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Abstract 

Aims  In the present study, we aimed to evaluate the performance of machine learning (ML) models for identification 
of acute myocardial infarction (AMI) or death within 30 days among emergency department (ED) chest pain patients.

Methods and results  Using data from 9519 consecutive ED chest pain patients, we created ML models based on 
logistic regression or artificial neural networks. Model inputs included sex, age, ECG and the first blood tests at patient 
presentation: High sensitivity TnT (hs-cTnT), glucose, creatinine, and hemoglobin. For a safe rule-out, the models were 
adapted to achieve a sensitivity > 99% and a negative predictive value (NPV) > 99.5% for 30-day AMI/death. For rule-in, 
we set the models to achieve a specificity > 90% and a positive predictive value (PPV) of > 70%. The models were also 
compared with the 0 h arm of the European Society of Cardiology algorithm (ESC 0 h); An initial hs-cTnT < 5 ng/L 
for rule-out and ≥ 52 ng/L for rule-in. A convolutional neural network was the best model and identified 55% of the 
patients for rule-out and 5.3% for rule-in, while maintaining the required sensitivity, specificity, NPV and PPV levels. 
ESC 0 h failed to reach these performance levels.

Discussion  An ML model based on age, sex, ECG and blood tests at ED arrival can identify six out of ten chest pain 
patients for safe early rule-out or rule-in with no need for serial blood tests. Future studies should attempt to improve 
these ML models further, e.g. by including additional input data.
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Background
Acute myocardial infarction (AMI) is one of the major 
causes of death worldwide, and the most important 
consideration in patients presenting to the emergency 
department (ED) with chest pain. However, the vast 
majority of these patients do not have AMI, and for dec-
ades clinicians have tried to improve methods to rapidly 
identify or rule out AMI [1].

The ECG, blood tests of cardiac troponin, and patient 
history are the cornerstones of the ED evaluation of 
patients with possible AMI [2–4], and several rule-
based algorithms have been created to improve diag-
nostic accuracy and speed. In this context, the 0/1  h 
European Society of Cardiology (ESC) protocol [5] has 
gained widespread acceptance. However, this algorithm 
has several weaknesses, including that only a minority 
of patients meet the criteria [6], that the same hs-cTnT 
cut-off is used in all patients, and that important factors 
affecting the hs-cTnT value are not accounted for, e.g. 
renal function, sex and age [7, 8]. Indeed, recent studies 
show that adding other blood biomarkers may improve 
the predictive value of hs-cTnT algorithms [7–10]. In 
addition, the ESC 0/1  h protocol require two hs-cTnT 
samples, taken one hour apart. A protocol allowing accu-
rate management decisions already after the first blood 
test may decrease the length of ED stay for the patients 
and help reduce ED crowding. When applied alone, the 
0  h arm of the ESC protocol identifies patients with an 
arrival hs-cTnT below 5 ng/L for safe and early rule-out, 
but these patients are relatively few [5].

Machine learning (ML) for the detection of acute dis-
ease is not new [11], but the introduction of deep learning 
has allowed these algorithms to emerge as powerful tools 
to predict complex phenomena with very high accuracy. 
These models could improve diagnostic performance 
compared to more simplistic rule-based algorithms by 
finding nonlinear relationships between variables and 
by spotting subtle clinical information which might go 
undetected by clinicians [12].

The aim of this study was to explore the ability of ML 
models to increase the number of chest pain patients 
accurately identified for rule-in or rule-out based on only 
the first blood tests after patient arrival, and to compare 
these models with the established 0  h arm of the ESC 
algorithm.

Methods
Study sites and design
This retrospective study included chest pain patients at 
the EDs of Skåne University Hospital at Lund (serving 
320.000 inhabitants) and Helsingborg Hospital (serving 
250.000 inhabitants) in Sweden. The aim of the study was 

to develop several combined diagnostic and prognostic 
tests of increasing complexity and to compare these to a 
baseline test using a single hs-cTnT value with prespeci-
fied cutoffs.

Patient population
This study utilized the EXPECT (Evaluation of Unknown 
Predictors of Electrocardiographic Changes – a Trans-
national Study) database [13, 14]. All adult patients 
(≥ 18  years) who presented with chest pain at the two 
EDs during 2013 and 2014 and had both hs-cTnT ana-
lyzed and electrocardiogram (ECG) recorded were 
included in the study. If a patient had multiple ED visits 
during this period, only the first was considered. Patients 
were excluded if hs-cTnT, glucose, creatinine or hemo-
globin results at presentation were hemolyzed or missing, 
or if the ECG-signal was of low technical quality (Fig. 1).

For model training and evaluation, patients were 
chronologically split into three groups. The first 50% of 
patients were used to train the models, the following 25% 
of patients to further tune the models, i.e. to find opti-
mal cut-offs for rule-out and rule-in while maintaining 
the prespecified sensitivity, NPV, specificity, and PPV 
thresholds (below). The final 25% of patients were used as 
a held-out testing group, to test model performance and 

Fig. 1  Flowchart of the study patients. n, number; ECG, 
electrocardiogram; Hb, Hemoglobin; AMI, acute myocardial infarction
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verify that the performance thresholds were still reached. 
A timeline and distribution of these subsets during the 
study period can be found in Additional file 1: Fig. A4.

Outcome measures
The primary clinical endpoint used in the evaluation 
was AMI or all-cause death within 30 days including the 
index visit. AMI during the index visit was a secondary 
clinical endpoint. The goal in this study was primarily 
to create diagnostic models. In an effort to not mislabel 
patients where the correct diagnosis was missed dur-
ing the index event, 30 days was selected as a reasonable 
timeframe to obtain data on diagnoses.

The two primary outcome measures were (i) the size 
of the rule-out group on the condition that sensitivity for 
the endpoint was at least 99% and the negative predictive 
value (NPV) at least 99.5% and (ii) the size of the rule-in 
group provided that specificity was at least 90% and posi-
tive predictive value (PPV) at least 70%.

The AMI diagnoses were obtained from the regional 
patient records as ICD-10 diagnoses and death within 
30 days from the Swedish population register. Index visit 
AMI was defined as a recorded diagnosis during the hos-
pital admission directly following the ED visit. The diag-
nosis of AMI was made by the responsible physician as in 
routine care based on the diagnostic criteria for AMI and 
clinical judgment, either at the ED or, in case of admis-
sion, at the ward. ICD-10 diagnoses of AMI were taken 
from the hospital discharge records, and lacked more 
specific timestamps. At the time of the study, AMI was 
defined according to the third universal definition of 
myocardial infarction [15] as a rise/fall of hs-cTnT with 
at least one value above 14  ng/L with either symptoms 
suggestive of AMI, ECG changes, or imaging evidence of 
infarction. At the time of diagnosis, the responsible phy-
sician had access to patient records, ECG data, and blood 
samples, including serial hs-cTnT values. Validation of 
the ICD-10 diagnoses in the present study has been made 
previously, where overall agreement with expert physi-
cian adjudicators was 97% [16].

ML input variables
As inputs to the machine learning models we used age, 
sex, ECG and the results of the first blood samples drawn 
after patient presentation to the ED; hs-cTnT, glucose, 
hemoglobin and creatinine. The selection of these vari-
ables was based on results from prior studies [9, 10, 17–
20], as well as their widespread availability in different 
EDs.

All blood samples and ECG data were collected within 
240 min of ED arrival.

Blood sample analyses
Glucose was measured using Cobas 6000 (Roche Diag-
nostics) or with a spectrophotometric method using 
Radiometer ABL 800 flex Blood Gas Analyzer which uses 
the hexokinase method on serum. Hemoglobin (Hb) was 
measured with a spectrophotometry method using Radi-
ometer ABL 800 flex Blood Gas Analyzer or using the 
Sysmex XN-10, using a spectrophotometric method on 
hemolyzed blood. Creatinine was analyzed using Cobas 
6000 (Roche Diagnostics) or with a spectrophotometric 
method using Radiometer ABL 800 flex Blood Gas Ana-
lyzer. Details on analytical and reference ranges for these 
analyses can be found in the Additional file 1.

Samples of hs-cTnT were collected in lithium heparin 
tubes and analyzed with the Roche Cobas e602 (Roche 
Diagnostics). This assay has a limit of detection of 5 ng/L 
and a limit of blank of 3  ng/L. Coefficient of variation 
is < 10% at 13 ng/L and the 99th percentile cut-off point is 
at 14 ng/L [21].

ECG processing
When multiple ECGs were registered at the ED, we chose 
the one closest in time to the hs-cTnT as the most rel-
evant for analysis. The 12-lead ECGs were 10 s long with 
a sample rate of 1000 Hz.

The Glasgow algorithm [22] was used to filter out ECG 
recordings of low technical quality. The algorithm also 
computes median beats (1.2 s) as well as numerous meas-
ures such as wave durations and amplitudes. Both the 
median beat and the raw signal were evaluated in the ML 
models.

Machine learning models
We developed several different models for prediction. All 
models were developed using the same training data, but 
input variables differed among models. All ML models 
were compared to hs-cTnT alone as specified in the 0 h 
arm of the 0/1 h European Society of Cardiology (ESC) 
protocol (below denoted ESC 0  h) which is shown in 
Fig. 2. Specifically, the 0 h arm states that patients can be 
ruled out if 0 h hs-cTnT is < 5 ng/L, and ruled in if 0 h hs-
cTnT is ≥ 52 ng/L. Patients with 5–51 ng/L are placed in 
an intermediate group [5] and require further evaluation 
such as additional hs-cTnT samples as implied by the 1 h 
arm of the 0/1 h ESC protocol, and/or cardiac imaging.

Logistic regression without interaction terms can be 
regarded as a special case of neural networks without 
any hidden layers. A logistic regression (denoted LogReg) 
model was thus implemented as a trivial neural network 
and trained using gradient descent until convergence. 
The inputs provided were age, sex, and the four blood 
test results. Additionally, a neural network model using 
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the same inputs with one hidden layer (comprising 10 
neurons) was also developed (ANN). In contrast to the 
LogReg model, the hidden layer in the ANN model ena-
bles it to learn interactions between the various inputs. 
As it uses the exact same inputs, the difference between 
the two models signifies the added value of considering 
more complex modeling, including interactions between 
the inputs.

To introduce the ECG signals, convolutional neu-
ral networks (CNN) were used. Two such models were 
built—one using the raw ECG signal (CNN-Raw) and 
one using the median beat (CNN-MB). In addition to 
the ECG, these models had access to the same inputs as 
the abovementioned models, i.e., age, sex, and the four 
biomarkers.

For each model, we selected two probability cutoffs. 
All patients below the lower probability were designated 
as rule-out, and all patients above the higher probability 
were designated as rule-in. Models were trained on the 
training set, and cutoffs were tuned on the tuning set. 
We then selected the cutoffs where the largest number of 
patients could be selected for rule-out and rule-in while 
still maintaining the target sensitivity, NPV, and PPV.

Statistical analysis
Both the CNN and LogReg models give a probability 
between 0 and 1 as output for the chosen outcome. These 
models were evaluated using the area under the receiver 
operating characteristic curve (AUROC).

Continuous variables were described by mean and 
standard deviation or median and interquartile range, 
while categorical variables were described using propor-
tions. For all rule-in and rule-out tests, sensitivity, speci-
ficity, PPV or NPV were calculated.

Independent samples T-tests were used for compari-
sons of continuous variables, while Pearson’s Chi-squared 
or Fisher’s exact test were used for categorical variables. 
A p-value < 0.05 was considered statistically significant.

Bootstrapping with 1000 resamplings of the dataset 
was used to obtain 95% confidence intervals for the per-
centages of rule-in and rule-out for all models.

Models were created using the Python programming 
language (Python Software Foundation, Wilmington, 
Delaware, USA) and Tensorflow (Google LLC, Mountain 
View, California, USA).

Results
Patient characteristics
As detailed in Fig.  1, 12,381 patients were assessed for 
enrolment in the study. 2862 patients were excluded 
based on prespecified criteria, leaving 9519 patients 
in the final analysis. Excluded patients were less likely 
to have an AMI (7.3% vs 8.4%) (cf. Additional file  1: 
Table  A1). As can be seen in Table  1, the mean age 
of the included patients was 59  years and 47.3% were 
female, and 804 (8.4%) patients had AMI or died within 
30  days. Of these, 707 (88%) patients had an AMI dur-
ing the index event. Patients with 30-day AMI or death 
were older (71.7 vs 57.9 years), more likely to be male and 
more often had prior diseases such as AMI, diabetes, or 
congestive heart failure. These patients also had higher 
blood hs-cTnT, glucose and creatinine levels, but Hb val-
ues were similar between patients with or without 30-day 
AMI or death.

The median time from patient arrival in the emer-
gency department to hs-cTnT sampling was 30  min for 
all patients and 20 min for patients with 30-day AMI or 
death.

Fig. 2  The 0 h arm of the European Society of Cardiology 0/1 h algorithm. NSTEMI, non ST-elevation myocardial infarction; TnT, Troponin T
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Of the 9519 patients, 2379 (25%) were put aside as 
the testing group and 2379 as a tuning group. The 
remaining 4761 (50%) patients formed the training 
group.

The prevalence of 30-day AMI/death was 9.0% in 
the training group, 8.0% in the tuning group and 7.8% 
in the testing group (Additional file 1: Table A6). The 
tuning and testing groups had similar distributions of 
age, sex, and comorbidities. The training group were 
slightly older (60.3 vs 57.4), and had more comorbidi-
ties. A larger portion of patients in the testing group 
had hs-cTnT < 5 ng/L (47.2%) than in the tuning group 
(35.8%).

Main results
The models were evaluated both in the testing group 
(Table  2) and the tuning group (Additional file  1: 
Table A2). AUROC values in these groups are provided 
in Additional file 1: Table A3.

ESC 0 h versus machine learning models: rule‑out
As can be seen in Table 2, in the testing group ESC 0 h 
(< 5  ng/L) identified 1123 (47.2%) patients for rule-out, 
with a 98.9% sensitivity and 99.8% NPV for AMI or death 
within 30  days. The LogReg model had an AUROC of 
86.4 and, at a sensitivity of 97.8% and NPV of 99.6%, it 
identified fewer patients for rule-out than ESC 0  h; 915 
(38.5%). With the simple ANN, the AUROC increased 
to 91.9 and the number of ruled-out patients increased 
to 1109 (46.6%). The ML models that included the ECG 
performed best. CNN-RAW had an AUROC of 93.8 
and ruled out 1208 patients (50.8%), and CNN-MB had 
an AUROC of 93.9 and ruled out 1309 (55.0%) patients. 
Notably, the 95% CIs between ESC 0  h (45.1–49.3) 
and CNN MB (53.1–57) did not overlap. This shows 
that there was a significant difference in the amount of 
patients ruled out by the models.

The results in the tuning group can be seen in Addi-
tional file 1: Table A2. In these patients, ESC 0 h and the 
ML models selected fewer patients for rule-out compared 

Table 1  Characteristics of the included patients

n, number; AMI, acute myocardial infarction; std, standard deviation; Hb, hemoglobin; hs-cTnT, high sensitivity cardiac troponin T; IQR, interquartile range

*As recorded up to 5 years prior to study event

**Time from patient presentation to sampling of hs-cTnT

***p-values for differences between the group with 30d AMI or Death, and the group with neither AMI nor Death

Total 30d AMI or death Neither AMI nor death p-values***

n (%) 9519 (100.0) 804 (8.4) 8715 (91.6)

Female, % 47.3 35.1 48.4 < 0.01

Age, mean (std) 59.1 (18.9) 71.7 (12.9) 57.9 (18.9) < 0.01

Disease history*

Acute myocardial infarction, % 11.1 19.7 10.3 < 0.01

Congestive heart failure, % 8.6 14.9 8.0 < 0.01

Peripheral vascular disease, % 3.7 7.8 3.4 < 0.01

Cerebral vascular accident, % 6.4 8.8 6.2 < 0.01

Dementia, % 0.9 1.2 0.8 0.205

Pulmonary disease, % 11.3 11.3 11.2 0.95

Connective tissue disorder, % 2.9 3.9 2.8 0.095

Liver disease, % 0.2 0.4 0.2 0.426

Diabetes, % 10.7 17.8 10.1 < 0.01

Diabetes complications, % 4.5 9.2 4.1 < 0.01

Renal Disease, % 3.2 6.2 2.9 < 0.01

Cancer, % 8.4 12.7 8.0 < 0.01

Metastatic cancer, % 1.4 2.6 1.3 < 0.01

Severe liver disease, % 0.1 0.1 0.1 0.586

Biomarkers

Glucose mmol/L, median (IQR) 6.1 (5.5–7.2) 7.2 (6.1–9) 6.1 (5.5–7.0) < 0.01

Hb g/L, mean (std) 139.4 (16.4) 138.2 (20.1) 139.5 (16.0) 0.064

Creatinine (μmol/L), median (IQR) 78 (66–92) 85.5 (71–105) 77 (66–91) < 0.001

hs-cTnT (ng/L), median (IQR) 6 (4–15) 52 (22–159) 6 (4–12) < 0.001

hs-cTnT sample time, median (IQR)** 30.0 (17.0–49.0) 20.0 (10.0–36.0) 30.0 (17.0–50.0) < 0.001
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to the testing groups, but all models had higher rule-out 
percentage than ESC 0 h. Most importantly, the relative 
order among models remained the same between both 
testing and tuning groups.

ESC 0 h versus machine learning models: rule‑in
As seen in Table  2, in the testing group, ESC 0  h 
(≥ 52  ng/L) ruled in 158 patients (6.6%) at a specificity 
of 97.4% and a PPV of 63.9%. ESC 0  h thereby ruled in 
the most patients of all tested models, but it did not reach 
our prespecified PPV of 70%. Among the generated mod-
els, performance differences at our specificity and PPV 
thresholds were small, with LogReg ruling in the few-
est patients (103; 4.3%), and CNN-RAW the most (132, 
5.5%). Both CNN models maintained a PPV above 70%, 
but the LogReg and ANN models failed to reach this tar-
get. For all models, the number of patients ruled in was 
similar in the testing and tuning groups.

Combined rule‑out and rule‑in
ESC 0 h selected 1020 patients (42.9%) for either rule-in 
or rule-out in the tuning group, and 1281 patients (53.8%) 
in the testing group.

Among the generated models, the CNN-MB model 
identified the largest total number of patients for either 
rule-out or rule-in in both the tuning (1373, 57.7%) and 
testing (1434, 60%) sets, while maintaining our sensitiv-
ity, NPV, specificity and PPV requirements.

Performance on index‑visit AMI
As the 0/1 h ESC algorithm was initially developed for 
index visit AMI, models were also compared using this 
endpoint. Model performance was similar, but only the 
CNN-MB model achieved a PPV over 70%. See Addi-
tional file 1: Table A7 for further details.

Comparison on patient level
To further understand the performance difference 
between the rule-based ESC 0  h and ML models, we 

Table 2  Comparison of methods—testing set

Performance with respect to rule-out (sensitivity and NPV) and rule-in (Specificity and PPV)

NPV, negative predictive value; PPV, positive predictive value; n, number; ESC 0 h, 0 h arm of the European Society of Cardiology algorithm; LogReg, logistic regression; 
ANN, artificial neural network, CNN-MB, convolutional neural network trained on median beat ECG data; CNN-RAW, convolutional neural network trained on raw ECG 
data

Sens (95% CI) NPV (95% CI) Ruled out % (95% CI) Ruled out (n) Missed AMI 
or Death

Rule out

 ESC 0 h 98.9 (96.15–99.87) 99.8 (99.30–99.96) 47.2 (45.1–49.3) 1123 2

 LogReg 97.8 (94.56–99.41) 99.6 (98.85–99.83) 38.5 (36.5–40.4) 915 4

 ANN 99.5 (97.03–99.99) 99.9 (99.37–99.99) 46.6 (44.6–48.7) 1109 1

 CNN-MB 99.5 (97.03–99.99) 99.9 (99.46–99.99) 55 (53.1–57) 1309 1

 CNN-RAW​ 99.5 (97.03–99.99) 99.9 (99.42–99.99) 50.8 (48.8–52.9) 1208 1

Spec (95% CI) PPV (95% CI) Ruled in % (95% CI) Ruled in (n) Incorrectly 
ruled in

Rule in

 ESC 0 h 97.4 (96.65–98.03) 63.9 (57.06–70.27) 6.6 (5.7–7.8) 158 57

 LogReg 98.4 (97.74–98.85) 65.1 (56.09–73.05) 4.3 (3.5–5.2) 103 36

 ANN 98.2 (97.58–98.73) 69.8 (62.05–76.51) 5.4 (4.5–6.4) 129 39

 CNN-MB 98.5 (97.89–98.96) 73.6 (65.86–80.12) 5.3 (4.4–6.2) 125 33

 CNN-RAW​ 98.2 (97.58–98.73) 70.5 (62.87–77.06) 5.5 (4.6–6.5) 132 39

Table 3  Comparison of ESC 0 h and CNN-MB

Patients with or without 30d AMI or death are separated into two halves, and 
the number of patients ending up in the different groups according to ESC 0 h 
and CNN-MB are indicated by rows and columns. Numbers along the diagonal 
indicate that the models agree

AMI, Acute myocardial infarction; ESC 0 h, 0 h arm of the European Society of 
Cardiology algorithm; CNN-MB, convolutional neural network trained on median 
beat ECG data

CNN-MB-
RuleOut

CNN-MB-
Intermediate

CNN-MB-
RuleIn

Patients with 30d AMI or death (n = 185)

 ESC 0 h-RuleOut 1 1 0

 ESC 0 h-Intermediate 0 81 1

 ESC 0 h-RuleIn 0 10 91

Patients without 30d AMI or death (n = 2194)

 ESC 0 h-RuleOut 1035 86 0

 ESC 0 h-Intermediate 273 738 5

 ESC 0 h-RuleIn 0 29 28
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compared rule-out with ESC 0  h and CNN-MB in the 
testing group, as shown in Table  3 and Fig.  3. Among 
patients with 30-day AMI or death, 10 patients were 
ruled in by ESC 0  h while CNN-MB placed them in 
the intermediate group. Conversely, for patients with-
out 30-day AMI or death, ESC 0 h ruled in 57 patients, 
which explains its low PPV. Further, ESC 0  h put 273 
patients without AMI or 30-day death in the interme-
diate group, all of whom were ruled out by CNN-MB. 
This is the main explanation why the rule-out group 
size was markedly larger with the CNN-MB than ESC 
0 h. Of the 1309 patients ruled out by CNN-MB, 1036 
patients (79.1%) would have been ruled out by ESC 0 h.

Discussion
In this study we compared different strategies combin-
ing patient age, sex, ECG data and hs-cTnT, glucose, 
hemoglobin and creatinine levels at patient arrival for 
rule-in and rule-out of 30-day AMI or death. We made 
three major findings.

First, using a CNN model, 30-day AMI or death could 
be safely ruled out in over 50% of patients with the use 
of only one troponin test together with other biomark-
ers commonly used in routine care, and the ECG. This 
has the potential to decrease the number of blood tests 
and length of ED stay for these patients, and may also 
help to reduce ED crowding. 79% of these patients 
were also ruled out by the ESC 0  h rule. Second, the 
CNN model identified around 5% of patients for rule-
in, and an early decision to admit these patients might 

Fig. 3  Comparison between the 0 h arm of the European Society of Cardiology 0/1 h algorithm (ESC 0 h) and the CNN-MB model. AMI/D, 30 day 
AMI or death
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be warranted. Third, increased complexity in model 
architecture and inputs gave improved performance. 
Our ANN model identified more patients for rule-in 
or rule-out than the logistic regression model using 
the same inputs. Similarly, extending the ANN model 
with the ECG (i.e., the CNN models) led to a further 
improvement.

Previous studies have shown that an ML model using 
two serial troponins, age and sex may outperform the 
traditional ESC 0/3 h pathway [23]. Our study expanded 
on these results by using a single initial troponin test 
in combination with other biomarkers and the ECG in 
order to further reduce the time from patient arrival to 
clinical decision.

Several studies have combined rule-based algorithms 
with single or serial negative troponin tests for rule-out, 
and shown that this increases the sensitivity and NPV, 
but decreases the fraction of patients identified for rule-
out, compared to using only troponin tests [4, 24–26]. 
Our results suggest that ML models could be used to rule 
out AMI or death in a larger proportion of patients while 
still maintaining high sensitivity and NPV values. The 
size of the rule-out group in our study was comparable 
or larger than in similar studies using additional hs-cTnT 
samples [27].

There are some considerations with the use of complex 
ML models as decision support. The models’ complexity 
traditionally comes at the cost of decreased explainability, 
i.e. that it is harder for the user to understand the basis 
of the predictions. To maintain user trust, this disadvan-
tage may necessitate a significantly improved predictive 
performance with the ML model [28, 29]. In the future, 
ML models for use in the medical field might be required 
by law to be reasonably explainable [30], and efforts are 
ongoing to achieve this [31].

Limitations
Since input data to the models included troponin and 
ECG, which were also part of the diagnostic criteria for 
AMI, there was a risk of incorporation bias. Since all 
our models included troponin, which by far is the most 
important diagnostic factor for AMI, we find it reason-
able to believe that any such bias would affect all models 
to a similar degree, and thus not qualitatively change the 
results.

There were few patients with 30-day AMI or death in 
the tuning and testing groups. To attain our 99% thresh-
old for sensitivity, a maximum of one patient with 30-day 
AMI or death was allowed among the patients ruled out 
(as a false negative). This caused the models to be con-
servative, as a single outlier could reduce the rule-out 
threshold for the entire model. The percentage of patients 

identified for rule-out may thus be higher in populations 
with more events.

Using ICD codes for the AMI diagnoses may have led 
to mislabeling of patients, as these codes might be incor-
rect. There was no adjudication of the diagnoses in our 
study, which is a limitation. However, using ICD codes 
does reflect clinical reality, and a comparison with adju-
dicated diagnoses from a parallel study showed an agree-
ment of 97% [16]. Also, it seems reasonable to believe 
that a few misclassified cases will affect all models simi-
larly, and that the ranking of the models will remain the 
same.

The mean hs-cTnT value and the number of patients 
with hs-cTnT < 5 ng/L in the tuning and testing sets dif-
fered somewhat, which was notable as the percentage of 
patients with 30-day AMI or death were similar. We sus-
pect that this could be due to a more frequent troponin 
sampling during the later parts of the study period, thus 
including more patients with lower hs-cTnT levels, where 
hs-cTnT tests previously would not have been ordered. 
There were no changes in the hs-cTnT assay during the 
study period.

We did not have data on the time from chest pain onset 
to hs-cTnT sampling, and thus included all patients, 
regardless of this time. Some AMI patients presenting 
early might thereby have been falsely ruled out, reducing 
model performance. In the present study, excluding early 
presenters (e.g. within 3 h of chest pain onset) may have 
resulted in higher sensitivities and PPV values, possibly 
at the cost of ruling out fewer patients. Again, this affects 
all models equally and the main conclusion likely remains 
valid.

It should also be noted that our results might not be 
generalizable to other settings and populations. Com-
pared to other cohorts, our patients might be younger 
and more often female. However, it seems reasonable to 
believe that the relative performance of the algorithms 
would be similar in other populations. Before clinical 
implementation, any ML model should be externally vali-
dated in independent cohorts and prospectively tested in 
the specific healthcare setting.

Conclusion
In ED chest pain patients, a CNN based on patient age, 
sex, ECG, and the first blood tests at patient presentation 
for hs-cTnT, glucose, creatinine, and hemoglobin, was 
able to identify a total of 60% of the patients for safe and 
early rule-in or rule-out of 30-day AMI or death. A deci-
sion support system based on such a CNN has the poten-
tial to reduce the number of blood tests and decrease 
the length of ED stay for chest pain patients, and to help 
decrease ED crowding.
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Model performance and safety was the focus of this 
study, and the results should now be validated prospec-
tively, ideally in randomized trials at multiple centers. 
However, before implementation of these decision aids 
in routine care, issues regarding transparency, account-
ability, and user acceptance should also be considered.
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