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Abstract 

Objectives  Automatic speech and language assessment methods (SLAMs) can help clinicians assess speech and 
language impairments associated with dementia in older adults. The basis of any automatic SLAMs is a machine learn-
ing (ML) classifier that is trained on participants’ speech and language. However, language tasks, recording media, and 
modalities impact the performance of ML classifiers. Thus, this research has focused on evaluating the effects of the 
above-mentioned factors on the performance of ML classifiers that can be used for dementia assessment.

Methodology  Our methodology includes the following steps: (1) Collecting speech and language datasets from 
patients and healthy controls; (2) Using feature engineering methods which include feature extraction methods to 
extract linguistic and acoustic features and feature selection methods to select most informative features; (3) Training 
different ML classifiers; and (4) Evaluating the performance of ML classifiers to investigate the impacts of language 
tasks, recording media, and modalities on dementia assessment.

Results  Our results show that (1) the ML classifiers trained with the picture description language task perform better 
than the classifiers trained with the story recall language task; (2) the data obtained from phone-based recordings 
improves the performance of ML classifiers compared to data obtained from web-based recordings; and (3) the ML 
classifiers trained with acoustic features perform better than the classifiers trained with linguistic features.

Conclusion  This research demonstrates that we can improve the performance of automatic SLAMs as dementia 
assessment methods if we: (1) Use the picture description task to obtain participants’ speech; (2) Collect participants’ 
voices via phone-based recordings; and (3) Train ML classifiers using only acoustic features. Our proposed methodol-
ogy will help future researchers to investigate the impacts of different factors on the performance of ML classifiers for 
assessing dementia.
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Introduction
More than 50 million people worldwide are living with 
different types of dementia, including Alzheimer’s Dis-
ease  (AD)  [1]. These are among the highest global dis-
eases and have notable economic impacts on individuals 
and societies  [2]. To mitigate the effects of dementia on 
older adults’ quality of life and help them plan for the 
future  [3], detection of dementia as early as possible is 
necessary.

Identifying patients with dementia at the earliest stage 
of the disease can help them seek out different interven-
tion programs [4] that could slow down disease progres-
sion and reduce its effect on their quality of life  [5]. Thus, 
clinicians have to run different clinical assessment meth-
ods  (CAMs) (the abbreviations used in this paper have 
been listed in Table 1) such as montreal cognitive assess-
ment  (MoCA), which consists of a 30-points scales  [6], 
to detect cognitive impairment associated with demen-
tia [7] or to identify subjects with AD and mild cognitive 
impairment (MCI)1 [9].

In the era of artificial intelligence (AI), clinicians can 
take advantage of AI-based assessment methods to 
detect dementia quickly. A good example of such meth-
ods is automatic speech and language assessment method 
(SLAM), which [10, 11] can detect speech and language 
impairments (e.g., difficulties with finding a relative 
expression, naming, and word comprehension and vari-
ous level of language impairments  [12]). These impair-
ments are signs of the first cognitive manifestations of 
any types of dementia, specifically the onset of AD [12].

In this paper, we propose a methodology that can be 
followed to develop an automatic SLAM. Many stud-
ies   [13–17] proposed different approaches to develop 
automatic SLAMs. However, like most of the previous 
studies, we have not only focused on developing accu-
rate classifiers to distinguish patients from healthy sub-
jects, rather we have conducted different experiments 
to understand the impact of the language tasks, record-
ing media, and types of features on the performance of 
machine learning  (ML) classifiers. More specifically, we 
seek to find out the effect of (1) different language tasks, 
e.g., the picture description task (PDT) and the story 
recall task (SRT), (2) recording media, e.g., phone versus 
web-based interfaces, and (3) linguistic and acoustic fea-
tures on the accuracy of our proposed methodology.

The contributions of this paper are threefold. First, 
we have compared the performance of ML classifiers 
trained with two different datasets obtained from differ-
ent language tasks, PDT and SRT, and evaluated their 

performance in the classification task (i.e., classifying 
participants into patients with dementia and health con-
trols). Our results show that the ML classifiers trained 
with data samples from the PDT perform better than 
the data samples obtained from SRT. Previous research 
rarely did such a comparison. Second, we have provided 
a comparison between voices recorded by phone and 
web-based recording media, and we have shown that 
the data obtained from phone-based recordings could 

Table 1  Lists of abbreviations

Abbreviation Description

AI Artificial intelligence

AD Alzheimer’s disease

ANOVA Analysis of variance

BI Brunet’s index

CAMs Clinical assessment methods

CNN Convolutional neural network

COVFEFE COre variable feature extraction feature

DB Dementia bank

DL Deep learning

DT Decision trees

FK Flesch–Kincaid

FRES Flesch reading-ease

ET Extra trees

HS Honor’s statistic

LDA Latent Dirichlet allocation

LSPs Line spectral pairs

kNN k-Nearest neighbor

Kurt Kurtosis

MCI Mild cognitive impairment

MFC Mel frequency cepstrum

MFCCs Mel frequency cepstral coefficients

MoCA Montreal cognitive assessment

ML Machine learning

mRMR Minimal redundancy maximal relevance

NLTK Natural language toolkit

PCA Principle components analysis

POS Part-of-speech

PDT Picture description task

SA Simple average

SIF Smooth inverse frequency

SLAMs Speech and language assessment methods

SRT Story recall task

SVM Support vector machine

std Standard deviation

skew Skewness

tf-IDF Term frequency-inverse document frequency

WHO World Health Organization

VP Voicing probability

1  MCI refers to the condition where an older adult experiences cognitive 
impairment especially in tasks related to orientation and judgment [8].
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improve the performance of ML classifiers compared 
to data obtained from web-based recordings. The prior 
research hardly considered the impact of recording chan-
nels on the quality of data that directly affects on the per-
formance of ML classifiers. Finally, we have shown that 
the ML classifiers trained with acoustic features perform 
better than ML classifiers trained with linguistic features. 
Previous studies with other datasets showed that linguis-
tic features perform better than acoustic features  [18]. 
Unlike our dataset, datasets used by other studies were 
relatively old and used outdated technologies (e.g., tape 
recorders) to record human speeches which were noisy. 
Our dataset is very recent and the recording quality is 
better than the others which may be one of the reasons 
for getting more accurate results.

Related works
Recent studies [19–25] showed how AI assessment sys-
tems and automatic SLAMs for dementia could be devel-
oped. SLAMs could help clinicians to: (1) Diagnose AD 
using patients’ spontaneous speech [26, 27]; (2) Detect 
cognitive decline using patients’ speech [28, 29]; (3) 
Distinguish patients with predementia from those with 
AD using patients’ speech [30]; (4) Identify AD using 
patients’ speech [18, 31]; (5) Develop AD risk assessment 
using patients’ speech [32]; (6) Detect AD using patients’ 
spontaneous speech [33] or using patients’ speech and 
transcriptions [34]; (7) Detect MCI using patients’ spon-
taneous speech [35]; (8) Distinguish patients with mild 
AD from those with MCI [36] and patients with AD from 
healthy controls using patients’ speech and transcriptions 
[20]; and (9) Diagnose AD using patients’ speech tran-
scripts [15].

Most of the above-mentioned SLAMs [14, 15, 20, 27, 
30, 37] have developed based on ML and deep learn-
ing  (DL) algorithms [18, 26, 38] that have been trained 
using extracted linguistic and acoustic features from 
benchmark speech and language datasets. Examples of 
such datasets are  DementiaBank (DB) dataset (i.e. the 
DB dataset is a collection of patients’ speech and tran-
scriptions) [39];2 Pitt corpus3 [28, 40–43]; and  Alzhei-
mer’s Dementia Recognition through Spontaneous Speech 
or ADReSS Challenge Dataset [28] that has been devel-
oped by modifying the Pitt corpus. For example, in [44] 

a SLAM has been developed using lexical features which 
have been extracted from the DB. The SLAM which has 
been developed in [45] was trained by extracting lin-
guistic and phonetic features from the Pitt corpus. The 
authors of [26, 26, 33] have developed SLAMs using the 
ADReSS dataset.

As mentioned earlier, developing SLAMs using ML [14, 
30] and DL algorithms [18, 26, 38, 46–49] including con-
volutional neural network (CNN) [48]; Gated CNN [49] 
has been suggested by many studies. For example, in  [14, 
30] k-Nearest Neighbor  (kNN) was trained by these fea-
tures to distinguish patients with MCI from healthy sub-
jects with 63% accuracy. In  [13–15], two ML algorithms, 
support vector machine (SVM), Decision Trees (DT) 
were trained by features to detect voice impairments in 
patients with AD   [13] or predicting probable AD   [44] 
( the SVM classifier was trained by linguistic features 
extracted from the DB dataset). In [50] a new ML algo-
rithm named emotional learning-inspired ensemble 
classifier [51] was proposed to to develop an automatic 
SLAM.

The above mentioned studies have proved that auto-
matic SLAMs can be used to assist clinicians to detect 
speech and language impairments associated with 
dementia in older adults. Therefore, it is worth investi-
gating the methodologies that can be used to develop a 
SLAM considering the impacts of language tasks, record-
ing media, and modalities.

Methodology
Our methodology follows the following steps: (1) Col-
lecting language datasets; (2) Using feature engineering 
methods: (2.1) Feature extraction to extract linguistic and 
acoustic features, (2.2) Feature selection to select inform-
ative features; (3) Training and evaluating different ML 
classifiers to investigate the impacts of language tasks, 
recording media and modalities on dementia assessment.

Collecting language datasets
We have extracted patients’ speech and transcripts with 
various types of dementia4 as well as healthy control from 
a database named Talk2Me.5 The Talk2Me database con-
tains speech data6 recorded using web or phone inter-
faces from participants while doing a variety of language 

2  It collected as a part of a project named TalkBank and has been done as a 
part of the Alzheimer Research Program at the University of Pittsburgh. The 
DB dataset was collected longitudinally, between 1983 and 1988, every year 
from around 200 patients with AD and 100 healthy controls.
3  It contains several subcorpora, generated according to neuropsychological 
tasks performed by the participants: (1) the Cookie Theft of the PDT (note 
that the participants’ speech related to this task have been transcribed), (2) 
the word (3) LFT, (4) the SRT, and (5) the sentence construction task.

4  Patients have been diagnosed by physicians from three hospitals in Toronto.

5  To collect speech data, the description of each task was provided for 
patients and healthy controls. Our trained examiners described tasks and 
provided them with examples to instruct them on how the task could be 
done.
6  All participants, who attended remotely, used phone line or web-interface 
to record their speeches. They asked to be in a place without background 
noise. The noisy speeches have been deleted.
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tasks such as the PDT and SRT.7 The speech data of the 
PDT task,8 which aims to evaluate the semantic knowl-
edge in subjects  [52], were collected from 3 participants 
without dementia and 5 participants with dementia.

The speech data of the SRT task,9 which has been used 
to assess impairment in episodic and semantic memory 
and also global cognition  [52], were obtained from 10 
participants without dementia and 4 participants with 
dementia.

Unlike other datasets reported in the literature, our 
dataset contains human speech recorded with phone-
based and web-based interfaces. Therefore, although this 
dataset includes a limited number of data, we used it in 
our research because we are investigating the impact of 
recording interfaces on the performance of ML classifiers 
to assess dementia.

Feature extraction
This section describes the linguistic and acoustic features 
that have discriminating characteristics to distinguish 
between healthy adults and people living with dementia.

Linguistic features
Using the Natural Language Toolkit  [53] and other 
python libraries, we have extracted different types of lin-
guistic features from the textual datasets that have been 
described in Table 2 (it lists the average number of sen-
tences and words per individuals for different category 
of textual data sets). The linguistic features extracted for 
this study can be divided into three categories: (1) Lexi-
cal Features (e.g., lexical richness); (2) Syntactic Features 
[e.g., part-of-speech (POS)]; and (3) Semantic Features or 
Semantic-based Features.

Lexical features As lexical features, we have extracted 
features such as Brunets Index (BI) (see Eq. 1) and Honors 
Statistic (HS) with Eq.  2 [54]. These features have been 
proposed to measure the lexical richness. In Eqs. 1 and 2, 
w and u are the total number of word tokens and the total 
number of unique word types, respectively. We have also 
considered readability scores such as the Flesch–Kincaid 
(FK) (see Eq. 3), the Flesch Reading-Ease (FRES) Test (see 
Eq. 4) [55], to test the readability of the transcripts. Here, 
s and SYL indicate the total number of sentences and the 
total number of syllables, respectively.

Syntactic features We have also extracted syntactic 
features such as POS ratios: (1) Third pronouns (3rd-
pron-pers) to proper nouns (prop); (2) First pronouns 
(1st-pron-pers) to pronouns (1st-pron-pers);10 (3) Nouns 
to verbs; and (4) Subordinate to coordinate   [57] to cal-
culate syntactical error in speech, which is indicative of 
frontotemporal dementia  [58], and propositional and 
content density Eqs. 5 and 6 to quantify the syntax com-
plexity. Here, NN, VB, JJ, RB, IN, and CC are the number 
of nouns, verbs, adjectives, adverbs, prepositions, and 
conjunctions respectively.

(1)BI = w(u−0.165)

(2)HS =
100 logw

1− w
u

(3)FK = 0.39
w

s
+ 11.8

SYL

w
− 15.59

(4)FRES = 206.835− 1.015
(w

s

)

− 84.6

(

SYL

w

)

(5)densityp =
VB+ JJ + RB+ IN + CC

N

Table 2  Statistics about our textual datasets

DATA​ Average sentence Standard deviation 
(sentence)

Average word Standard 
deviation 
(word)

The PD task 9.0 4.4 153.5 97.92

The SR task 6.79 4.00 57.07 26.91

Recording media (Phone) 3.5 4.66 74.0 44.90

Recording media (Web) 2.27 1.25 65.59 31.11

7  Each subject has signed a consent form that was approved by the Research 
Ethics Board protocol 31127 of the University of Toronto.
8  Examiners explain to participants how they should complete language 
tasks. For example, for the PDT, they use the Cookie Theft picture or the 
Picnic Scene and tell participants describe everything they can see in this 
picture.
9  Thus, participants were shown a short passage with one of the following 
options (1) My Grandfather, (2) Rainbow or (3) Limpy.

10  People with dementia may use first person singular pronouns than physi-
cians perhaps as a way of focusing attention on their perspective [56].
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Semantic features We suggest extracting semantic-
based features that quantify speech incoherence and 
measure tangential speech.

To quantify speech incoherence, we calculated the 
similarity (Eq. 7) between sentence embeddings: vsj using 
three sentence embeddings: Simple Average (SA)11 (see 
Eq.  8), or Smooth Inverse Frequency (SIF) embeddings12 
[59] (see Eq.  10) and term frequency-Inverse Document 
Frequency (tf-IDF) (see Eq.  11). We proposed Eq.  12 to 
measure tangential speech or tangentiality in patients’ 
speech with dementia [60], here, Ntopic is the optimal 
number of topics for a corpus made of interviews of sub-
jects) employing Latent Dirichlet Allocation [61, 62]. 

(6)densityc =
NN + VB+ JJ + RB

N

(7)SimilaritySA(vsi , vsj ) =
vsi · vsj

�vsi��vsj�

Acoustic features
We have extracted the acoustic features using the COre 
Variable Feature Extraction Feature Extractor  (COV-
FEFE) tool  [57]. Table  3 shows the list of features that 
we have considered in the study. The extracted features 
can be categorized into 3 groups: (1) Spectral Features; 
(2) Phonation and Voice Quality Features; and (3) Speech 
Features. We have considered the mean, standard devia-
tion (std), skewness (skew) (lack of symmetry of a data 
distribution) and kurtosis (kurt) (measure of peakedness 

(8)SimilaritySIF(vsi , vsj ) = 1−
vsi · vsj

�vsi��vsj�

(9)IncoherenceSA = min
i

max
j

SimilaritySA(vsi , vsj )

abs(i − j)+ 1

(10)IncoherenceSIF = min
i

∑

j

SimilaritySIF(vsi , vsj )

abs(i − j)+ 1

(11)

Incoherencetf−IDF = min
i

∑

j

SimilarityTFIDF(vsi , vsj )

abs(i − j)+ 1

(12)Tangentiality = 1−
Ntopic

∑

j Ntopic

11  SA provides sentence embedding by averaging generated word embeddings 
from text files.
12  SIF provides sentence embedding by calculating the weighted average of 
word embeddings and removing their first principal component.

Table 3  List of acoustic features that are considered in this research

Type Name Functional # of Features

Spectral features MFCCs 0–14 Mean, kurt, skew, std 60

ΔMFCCs 0–14 Mean, kurt, skew, std 60

log Mel freq 0–7 Mean, kurt, skew, std 32

Δlog Mel freq 0–7 Mean, kurt, skew, std 32

LSP freq 0–7 Mean, kurt, skew, std 32

Δ LSP freq 0–7 Mean, kurt, skew, std 32

Phonation and voice F0 Mean, kurt, skew, std 4

Quality features ΔF0 Mean, kurt, skew, std 4

Jitter local Mean, kurt, skew, std 4

Δjitter local Mean, kurt, skew, std 4

Jitter DDP Mean, kurt, skew, std 4

Δjitter DDP Mean, kurt, skew, std 4

Shimmer Mean, kurt, skew, std 4

Δshimmer Mean, kurt, skew, std 4

Loudness mean, kurt, skew, std 4

Δloudness Mean, kurt, skew, std 4

Speech features Voicing prob. Mean, kurt, skew, std 4

Δvoicing prob. Mean, kurt, skew, std 4

Total 296
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around the mean of a data distribution) of each acoustic 
features and also included the deltas of these features. In 
total, we extracted 296 features, but we only describe the 
features that are identified as meaningful by our feature 
selection methods.

Spectral features: Spectral features encompasses the fea-
tures derived from the mel frequency cepstrum (MFC) 
(i.e., MFC uses the Mel scale to represent short-term 
power spectrum of a sound), the line spectral pairs (LSPs) 
and mel frequency cepstral coefficients (MFCCs) ( it rep-
resent energy variations between frequency bands of a 
speech signal). Using MFCCs, we aim at accurately rep-
resenting the phonemes articulated by speech organs 
(tongue, lips, jaws, etc.). Delta MFCCs are the trajecto-
ries of the MFCCs over time. The logarithm of Mel filter 
banks are calculated as an intermediate step of comput-
ing MFCCs and we have considered the Log Mel Fre-
quency Bands and the Delta Log Mel Frequency Bands 
as spectral features. Previous research identified the 
MFCCs as one of the most relevant acoustic features to 
distinguish patients with different types of dementia [45, 
63, 64]. Our analysis also confirm this claim (see Tables 4 
and 7).

LSPs are strongly related to underlying speech fea-
tures and are thus useful in speech coding [65]. They are 
correlated to unvoiced speech, pause and silence which 
are reportedly effective in identifying linguistic impair-
ments  [66]. The delta of LSPs represents the change of 
LSPs over time. Our feature selection methods confirm 
the importance of LSPs and their deltas (see Tables 4 and 
7).

Phonation and voice quality features This feature group 
includes fundamental frequency (F0), Shimmer, Jitter, 
Loudness, and the deltas of these features. The F0 feature 
is defined as the rate of oscillation of the vocal folds [67]. 

F0 is nearly periodic in speech of the healthy people but 
less periodic in patients  [68]. Jitter describes frequency 
instability and shimmer is a measure of amplitude fluctu-
ations. Loudness affects the amplitude of vibrations and it 
is correlated to the emotional states of the speaker  [69]. 
Previous studies reported that phonation and voice qual-
ity features are correlated with MCI and AD [70, 71], and 
our findings also support these claims (see Tables 4 and 
7).

Speech features We have considered the voicing probabil-
ity (VP) and the delta of voicing probability as relevant 
acoustic features. A voicing probability shows the per-
centage of unvoiced and voiced energy in a speech signal. 
A delta voicing probability indicates the rate of change 
over time. Our feature selection methods identified that 
mean, std and kurt of both features are discriminative 
features to identify older adults living with dementia (see 
Table 7).

Feature selection and machine learning classifiers
To select the most informative set of features we used 
techniques such as Principle Components Analysis 
(PCA), Analysis of Variance (ANOVA), RF and  Minimal 
Redundancy Maximal Relevance (mRMR).

We trained different ML classifiers such as DT, Extra 
Tree (ET), kNN, SVM using a set of extracted linguistic 
and acoustic features, which have been already described.

Results
This section investigates the performance of different 
ML algorithms trained using various features extracted 
from participants’ speeches during the PDT and SRT and 
these speeches have been collected using phone-based 
and web-based interfaces. We aim to show the impacts of 
the two language tasks: the PDT and SRT on the perfor-
mance of ML classifiers.

Note that, we have trained the classifiers separately 
with linguistic and acoustic features, and therefore, in the 
following parts, we compare the performance of the clas-
sifiers developed with these two groups of features.

Language tasks
This subsection investigates the impacts of the two lan-
guage tasks: the PDT and SRT on the performance of ML 
classifiers.

PDT
We study the efficacy of linguistic (see Fig. 1) and acous-
tic features (see Table 4), which have been extracted from 
the speech of the participants without dementia ( N = 3 ) 
and participants with dementia ( N = 5 ) during the com-
pletion of PD task.

Table 4  Common acoustic features obtained by applying 
ANOVA, RF and mRMR feature selection methods on the 
recorded audio files of PDT and SRT

PD Task SR task

MFCC 13 (mean) MFCC 12,13 (skew)

MFCC 12,13 (kurt) ΔMFCC 3,4,6,13 (mean)

MFCC 10,13 (skew) ΔMFCC 4 (skew)

ΔMFCC 2,11 (mean) ΔLSP freq 7 (mean)

ΔMFCC 2,3,6,7 (kurt) ΔLSP freq 3,6 (kurt)

ΔMFCC 6,11,13 (skew) Loudness (kurt, skew)

ΔLSP freq 3,5 (mean) ΔLoudness (kurt, skew)

ΔLSP freq 2,6 (kurt) F0 (kurt)

ΔLSP freq 1 (skew) ΔF0 (mean)
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Classifiers trained with linguistic features We trained var-
ious ML classifiers using lexical, semantic, and syntactic 
features. Our obtained results show that if we train the 
ET algorithm with a set of lexical features, we can achieve 
more accurate classification results than other proposed 
ML algorithms in this paper (see Fig.  2b). Training ML 
algorithms with the set of lexical, semantic, and syntac-
tic features could decrease the accuracy of classifiers (see 
Fig.  2a). By training the ML classifiers using 8 syntactic 
features, we observed the ET algorithm could classify 
patients from healthy controls with an accuracy of 63.0% 
(± 7%). By training various ML classifiers using 4 seman-
tic features, we observed ET provide more accurate 
results than others and could classify the classes with an 
accuracy of 63.0% (± 7%) (see Fig. 3a, b).

Training ML algorithms with 3 principle components 
(as Figs. 4 and 5 show using two principle components, 
health controls and patients might not be separated cor-
rectly) extracted from 17 features, we observed that 
the SVM algorithm with the linear kernel could clas-
sify with 63.0% (±   7%) accuracy. Furthermore, among 
lexical features, two Flesch–Kincaid ( CV13 = 23.17%, p 
value = 0.25) and FRE (CV = 15.15%, p value = 0.35) can 
provide better discrimination between these two groups 
of subjects, while the number of the third pronouns 
(the effect size equals to 1.319) and the first pronouns 
(the effect size equals to 2.198) among subjects without 
dementia has higher value than subjects with dementia. 
Thus, these two syntactic features might be considered as 

13  Coefficient of variation.

Fig. 1  Correlation heat-map between 17 linguistic features extracted from textual data related to the PDT
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markers to detect subjects with MCI. Another interest-
ing result is that measuring tangentiality (see Fig. 6) (with 
the effect size of 0.020) in speech can provide a better 

understanding to determine subjects with dementia from 
healthy subjects.

Fig. 2  ROC curves of RF and ETs trained by different sets of linguistic features

Fig. 3  ROC curves of ETs trained by syntactic and semantic features
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Classifiers trained with acoustic features Table 6 presents 
the classification results obtained by training ML classifi-
ers using the acoustic features including the spectral (e.g., 
MFCC, LSP), speech (e.g., voicing probability), phonation 
(e.g., F0) and voice quality (e.g., jitter, shimmer) features 
as described in Sect. “Acoustic features”. We rank all these 
features using ANOVA, RF and mRMR methods and use 
the top 8 features identified by each of these methods 

to train the ML classifiers. Table  4 shows the top com-
mon acoustic features ranked by the above mentioned 
feature selection methods. We found that scikit-learn’s 
[72] default configurations work fine for the considered 
ML classifiers. Therefore, we use the default configura-
tions for all classifiers. The F1 micro scores in Table 6 are 
obtained using the 3-fold cross-validation method. Our 
results show that the tree-based classifiers, e.g., RF, ET, 
and DT outperform the others.

SRT
This section presents the results obtained by training dif-
ferent ML classifier using linguistic and acoustic features 
extracted from participants’ speech and transcriptions 
produced by subjects without dementia ( N = 10 ) and 
patients with dementia ( N = 4 ) during the SRT.

Classifiers trained with linguistic features We exam-
ined the performance of ML classifiers. trained using 
different linguistic features (see Fig.  7). Using 5 lexical 
features to train classifiers, the SVM (with the Radial 
Basis Function  (RBF) kernel and C = 0.01 ) and RF 
( n_estimators = 2 and max_depth = 2 ), could classify 
subjects with dementia and healthy subjects with 71% 
accuracy. We could get the same results using 8 syntac-
tic features to train the SVM (with the RBF kernel and 
C = 0.01 ) and RF(n_estimators = 2 and max_depth = 2 ) 
(see Fig.  8a, b). Training the classifiers (3-fold Cross-
Validation) with 17 lexical, semantic, and syntactic fea-
tures, we concluded that the SVM (with the RBF kernel 
and C = 0.01 ) could classify subjects with dementia and 
healthy adults with 72% accuracy (see Fig. 9a, b). Training 
ML algorithms with 3 Principle Components (PCs) (see 
Figs. 10 and 11) extracted from 17 features, we observed 
that the SVM algorithm with the RBF kernel could clas-
sify with 71% accuracy. Fig.  12 shows the comparison 

Fig. 6  A comparison between the tangentiality measure for subjects 
with and without dementia

Fig. 4  Using 2 PCs to separate subjects with dementia and healthy 
controls

Fig. 5  It presents the values of cumulative explained variance for 
different number of principle components
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Fig. 7  The correlation between different linguistic features extracted from the SRT

between the tangentiality measure for subjects with 
dementia and healthy subjects in speech provide during 
the SRT.

Classifiers trained with acoustic features We trained the 
ML algorithms using the top 15 acoustic features follow-
ing the same methodology that we used in Sect.  “PDT”. 
More specifically, we extracted various types of acous-
tic features from audio data collected from participants 
without dementia ( N = 10 ) and subjects with dementia 
( N = 4 ). We ranked them (see Table 4 which shows the 
top common acoustic features) using ANOVA, RF, and 
mRMR feature selection methods. Note that we used 
scikit-learn’s default configurations for all classifiers 
of this sub-section. The F1 micro scores in Table  6 are 
obtained using the 3-fold cross-validation method.

Comparison between PDT and SRT
As mentioned earlier, we have also evaluated the impact 
of language tasks on the performance of ML classifiers 
for detecting patients with dementia. We have used 
audio recordings and transcribed textual datasets to 
extract linguistic and acoustic features from speech and 
language datasets obtained from PDT and SRT. Our 
datasets are imbalanced and therefore micro F1 scores 
are more appropriate to report the performance of the 
ML classifiers. To assess the efficiency of PDT and SRT, 
we have calculated a range of F1 scores using different 
feature sets and classifiers as shown in Tables 5 and  6. 
We have used lexical, syntactic, semantic, and a com-
bination of all these 3 feature groups as linguistic fea-
tures. For acoustic features, we have used ANOVA, RF, 
and mRMR feature selection methods. We have also 
used the common features in these 3 feature selection 



Page 11 of 19Parsapoor (Parsa) et al. BMC Medical Informatics and Decision Making           (2023) 23:45 	

methods as another set of acoustic features. Finally, we 
have applied DT, ET, Linear SVM, RBF SVM, Linear 
Discriminant Analysis  (LDA), Logistic Regression  (LR), 

kNN and RF algorithms to compute the F1 scores. 
Fig. 13a shows the distributions of F1 scores for PD and 
SR tasks. A one-way ANOVA test performed on the 

Fig. 8  ROC curves of SVM trained with syntactic and semantic features

Fig. 9  ROC curves of SVM trained by all and lexical features
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F1 scores of the PD and SR tasks shows that the means 
are significantly different (F(1,126) = 8.27, p = 0.005). 
A Tukey’s post-hoc test shows that the mean F1 scores 
of datasets from the PDT are higher than the SR task 
(p = 0.005), i.e., the ML classifiers trained by datasets 
obtained from using the PDT (i.e., the Cookie Theft 
picture) perform better than those classifiers trained by 
datasets obtained from the SRT.

Recording media
We were also interested in figuring out the direct effect of 
using the web interface or phone interface on the quality 
of recorded language data that indirectly impacts the per-
formance of ML classifiers.

Classifiers trained with linguistic features
We have trained various ML classifiers using linguistic 
features extracted from recorded language data (10 sam-
ples related to subjects without dementia and 2 samples 
related to subjects with dementia) that were collected 
using the phone interface and web interface. Table  6 
shows that the classification results obtained from the 
web-interface data are more accurate than the results 
obtained from the phone-interface data. Using 5 lexical 
features, the SVM (with the linear kernel) classifier and 
the LR can classify samples with 99.9% accuracy. How-
ever, using 8 syntactic features, we drop all ML classifiers’ 
performance, including the SVM (with the linear kernel); 
thus, the SVM can determine subjects with dementia 
with 83% accuracy. Similarly, if we use 4 semantic features 
including incoherence and tangential metric to train clas-
sifiers, they can provide better performance than using 8 
syntactic features. Note that the datasets are imbalanced 
data, so the obtained accuracy might be changed by hav-
ing more samples from patients with dementia.

Classifiers trained with acoustic features
We have developed the classifiers using the acous-
tic features extracted from the audio files. We used 
16 phone-based recordings from 3 healthy adults and 
1 dementia patient (each participant attended 4 ses-
sions). Similarly, we have considered 8 web-based 
recordings from subjects with dementia ( N = 3 ) and 
subjects with dementia ( N = 5 ) (only 1 session each). 

Fig. 10  It shows that subjects with dementia and healthy controls 
cannot be linearly separated using 2 principle components

Fig. 11  It presents the values of cumulative explained variance for 
different number of principle components

Fig. 12  A comparison between the tangentiality measure for 
participants with dementia and healthy subjects
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We have followed the same methodology to rank the 
acoustic futures as we described before for the acous-
tic features. Table 7 shows the common features ranked 
by ANOVA, RF, and mRMR methods. We use the top 
15 features to train the classifiers. Table  6 shows the 
F1 scores obtained from the DT, ET, Linear SVM, RBF 
SVM, LDA, LR, kNN and RF algorithms. We have 
used scikit-learn’s default configurations and the 3-fold 
cross-validation method to calculate the F1 scores. We 
found that DT perform better for web-based record-
ings and linear the SVM showed better performance 
for phone-based recordings. Note that the datasets are 
imbalanced data, so the obtained results here might be 
changed by having more samples from patients with 
dementia.

Comparison between phone‑based and web‑based 
recordings
We have performed a one-way ANOVA test on the F1 
scores of the phone and web-based recordings as shown 
in Tables  5 and  6. Our analysis shows that the means 
of these 2 groups are significantly different (F(1,126) = 
4.26, p = 0.04). Figure 13b shows the distributions of F1 
scores of these 2 groups. A Tukey’s post-hoc test shows 
that the mean F1 scores of the classifiers developed by 
the extracted features from the phone-based recordings 
are higher than web-based recordings (p = 0.04), i.e., 
the ML classifiers trained with the phone-based record-
ings perform better than the web-based recordings.

Table 5  F1 (micro) scores obtained by applying ML algorithms on linguistic features

Features Algorithms PDT SRT Web Phone

Lexical DT 0.63 (± 0.07) 0.71 (± 0.00) 0.42 (± 0.17) 0.92 (± 0.17)

ET 0.73 (± 0.13) 0.57 (± 0.57) 0.83 (± 0.00) 0.92 (± 0.17)

kNN 0.52 (± 0.29) 0.42 (± 0.00) 0.45 (± 0.00) 0.45 (± 0.00)

LDA 0.63 (± 0.07) 0.63 (± 0.07) 0.75 (± 0.17) 0.92 (± 0.17)

R_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

L_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 1.00 (± 0.00)

LR 0.63 (± 0.07) 0.63 (± 0.07) 0.83 (± 0.00) 1.00 (± 0.00)

RF 0.47 (± 0.27) 0.71 (± 0.00) 0.83 (± 0.00) 0.92 (± 0.17)

Syntactic DT 0.73 (± 0.13) 0.57 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

ET 0.80 (± 0.40) 0.64 (± 0.14) 0.83 (± 0.00) 0.83 (± 0.00)

kNN 0.69 (± 0.63) 0.53 (± 0.23) 0.45 (± 0.00) 0.45 (± 0.00)

LDA 0.37 (± 0.07) 0.50 (± 0.43) 0.75 (± 0.17) 0.75 (± 0.50)

R_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

L_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.67 (± 0.33)

LR 0.80 (± 0.40) 0.71 (± 0.00) 0.83 (± 0.00) 0.75 (±0.17)

RF 0.47 (± 0.27) 0.57 (± 0.00) 0.75 (± 0.17) 0.92 (± 0.17)

Semantic DT 0.53 (± 0.27) 0.64 (± 0.14) 0.83 (± 0.00) 0.83 (± 0.33)

ET 0.57 (± 0.47) 0.71 (± 0.29) 0.83 (± 0.00) 0.83 (± 0.00)

kNN 0.69 (± 0.63) 0.53 (± 0.23) 0.45 (± 0.00) 0.45 (± 0.00)

LDA 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.58 (± 0.50)

R_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

L_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

LR 0.63 (± 0.07) 0.50 (± 0.43) 0.83 (± 0.00) 0.83 (± 0.00)

RF 0.73 (± 0.13) 0.57 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

All DT 0.73 (± 0.13) 0.64 (± 0.14) 0.75 (± 0.17) 1.00 (± 0.00

ET 0.63 (± 0.07) 0.79 (± 0.14) 0.83 (± 0.00) 0.75 (± 0.50)

kNN 0.52 (± 0.29) 0.39 (± 0.05) 0.45 (± 0.00) 0.45 (± 0.00)

LDA 0.63 (± 0.07) 0.64 (± 0.14) 0.75 (± 0.17) 0.75 (± 0.50

R_SVM 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 0.83 (± 0.00)

L_SVM 0.63 (± 0.07) 0.64 (± 0.14) 0.75 (± 0.17) 1.00 (± 0.00)

LR 0.70 (± 0.60) 0.64 (± 0.14) 0.83 (± 0.00 0.75 (± 0.17)

RF 0.63 (± 0.07) 0.71 (± 0.00) 0.83 (± 0.00) 1.00 (± 0.00)
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Comparison between linguistic and acoustic features
Tables 5 and  6 show the results obtained by using differ-
ent linguistic and acoustic features. We consider all F1 
scores (total 256) to compare the performance between 
the classifiers trained with linguistic and acoustic fea-
tures. Figure  13c shows the distributions of F1 scores 
of these 2 groups. A one-way ANOVA test performed 
on the F1 scores shows that the means are significantly 
different (F(1, 256) = 62.43, p ≈ 0). A Tukey’s test for 
post-hoc analysis shows that the mean F1 scores of the 
classifiers trained with the acoustic features are higher 
than the classifiers trained with the linguistic features (p 
= 0). That is, the ML classifiers trained with the acoustic 
features perform better than the classifiers trained with 
the linguistic features.

Discussion
This research has focused on evaluating the impacts 
of language tasks, recording media, and modalities on 
the performance of ML classifiers that can be used for 
dementia assessment. This section discusses various 
aspects of our methodology including generalization, 
validity, reliability, and fairness.

Generalization: selecting meaningful features
One of the problems we have faced with the acoustic 
features is that when we have applied ANOVA, RF, and 
mRMR feature selection methods on different datasets 
(i.e., obtained from various recording media or language 
tasks), each time we have received different sets of fea-
tures (see Tables  4 and  7). Therefore, we are interested 

Table 6  F1 (micro) scores obtained by training ML algorithms with acoustic features

Features Algorithms PDT SRT Web Phone

ANOVA DT 0.83 (± 0.24) 0.50 (± 0.24) 0.89 (± 0.16) 0.81 (± 0.02)

ET 0.98 (± 0.03) 0.86 (± 0.09) 0.83 (± 0.24) 0.93 (± 0.09)

kNN 0.83 (± 0.24) 0.78 (± 0.02) 0.89 (± 0.16) 0.93 (± 0.09)

LDA 0.89 (± 0.16) 0.70 (± 0.14) 0.89 (± 0.16) 1.00 (± 0.00)

R_SVM 0.72 (± 0.21) 0.78 (± 0.02) 0.89 (± 0.16) 0.76 (± 0.06)

L_SVM 0.83 (± 0.24) 0.70 (± 0.14) 0.72 (± 0.21) 1.00 (± 0.00)

LR 0.83 (± 0.24) 0.78 (± 0.02) 0.72 (± 0.21) 0.93 (± 0.09)

RF 0.99 (± 0.02) 0.83 (± 0.06) 0.83 (± 0.24) 0.93 (± 0.09)

RF DT 0.72 (± 0.21) 0.57 (± 0.17) 1.00 (± 0.00) 0.87 (± 0.09)

ET 0.99 (± 0.02) 0.80 (± 0.04) 1.00 (± 0.00) 0.99 (± 0.02)

kNN 0.89 (± 0.16) 0.78 (± 0.02) 0.89 (± 0.16) 0.93 (± 0.09)

LDA 1.00 (± 0.00) 0.57 (± 0.17) 0.89 (± 0.16) 0.93 (± 0.09)

R_SVM 0.61 (± 0.08) 0.78 (± 0.02) 0.61 (± 0.08) 0.76 (± 0.06)

L_SVM 0.89 (± 0.16) 0.78 (± 0.02) 0.72 (± 0.21) 1.00 (± 0.00)

LR 0.89 (± 0.16) 0.87 (± 0.09) 0.72 (± 0.21) 0.93 (± 0.09)

RF 1.00 (± 0.00) 0.78 (± 0.02) 0.90 (± 0.14) 1.00 (± 0.00)

mRMR DT 1.00 (± 0.00) 0.70 (± 0.14) 0.83 (± 0.24) 0.87 (± 0.09)

ET 1.00 (± 0.00) 0.81 (± 0.05) 0.97 (± 0.05) 1.00 (± 0.00)

kNN 0.50 (± 0.14) 0.78 (± 0.02) 1.00 (± 0.00) 0.81 (± 0.16)

LDA 1.00 (± 0.00) 0.77 (± 0.21) 1.00 (± 0.00) 1.00 (± 0.00)

R_SVM 0.61 (± 0.08) 0.78 (± 0.02) 0.72 (± 0.21) 0.76 (± 0.06)

L_SVM 0.78 (± 0.31) 0.50 (± 0.08) 1.00 (± 0.00) 0.87 (± 0.19)

LR 0.78 (± 0.31) 0.78 (± 0.02) 1.00 (± 0.00) 0.87 (± 0.19)

RF 0.99 (± 0.02) 0.78 (± 0.02) 0.88 (± 0.16) 1.00 (± 0.00)

Common DT 1.00 (± 0.00) 0.52 (± 0.37) 1.00 (± 0.00) 0.80 (± 0.28)

ET 1.00 (± 0.00) 0.84 (± 0.11) 0.74 (± 0.21) 0.94 (± 0.08)

kNN 0.83 (± 0.24) 0.70 (± 0.14) 0.89 (± 0.16) 1.00 (± 0.00)

LDA 0.78 (± 0.16) 0.80 (± 0.16) 0.89 (± 0.16) 0.87 (± 0.19)

R_SVM 0.72 (± 0.21) 0.78 (± 0.02) 0.78 (± 0.16) 0.76 (± 0.06)

L_SVM 0.83 (± 0.24) 0.77 (± 0.21) 0.72 (± 0.21) 1.00 (± 0.00)

LR 0.83 (± 0.24) 0.70 (± 0.14) 0.72 (± 0.21) 1.00 (± 0.00)

RF 0.98 (± 0.02) 0.78 (± 0.02) 0.81 (± 0.20) 0.95 (± 0.07)
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in combining all features so that we get almost consist-
ent performance with all datasets. For this purpose, we 
have used PCA to combine a group of features, as shown 
in Table  8. We have considered MFCCs (0–14th order 
coefficients), the deltas of these MFCCs, and the deltas 

Fig. 13  Boxplots showing the F1 scores obtained from different classifiers: a distributions of the F1 scores in the picture description and story 
recall tasks, b distributions of the F1 scores for web and phone-based recordings, and c distributions of the F1 scores in the linguistic and acoustic 
features. These boxplots show that the picture description task, phone-based recordings, and acoustic features provide better performance than 
the story recall task, web-based recordings, and linguistic features

Table 7  Common acoustic features obtained by applying 
ANOVA, RF and mRMR feature selection methods on phone and 
web-based recordings

Web Phone

MFCC 5, 11, 12 (mean) MFCC 6, 9 (std)

ΔMFCC 11, 13 (mean) MFCC 3 (skew)

ΔMFCC 0, 3, 6, 9, 10 (skew) MFCC 3, 5 (kurt)

Δlog Mel freq 0, 5, 6 (skew) ΔMFCC 0 (std)

Voicing prob. (kurt, std) LSP freq 7 (mean)

ΔVoicing prob. (kurt, mean, std) LSP freq 2, 3, 4 (skew)

LSP freq 0 (kurt) LSP freq 1 (kurt)

F0 (skew) ΔLSP freq 3 (mean)

Jitter local (kurt, skew) ΔLSP freq 5 (skew)

ΔJitter local (kurt) log Mel freq 2 (skew)

ΔJitter DDP (kurt) Δlog Mel freq 1, 2, 3 (std)

ΔShimmer local (kurt) Voicing prob. (kurt, std)

Loudness (kurt)

Table 8  Generalization—Combine the acoustic features using 
PCA

Feature Name Functional Principle Component (PC)

MFCC 0-14 Mean 1st PC from the means of 15 MFCCs

2nd PC from the means of 15 MFCCs

Kurt 1st PC from the kurt of 15 MFCCs

2nd PC from the kurt of 15 MFCCs

Skew 1st PC from the skew of 15 MFCCs

2nd PC from the skew of 15 MFCCs

ΔMFCC 0-14 mean 1st PC from the means of 15 ΔMFCCs

2nd PC from the means of 15 ΔMFCCs

Kurt 1st PC from the kurt of 15 ΔMFCCs

2nd PC from the kurt of 15 ΔMFCCs

Skew 1st PC from the skew of 15 ΔMFCCs

2nd PC from the skew of 15 ΔMFCCs

ΔLSP freq 0-7 mean 1st PC from the means of 8 ΔLSP freq

2nd PC from the means of 8 ΔLSP freq

Kurt 1st PC from the kurt of 8 ΔLSP freq

2nd PC from the kurt of 8 ΔLSP freq

Skew 1st PC from the skew of 8 ΔLSP freq

2nd PC from the skew of 8 ΔLSP freq
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of LSP frequency bands (0–7) in the PCA because these 
groups of features appear more frequently in our rank-
ings (see Tables 4 and 7). We found that the first two PCs 
can retain, on average 75% of the variance, and hence we 
have considered only the first 2 PCs to train the classifi-
ers. Table 9 shows how these PCA features perform with 
4 different sets of data. Our results show that we achieved 
almost consistent performance with the tree-based clas-
sifies ranging from 78 to 93% F1 scores with these gener-
alized sets of features.

Validity and reliability
We can assess the validity and reliability of a classifier 
using the Intra-class Correlation Coefficient (ICC) [73] 
and the Pearson Correlation Coefficient  (PCC) [73] (i.e., 
if PCC returns a value close to 1, then the classifier pro-
vides valid results; however, if the value is below, 0.5 indi-
cates less correlation and validation). We observed that 
PCC value obtained from our classifiers trained with lin-
guistic features is higher than 0.5.

Fairness and explainability
In general, ML classifiers for developing automatic 
SLAMs are supervised classifiers, and therefore they are 
prone to producing unfair results. In our work, we tried 
not to consider sensitive attributes such as gender and 
race as features [74]. However, we are working on dif-
ferent verbal tasks that might slightly be influenced by 
gender differences [75]. Another issue is that this type 
of assessment tool compares the user’s language against 
similar users who are assumed to have AD or MCI [76]. 
Another essential attribute that might affect the fairness 
of automatic SLAMs is the level of education. It has been 
shown that some SLAMs cannot provide accurate diag-
nostics when there are subjects with lower education lev-
els among the population of study [77]. SLAMs require a 
set of mechanisms to ensure that end-users trust in their 
performances and know how the system provides output. 

It is essential to motivate people to adopt not only the 
methods but also to share their data. Fairness is an essen-
tial concern, especially as automatic SLAMs are being 
deployed more broadly in detecting other types of men-
tal health problems. Fairness, in the end, comes down to 
the robustness aspect. When we create SLAMs, we want 
them to be fair, and this means robust when deployed 
in different geographic settings and populations. Auto-
matic SLAMs should be accurate and explainable to be 
adopted by psychiatrists during their assessment pro-
cedures. Thus, it is essential to choose an ML algorithm 
that can describe its purpose, rationale, and decision-
making process that can be understood by both clinicians 
and patients; it can foster the confidence of mental health 
professionals in employing it to detect subjects with 
dementia quickly.

Data limitation
No doubt having a lot of data samples, ML algorithms, 
which are cores of automatic SLAMs, can learn bet-
ter  [78] to map linguistic and acoustic features to the 
group of subjects (i.e., with dementia or without demen-
tia). In other words, determining the optimal sample size 
for developing an efficient automatic SLAM assures ade-
quate power to detect statistical significance [79]. How-
ever, for our problem, collecting language data from too 
many subjects is expensive and needs a lot of time. Thus, 
even it is necessary to estimate what is the sufficient size 
of samples for achieving acceptable classification results 
and then start to develop an automatic SLAM, but our 
results have shown that we could achieve good perfor-
mance even by using the language data of less than 10 
subjects (see Fig. 14).

Table 9  Results obtained by applying ML algorithms on PCA-
based acoustic features that are extracted from all datasets

Classifier PDT SRT Web Phone

DT 0.78 (± 0.16) 0.78 (± 0.02) 0.72 (± 0.21) 0.80 (± 0.16)

ET 0.61 (± 0.28) 0.61 (± 0.28) 0.68 (± 0.22) 0.92 (± 0.10)

kNN 0.61 (± 0.08) 0.78 (± 0.02) 0.61 (± 0.08) 0.80 (± 0.28)

LDA 0.50 (± 0.14) 0.50 (± 0.14) 0.50 (± 0.14) 0.87 (± 0.09)

R_SVM 0.61 (± 0.08) 0.65 (± 0.18) 0.72 (± 0.21) 0.76 (± 0.17)

L_SVM 0.50 (± 0.14) 0.35 (± 0.33) 0.89 (± 0.16) 0.67 (± 0.25)

LR 0.72 (± 0.21) 0.22 (± 0.16) 0.89 (± 0.16) 0.60 (± 0.28)

RF 0.54 (± 0.15) 0.78 (± 0.02 0.79 (± 0.23) 0.93 (± 0.07)

Fig. 14  A description of using power analysis to estimate the 
minimum sample size is required for achieving a desired effect size; It 
shows the impact of different effect sizes (es) and various sizes of the 
data sample on the statistical power
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Conclusion
In this paper, we compared the performance of differ-
ent ML classifiers with different types of features to 
assess dementia in older adults. Although this topic is 
widely explored in the literature, they rarely investi-
gated how different language tasks, recording media, 
and modalities impact the performance of the classi-
fiers. Our results showed that the classifiers that have 
been trained using the PDT dataset perform better than 
classifiers trained by the SRT dataset. We also found 
that the dataset obtained using phone-based recordings 
could increase ML classifiers’ performance compared 
to the web-based dataset. Finally, we showed that the 
classifiers trained only with the acoustic features had 
higher performance than classifiers trained with the 
linguistic features.

In the future, we will be working in the following direc-
tions: (1) Developing a cascade classifier that will be 
trained using both linguistic and acoustic features; (2) 
Using other types of data, such as eye-tracking; (3) Using 
few-shot ML algorithms and transfer learning tech-
niques; (4) Considering pragmatic features such as fill-
ers, GoAhead utterances, repetitions, incomplete words, 
and also contextual features using BERT (Bidirectional 
Encoder Representations from Transformers); and (5) 
Using text data augmentation techniques such as EDA: 
Easy Data Augmentation techniques to augment data 
samples.
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