process
Calculation of  the  weight coefficients According to 
Eq. (3), the weight construction process requires logis-
tic regression with positive and negative sample data. 
Considering prescription recognition effects, in the 
final trained model, the negative samples may share 
some similarities with the positive samples. Therefore, 
this study used the intersection set rate (ISR) algorithm 
proposed by the Institute of Information on Traditional 
Chinese Medicine of the China Academy of Chinese 
Medical Sciences and Hanqing Zhao et  al. to identify 
the prescriptions according to the training set data to 
increase the robustness of the model. We used the pre-
dicted data with incorrectly identified standard pre-
scription names but matching probabilities greater than 
0.5 (based on Eq. (2)) as negative examples in the train-
ing set.

Fig. 3 Schematic diagram of standard formula data set
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Based on the above ideas, in this study, Eq.  (1) was 
used to construct the set of candidate prescriptions cor-
responding to each sample in the training set. The dis-
tance di between all samples to be identified and the 
corresponding candidate formulas was calculated based 
on Eq.  (2). Then, the logistic regression model was con-
structed using Eq.  (3), and the relative importance 
weights wi of the five distance coefficients C1-C5 were 
calculated using Eq. (4) and Eq. (5).

Similarity threshold training According to Eq. (6), a sim-
ilarity coefficient sim can be calculated for the formulas 
to be identified and the candidate formulas. The prescrip-
tion to be identified may have a high similarity coefficient 
with several candidate formulas, which indicates that the 
formula to be identified may be a combination of several 
standard formulas. In this case, an appropriate threshold 
must be determined to specify the final formula.

In this study, the intersection set rate (ISR) algorithm 
was used as the basic algorithm, and the SIAP algorithm 
without all-set weights (SIAP-All) and the SIAP algo-
rithm with all-set weights (SIAP + All) were compared 
with the basic algorithm. According to the principle of 
the ISR algorithm, Eq. (2) was directly used as the simi-
larity coefficient, i.e.,  simISR = d. In the SIAP-All and 
SIAP + All algorithms, the similarity coefficient sim was 
calculated based on Eqs.  (3,4,5,6), where the SIAP-All 

algorithm did not include w5, while the SIAP + All algo-
rithm included w5.

Instead of identifying the optimal similarity coeffi-
cient, in this study, the threshold was sequentially set to 
a real number between [0, 1]. The precision, recall, and 
F1 scores were calculated according to Eqs.  (7,8,9), and 
the similarity coefficient sim that maximized the F1 score 
was selected. In addition, considering the possibility of 
confounding information or bias in the sample data, this 
study used the bootstrap (uniform sampling with replace-
ment) method at different similarity sim thresholds. Two 
hundred samples were randomly selected from the train-
ing set during each iteration, and repeated sampling was 
conducted 100 times. The precision, recall, and F1 score 
were calculated every 200 samples, yielding a total of 100 
precision, recall, and F1 scores. Finally, the model evalu-
ation result of the similarity coefficient sim under this 
threshold had an average of 100 samples for the preci-
sion, recall, and F1 scores.

Evaluation indicators According to the design of this 
study, the confusion matrix of the algorithm recognition 
results and the manual marking results was constructed 
(Table  1). The confusion matrix is the most commonly 
used assessment method and is associated with several 
evaluation metrics, mainly for dichotomous problems. 

Fig. 4 Relationship between actual TCM prescriptions and standard formulas
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The confusion matrix is also more effective for sample 
imbalance problems than traditional statistical indicators.

In this study, the following three evaluation indicators 
were established [24].

Precision
The precision is defined as the percentage of prescrip-
tions that were correctly identified by the algorithm.

Recall
The recall is defined as the percentage of manually 
labelled prescriptions that were recognized by the 
algorithm.

F1 score
The F1 score is a comprehensive evaluation indicator that 
considers the precision and recall.

Experimental results
Basic information of the included prescriptions
A total of 376 standard prescriptions involving 419 herbs 
were included in this study, with each prescription con-
taining an average of 7–8 herbs. The clinical prescrip-
tion dataset included in this study had a total of 1438 
prescriptions involving 445 herbs, and each prescription 
contained an average of 1–2 classical formulas on aver-
age. (Table 2).

(7)Precision =
f11

f11 + f12

(8)Recall =
f11

f11 + f21

(9)F1 =
2PR

P + R

Model training results
In this study, the ISR algorithm was used for the training 
set (n = 1000), and the similarity threshold was set to 0.5. 
A total of 8638 records were obtained, including 1653 
positive examples (19.80%) and 6716 negative examples 
(80.20%) (Table 3).

In this study, when the logistic model for positive 
examples was used with the dataset, all coefficients 
were found to be statistically significant (p value < 0.05). 
Although the β coefficient for the whole formula was the 
largest, it had the largest standard deviation (S1 = 0.4525) 
for the C1 value. Its standardized coefficient (β’ = 1.1391) 
and weights (wSIAP-All = 0.4404, wSIAP+All = 0.3418) were 
the largest, followed by those of C2 (Table 4).

After calculating the relative importance weights of the 
five distance coefficients of C1-C5 for formula identifica-
tion, we determined the similarity thresholds. When the 
threshold of the ISR algorithm was set to 0.7, the F1 score 

Table 1 Confusion matrix

Note: n represents the sample number, N represents the sample size, A is the set of manually marked formula names, and B is the set of algorithm-identified formula 
names

Manually marked formula names Formula name recognized by the algorithm

Consistent with manual making Inconsistent with 
manual marking

Recognized by the algorithm correctly
f11 =

N∑
n=1

|A ∩ B| f12 =
N∑

n=1

|B − (A ∩ B)|

Not recognized by the algorithm
f21 =

N∑
n=1

|A− (A ∩ B)|
-

Table 2 Basic prescription information

Standard Prescription 
Dataset

Clinical 
Prescription 
Dataset

Number of formulas 376 1438

Number of Chinese herbs, M (P25, P75)
 C1 1 (1, 2) -

 C2 2 (1, 3) -

 C3 2 (1, 4) -

 C4 0 (0, 1) -

 C5 7 (4, 9) 11 (13, 15)

Table 3 Training results of the intersection set rate algorithm

Formula identification 
results

Frequency Percentage (%)

Correct 1653 19.80

Error 6716 80.20

Total 8638 100.00
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was the highest. The SIAP-All and SIAP + All algorithms 
both had an optimal threshold of 0.8 (Fig. 5).

Algorithm evaluation results
According to the above experimental design, three algo-
rithms and standard datasets were used to identify the 
formulas of the prescriptions in the test set, which con-
tained 438 labelled data points. Compared with the ISR 
algorithm, the F1 score of the SIAP-All and SIAP + All 

algorithms showed improvements of 8.73% and 11.04%, 
respectively, and the precision also increased (Table 5).

Manual validation of the prediction effects and platform 
development
Based on the optimal SIAP + All algorithm for prescrip-
tion identification and the results of 21,537 predicted 
samples, 5% of the prescription recognition results were 
sampled to manually verify the proposed algorithm. A 

Table 4 Coefficients related to the SIAP algorithm

Collection of Chinese 
herbs

β p value S β’ w

SIAP-All SIAP + All

C1 4.5659 0.0000 0.4525 1.1391 0.4404 0.3418

C2 3.6636 0.0000 0.4086 0.8254 0.3191 0.2477

C3 2.8336 0.0000 0.3490 0.5452 0.2108 0.1636

C4 0.4336 0.0127 0.3220 0.0770 0.0298 0.0231

C5 8.7578 0.0000 0.1545 0.7458 - 0.2238

Fig. 5 Training process of similarity threshold. a. ISR; b. SIAP-ALL; c. SIAP+ALL
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total of 1077 data samples were randomly selected; out 
of the 1077 data samples, the algorithm correctly identi-
fied 875 samples and failed to identify 232 samples after 
a manual verification process by two TCM doctors. The 
algorithm correctly identified 81.2% of the samples in 
the dataset, and the results were as expected. On this 
basis, TCM prescription identification software was con-
structed based on the SIAP + All algorithm using Python 
web technology (Fig.  6). In the software, the user can 
directly input the composition of herbs to be identified 
into the identification box, and the system automati-
cally outputs the name of the formula contained in the 
prescription.

Discussion
In this study, the SIAP algorithm was successfully applied 
to the classification matching problem for multidrug pre-
scriptions. The algorithm performed better than the base-
line ISR algorithm in terms of the precision, recall, and F1 

values. The model’s superior performance can be attributed 
to several aspects of the SIAP algorithm. First, in the model, 
the prescription classification is given a corresponding 
weight, which improves the accuracy of the classified sub-
prescriptions and reduces the interference of invalid sub-
prescriptions. A prescription is a medical document issued 
by a doctor to address a patient’s condition that can be 
used as proof of the patient’s medication, i.e., the patient’s 
treatment plan [25]. In recent years, the extraction of thera-
peutic knowledge has been a significant issue in clinical 
practice. In the context of big data, prescription categoriza-
tion and matching analyses can assist in the acquisition of 
therapeutic knowledge. Complex prescriptions often con-
tain a variety of medications. The primary considerations 
in choosing a treatment plan and combination of treatment 
drugs are increasing efficiency while reducing toxicity. An 
appropriate drug combination can enhance the original 
effects of the drugs, correct their biases, and reduce their 
toxicities, thereby eliminating or reducing their adverse 
effects on the body [26–28]. Tuya et  al. [29] studied the 
classification of prescriptions for heat syndrome in Mon-
golian medicine based on the fuzzy c-means (FCM) algo-
rithm. They found that the FCM algorithm performed well, 
and the classification was relatively uniform across cat-
egories, in general agreement with the original literature. 
Clustering the results can assist in organizing and collat-
ing varied prescriptions, thereby improving accuracy and 

Table 5 Comparison of the three algorithms

Algorithm Precision (P) Recall (R) F1 score (F1)

ISR: base 0.6022 0.7537 0.6695

SIAP-All 0.8420 0.6871 0.7568

SIAP + All 0.9430 0.6649 0.7799

Fig. 6 Example of TCM prescription recognition software
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consistency. However, the algorithm considers the training 
categorization on a multidrug basis and does not consider 
the class weights; therefore, there is still a gap in its appli-
cation in clinical practice. There has been relatively little 
research on prescription classification methods, and most 
previous research has focused on identifying prescrip-
tion abuse and invalid prescriptions [30, 31]. This study 
introduced the concept of weighting to the traditional ISR 
algorithm and the similarly threshold. As a result, the new 
algorithm showed significant improvement in accuracy and 
applicability over the ISR algorithm in the classification and 
matching of sub-prescriptions.

The clinical performance of the SIAP algorithm con-
structed in this study was investigated using real-world 
clinical data and expert experience. The algorithm can 
quickly identify standard treatment schemes from a large 
number of treatment drugs. In addition, the algorithm 
can identify the treatment weights, as well as differentiate 
primary and secondary treatment drugs, by extracting the 
treatment schemes. In addition, the algorithm can collate 
medication recommendations for combined diseases and 
provide a reference for identifying combinations of Chi-
nese and Western medical treatment protocols and com-
binations of physical therapies. The designed algorithm 
can efficiently extract the original prescription informa-
tion from a large amount of clinical data, thus allowing 
the algorithm to comprehensively use clinical experience 
and rules of disease diagnosis and treatment. This devel-
opment also has important guiding significance for junior 
doctors to improve their understanding of disease diagno-
sis and treatment. However, this study lacks the inclusion 
of underlying diseases, symptoms and signs, living areas, 
and other patient information; thus, the research results 
have certain limitations. In the future, further work will be 
done to expand the parameters of the included informa-
tion and validation data to optimize the model.
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