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Abstract 

Background  Visual electrophysiology is an objective visual function examination widely used in clinical work and 
medical identification that can objectively evaluate visual function and locate lesions according to waveform changes. 
However, in visual electrophysiological examinations, the flash visual evoked potential (FVEP) varies greatly among 
individuals, resulting in different waveforms in different normal subjects. Moreover, most of the FVEP wave labelling is 
performed automatically by a machine, and manually corrected by professional clinical technicians. These labels may 
have biases due to the individual variations in subjects, incomplete clinical examination data, different professional 
skills, personal habits and other factors. Through the retrospective study of big data, an artificial intelligence algorithm 
is used to maintain high generalization abilities in complex situations and improve the accuracy of prescreening.

Methods  A novel multi-input neural network based on convolution and confidence branching (MCAC-Net) for 
retinitis pigmentosa RP recognition and out-of-distribution detection is proposed. The MCAC-Net with global and 
local feature extraction is designed for the FVEP signal that has different local and global information, and a confi-
dence branch is added for out-of-distribution sample detection. For the proposed manual features,a new input layer 
is added.

Results  The model is verified by a clinically collected FVEP dataset, and an accuracy of 90.7% is achieved in the clas-
sification task and 93.3% in the out-of-distribution detection task.

Conclusion  We built a deep learning-based FVEP classification algorithm that promises to be an excellent tool for 
screening RP diseases by using FVEP signals.

Keywords  Deep learning, FVEP, Out-of-distribution detection, Convolutional neural networks

Introduction
It is generally accepted that the eye is the most impor-
tant sensory organ in the human body, and most external 
information comes from the eye. However, eye disease is 
caused by increased optic nerve injury, leading to poor 
vision and even blindness. Retinitis pigmentosa (RP) is 
one of the most severe optic nerve injury diseases, with a 
frequency of 1 in 3000–5000 people worldwide [1]. Cur-
rent screening methods for RP include visual electrophys-
iology and genetic testing [2]. Visual electrophysiology 
is an objective visual function examination widely used 
in clinical work that can objectively evaluate the func-
tion of the retina, or optic nerve, and objectively reflect 
the corresponding changes of the disease according to 

*Correspondence:
Chengliang Wang
Wangcl@cqu.edu.cn
Shiying Li
shiying_li@126.com
1 College of Computer Science, Chongqing University, Chongqing, China
2 Department of Ophthalmology, Xiang’an Hospital of Xiamen University, 
Xiamen University, Xiamen, China
3 Department of Ophthalmology, Eye Institute of Xiamen University, 
Xiamen, China
4 Department of Ophthalmology, Yongchuan People’s Hospital 
of Chongqing, Chongqing, China
5 Chongqing Health Statistics Information Center, Chongqing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02107-5&domain=pdf


Page 2 of 11Liang et al. BMC Medical Informatics and Decision Making           (2023) 23:13 

the waveform change. Different diseases have their own 
characteristic visual electrophysiological examination 
results. In clinics, a diagnosis requires a combination of 
clinical manifestations, fundus fluorescence angiography, 
optical coherence tomography genetic testing and visual 
electrophysiology.

In clinical practice, doctors mainly use genetic tests to 
confirm the diagnosis of RP disease, however the tests 
are expensive and take a long time to perform, and are 
not suitable for primary screening. The visual evoked 
potential (VEP) is commonly adopted to detect RP, which 
is an important reference for the functional integrity of 
the visual system. Flash VEP (FVEP) is a sensitive test for 
optic nerve injury, and as a rapid and inexpensive test is 
an important tool for the primary screening of RP dis-
eases. Moreover, FVEP is adopted not only in the field 
of ophthalmology but also is a good tool in the diagno-
sis and treatment of Alzheimer’s disease [3], multiple 
sclerosis and tumours in the pterygoid saddle area [4]. 
The diagnosis of RP and other diseases related to optic 
nerve injury depends on the labelling and identification 
of the FVEP signals by professional doctors. As shown in 
Fig. 1, doctors use domain knowledge to label 6 feature 
points in the FVEP signal for a diagnosis of the disease. 
Unfortunately, these labels and identifications are time-
consuming and very dependent on doctor experience. In 
addition, the lack of specialists familiar with electrophys-
iology, and the lack of knowledge about RP disease, make 
it difficult to initially screen for RP disease by FVEP. 
Computer-assisted analysis can solve these problems.

Electrode location
Visual evoked potential (VEP) is a bioelectric activity 
produced by visual stimulation of the retinal photore-
ceptors, such as from light, which is transmitted through 
the retina, optic nerve, optic radiation and finally to the 
occipital cortex. The instrument receives bioelectri-
cal signals through skin contact electrodes on the head 
and face, enhances the signals through an amplifier, and 
computer analysis converts the electrical signals into a 
graphic form. We used the Espion E2 visual electrophysi-
ological examiner from the USA to collect the patient 
data. The skin was fully cleaned before the examination, 
and the contact electrodes were coated with conductive 
paste. See Fig.  1. The anterior-posterior midline of the 
vertex was determined according to the nasal root and 
the occipital ridge. The detection electrode was placed on 
the occipital scalp at the OZ above the visual cortex, and 
the reference electrode was placed at the FZ [5]. A sepa-
rate electrode was used as the grounding electrode, and 
common locations include the forehead, the vertex (CZ) 
mastoid, the earlobe or the line connecting the bilateral 
earlobes.

Parameter setting
Electroretinography was performed with an Espion E3 
visual electrophysiology testing system(Diagnosys LLC, 
Lowell, MA, USA). Flash VEPs were elicited using the 
Espion E3 Ganzfeld ColorDome stimulator. White flash 
stimuli (6500K) were used, which were delivered on no 
background. Flash strength of 3 cd s/m2 was chosen. The 
stimulus duration was 4 ms. The sweep pre-trigger time 
was 20 ms and the sweep post-trigger time was 300 ms 
The flashes were delivered at 1 Hz, and the means of 70 
responses were recorded and repeated at least twice. The 
signals were amplified with a band-pass from 0.312 to 
100 Hz.

Flash stimulation
The parameter for flash stimulation is a very brief (5 ms) 
flash evocation, and the flash frequency should be 1 flash 
per second (i.e., 1.0 Hz, in the range 0.9–1.1 Hz) [6]. DC 
amplifiers or AC coupled amplifiers with a minimum 
input impedance of 10 m in the 50–60 Hz range can be 
used. In compliance with current medical safety stand-
ards, the amplifier system must be insulated from the 
patient. It is difficult to obtain satisfactory recordings 

Fig. 1  A comparison of the diagnostic process between doctors and 
AI
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using these filter settings when severe electromagnetic 
interference from the stimulus monitor is encountered. 
Ideally, such interfering signals should be eliminated by 
shielding or adjusting the equipment.

Sampling rate and signal acquisition
The sampling rate of Southwest Hospital is 1000  Hz. 
Sweep pre-trigger time 20  ms,sweep post-trigger time 
300 ms, 80 sweeps per result. Filter band: band-pass from 
0.312 to 100 Hz,and the number of superimpositions can 
be between 64 and 128 times, depending on the fixation. 
According to the characteristics of the FVEP signal, the 
appropriate IMF components (IMF3, IMF4, IMF5) are 
selected for reconstruction, and the corresponding IMF 
components are selected for reconstruction to obtain the 
FVEP signal after effective denoising, which can realize 
the single extraction of the FVEP signal.

Processing steps
The research team took an analog electrical signal and 
converted it directly into a digital signal through a 32-bit 
analog-to-digital signal converter. The processing steps 
are as follows: 1. Use the detector to record the single 
FVEP signal of the left and right visual pathways, and 
select 1 data in the left and right visual pathways as the 
original data of the single FVEP signal; 2. Use the empiri-
cal modal decomposition method to obtain each MF 
component of the original FVEP signal; 3. Then select 
the MF component you study according to the frequency 
band range of the FVEP signal; 4. Use the selected each 
MF component to reconstruct the signal, so as to obtain 
the FVEP signal after noise removal, and realize the sin-
gle extraction of FVEP.

Reporting and Marking
The report generally contains the following recording 
parameters: the filter settings and the positions of the 
anode (recording), cathode (reference) and ground elec-
trodes. The waveform traces should clearly indicate the 
polarity, the time reference scale in milliseconds, and 
the amplitude in microvolts. After obtaining this report, 
physicians need to apply their expertise in conjunction 
with the FVEP signal points to mark them as a way to 
diagnose RP disease. However, this obviously relies on 
the physician’s experience and system knowledge and is 
time-consuming. This process presents a challenge for 
physicians who lack experience and system knowledge, 
and computer-aided analysis can solve these problems.

This paper introduces an RP disease recognition model 
that combines domain knowledge with an out-of-dis-
tribution detection ability. First, this paper proposes a 
neural network model to extract the global features and 
local features to achieve higher accuracies. Then, this 

paper adopts temporal, statistical and spectral methods 
to extract features with domain knowledge to further 
improve the accuracy. Finally, this paper introduces a 
confidence branch to solve the out-of-distribution sam-
ple detection problem.

The main contributions of this paper are as follows:

•	 We propose a neural network that combines global 
convolutions with local convolutions.

•	 The FEVP signal features are extracted with domain 
knowledge.

•	 The confidence branches method is adopted for out-
of-distribution detection.

Related research
Currently, machine learning methods are widely used in 
medical fields, for example for medical image classifica-
tion [7], and COVID-19 prediction [8]. Much research in 
recent years has focused on the auto recognition of FVEP 
signals by machine learning methods.

Qiao introduced FVEP into the detection of neuro-
logical functions during the central neurooncology pro-
cedure, collected FVEP signs at multiple points in time, 
and then converted the FVEP sequence into a two-
dimensional image for classification [4]. They first pro-
posed a simple three-layer convolutional neural network 
using CAM (Class Activation Mapping) for visualiza-
tion and analysis and found that the activation regions 
were mainly between P2–N3–P3 [9]. In addition, they 
proposed a CNN-LSTM network, where images are 
first passed through the CNN network to extract the 
visual features and then output to the LSTM to extract 
the temporal features. Finally, in the test set, the sen-
sitivities of the three categories were 92.6%, 78.9% and 
83.7%, and the specificities were 80.5%, 93.3% and 100%, 
respectively. Waytowich proposed the Compact Convo-
lutional Neural Network, which adopted deep separable 
convolution instead of normal convolution to reduce 
the dimensionality of the data and reduced the number 
of parameters while efficiently extracting the frequency-
specific information [10]. In addition, it showed a sig-
nificant performance improvement compared with the 
traditional canonical correlation analysis-based classifi-
cation algorithms. Parthiban et al. [11] proposed a novel 
hierarchical attentional neural network, which included 
two subnetworks; one subnetwork focused on the minu-
tiae features, and the other subnetwork acquired a global 
view and finally integrated the local and global features of 
the FVEP to make a decision.

There is a relatively small body of literature that is con-
cerned with distinct characteristics in the medical field. 
These applications have two distinct characteristics: 
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(1) There is a large amount of domain knowledge in the 
medical field. (2) For each of these tests, there were many 
categories of diseases detected. However, there exist 
some diseases that are few in number and are difficult 
to collect. In summary, there are two problems with the 
existing studies. (1) How to improve the accurate recog-
nition rate of retinitis pigmentosa (RP) diseases. (2) How 
to realize the detection of out of distribution samples. To 
improve the performance of the RP recognition model 
and to detect out-of-distribution samples, it is necessary 
to adopt some of the advanced methods.

Materials and methods
We first designed an experimental paradigm to solve the 
RP recognition problem. Then, we collected the FVEP 
dataset. Next, we applied some of the feature engineering 
methods and the MCAC model to RP recognition.

Dataset
The FVEP dataset in this paper consists of four subdata-
sets; (1) a normal FVEP dataset, including 5164 FVEP 
data, collected from 1366 patients, each providing test 
results for both the left and right eyes twice; (2) an RP 
disease FVEP dataset, including 1112 FVEP data, col-
lected from 278 patients, each providing test results for 
both the left and right eyes twice; (3) an abnormal FVEP 
dataset that includes a collection of apparently abnor-
mal FVEP data and optic neuritis FVEP signals, totalling 
800 items; and (4) an unlabelled FVEP dataset, including 

4000 FVEP data, collected from 1000 patients. As shown 
in Fig. 2, the FVEP signals are different in normal people 
and RP patients. However, it is difficult to distinguish the 
RP disease FVEP signal from the normal human signal, 
as shown in Fig. 2 closest to the lower edge. In addition, 
patients were 4-88 years old, with an average age of 42 
years (see Fig. 3).

All four datasets were collected from the Ophthalmol-
ogy Department of the First Affiliated Hospital of Army 
Medical University (Southwest Hospital) from July 1, 
2012 to March 1, 2020. The equipment used for FVEP 
collection was the Espion E2, which was loaded with the 
Espion E2 system.

Fig. 2  Visual FVEP Dataset

Fig. 3  Age distribution of patients in the dataset
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Feature engineering
With the development of deep neural networks, auto-
matic feature extraction techniques are becoming 
increasingly mature. For example, recurrent neural net-
works and self-attentive networks can extract timede-
pendent features in sequences, and convolutional neural 
networks can automatically extract pattern or spatial fea-
tures in images. In some studies of time series classifica-
tion problems, the manual features and depth features 
are utilized simultaneously to improve the classification 
accuracy [12, 13]. In this paper, the FVEP manual features 
extracted from the domain knowledge are combined with 
the deep features extracted from the neural networks to 
obtain more useful information for prescreening RP dis-
eases. The manual features alone have difficulty captur-
ing complex disease patterns, while the deep features are 
more comprehensive than the manual features [14].

As shown in Fig. 4, feature engineering can be divided 
into three stages, including exploratory data analysis, 
feature extraction and feature selection. First, explora-
tory analysis of the dataset is performed using visuali-
zation tools to find information that can be used. Then, 
in this paper, time series feature extraction is performed 
by using domain knowledge with the help of the time 
series feature extraction librarytsfel tool (TSFEL). TSFEL 
includes over 60 different features extracted across tem-
poral, statistical and spectral domains. Finally, feature 
selection is performed on the extracted features by using 
a feature selection algorithm.

As shown in Fig.  4, time series feature extraction can 
be divided into three categories, including the temporal, 
statistical and spectral domains. The temporal domain 
method mainly extracts time-related features from time-
series data, including autocorrelations, mean differences, 
and entropy. The statistical domain method is mainly 
used to extract features by statistical methods, including 
the maximum, minimum, median, histogram, etc. The 

spectral domain method is mainly used to convert the 
FVEP signal to the spectral domain for feature extraction, 
including the fast Fourier transform [15], FFT mean coef-
ficient, wavelet transform [16], etc.

In the feature selection stage, the variance filtering 
algorithm [17] and the Pearson correlation coefficient 
algorithm [18] are chosen. The variance filtering algo-
rithm is based on the principle of calculating the vari-
ance corresponding to each feature value in the dataset 
and rejecting it if it is below the threshold. By default, all 
the zero-variance features will be rejected, and a variance 
of 0 means that the feature values of the sample have not 
changed. The Pearson correlation coefficient principle 
calculates the linear relationship between the features 
and labels, and rejects them if their values are close to 
zero.

Figure 5 shows the correlation coefficient of the manual 
features. Some features were positively correlated with 
RP disease, and the others were negatively correlated 
with the RP disease. The FVEP of RP patients showed 
decreased amplitude and unchanged peak time in P2 
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Fig. 4  Feature engineering of FVEP signals

Fig. 5  Correlation visualization
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wave. The reason is that generalized retinal dysfunction 
in RP will cause much smaller input for the following 
visual passway, while the conduction time of visual pass-
way was usually unaffected. Therefore,the P2 wave in RP 
patients displayed decreased amplitude and unchanged 
peak time compared to the normal control.

MCAC Model
Figure 6 presents our proposed multi-input neural net-
work based on convolution and confidence branching 
(MCAC-Net). MCAC-Net has two inputs and two out-
puts, where the inputs include the FVEP signal and 7 
manually extracted features, and the output includes 
the category and confidence level. For the manual fea-
ture input, the features are extracted through a fully 
connected layer of 128 neurons. For the FVEP signal 
input, the waveform features are extracted after two 
branches, i.e., the global feature extraction branch and 
the local feature extraction branch. For global feature 
extraction, a global one-dimensional convolution with 
a convolution kernel of the same size as the length of 
the FVEP signal is used. For local feature extraction, 
a one-dimensional convolution with a smaller convo-
lution kernel size combined with maximum pooling 
is used. Finally, the outputs of the three branches are 
concatenated and passed through a layer of fully con-
nected layers to extract features for classification and 

out-of-distribution detection. The network outputs 
categories with category confidence, and its category 
output is considered meaningful when the category 
confidence is greater than a certain threshold. The con-
struction details of the network blocks are described as 
follows:

Global convolution
In the field of deep learning, RNNs were previously 
mainly used to capture temporal patterns or features. 
However, due to the inherent nature of RNNs, it is dif-
ficult to handle long time sequences and perform parallel 
computations, which ultimately affects the computational 
speed and model performance. The convolutional struc-
tures have demonstrated efficient parallel computations 
as well as the ability to capture features [19]. In this 
paper, we adopt a T× 1 filter, called a global convolution, 
where T is the time length of the input FVEP signal and 
its value is 320. A global convolution extracts features 
from the integrated sequence at once, and will capture 
the nontime-invariance (time-invariance) features in the 
time series. Each global convolution filter processes the 
entire input and returns a vector of size with a RELU 
activation function. Integrating global convolutions will 
give the output. Each line of the output can be considered 
a representation of the entire time series.
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Local convolution
The ability to have local patterns, considering the 
shorter time steps, is relevant for the predictions. 
Therefore, MCAC-Net utilizes a local convolution 
parallel to the global convolution to capture the local 
features. The focus of the two convolutions is incon-
sistent; the global convolution focuses on the features 
of the time series as a whole, while the local convolu-
tion focuses on the features of the sequence locally, 
and fusing the two features improves the classification 
performance. Unlike the global convolution, the length 
of the local convolution filter is small. To extract the 
most representative features, MCAC-Net utilizes a 
one dimensional maximum pooling layer. In this sec-
tion, MCAC-Net utilizes a filter length of 3, including 
three convolutional layers and three maximum pooling 
layers.

Confidence branching
After global and local feature extraction, the manual 
features are fused and concatenated to make predic-
tions. Unlike general classification tasks, MCAC-Net 
outputs category confidence c in addition to the cate-
gory. When the category confidence is low,the category 
branch output is considered meaningless.

When we train MCAC-Net, some hints are provided to 
the network to adjust the softmax output using the con-
fidence c.

Due to the imbalance between RP and the normal sam-
ples in the dataset, choosing focal loss as the loss function 
can reduce the data imbalance impact on the classifica-
tion performance. After replacement using the new soft-
max output, the new loss function of MCAC-Net is:

(1)p,c = F(x, θ) pi, c ∈ [0, 1],

M
∑

i=1

pi = 1

(2)p̂i = c ∗ pi + (1− c)yi

First, for the Focal Loss loss function Lt , p̂i is used instead 
of pi . Then, a confidence loss Lc is added to prevent the 
neural network from always choosing c = 0 during train-
ing. finally, the ratio of the two losses is controlled using �

Pretraining strategy
To utilize the unlabelled data in the dataset, this paper 
adopts a pretraining strategy for the local feature 
branches. As shown in Fig. 7, this paper builds a convo-
lutional autoencoder to automatically extract the FVEP 
signal. In the training phase, this paper first uses the 
training set combined with a large amount of unlabelled 
data to train the local branches unsupervised. Then, the 
local branches are integrated into MCAC-Net, and the 
local branches are trained for the second time by setting 
a low learning rate. The whole training process is shown 
in Algorithm 1.

Experimental setup
The experiment is divided into three parts. The first 
part compares the model classification performance, 
including comparing the performance of different 

(3)
Lt =−

M

i=1

(y ∗ 1− p̂i
γ
∗ log p̂i

+ (1− y) ∗ p̂i ∗ log(1− p̂i))

(4)Lc =− log (c)

(5)L =Lt + �Lc

BN
+R

el
u

C
O
N
1D

M
ax

Po
ol

BN
+R

el
u

C
O
N
1D

M
ax

Po
ol

BN
+R

el
u

C
O
N
1D

M
ax

Po
ol

BN
+R

el
u

D
EC

O
N

BN
+R

el
u

D
E
C
O
N

BN
+R

el
u

D
EC

O
N

Encoder Decoder

Fig. 7  Pre-training Model



Page 8 of 11Liang et al. BMC Medical Informatics and Decision Making           (2023) 23:13 

neural network architectures when no manual features 
are added, versus observing the change in performance 
when the manual features are added. The second part 
compares the out-of-distribution detection performance 
of the different models. The third part provides a vis-
ual analysis. of the neural networks. In the first part of 
the experiment, for the MLP network, three fully con-
nected layers are set, each with 128, 64 and 64 neurons 
in turn. for fully convolutional networks (FCN) [20], after 
the output of the full convolution layer, the fully con-
nected layer is replaced with the global average pooling 
layer, which greatly reduces the number of parameters 
and avoids overfitting, and finally, the output is passed 
through the softmax layer. At the same time, the batch 
normalization and ReLU activation functions are used to 
accelerate convergence and reduce overfitting. The three 
convolutional layers are one-dimensional convolutions 
with filter sizes of 5, 3, 3 and the number of each layer 
is 64, 64, 64. For ResNet [21], three residual blocks are 
stacked. Each residual block consists of three convolu-
tional layers with filter sizes of 5, 3, 3, and the number of 
each layer is 64, 64, 64. For the CNN LSTM network [22], 
the dropout layer is added in the LSTM branch to reduce 
overfitting, and the number of neurons in the LSTM is 
set to 64. In the CNN branch, after three convolutional 
layers, the global average pooling layer is connected, and 
then the outputs of the two branches are connected and 
output through the softmax layer. For the MCAC-Net 
network, we first temporarily remove its manual feature 
branch, which is CAC-Net. Unlike the Residual Network 
(ResNet), MCAC-Net uses maximum pooling for filter-
ing to extract the more valuable features. The three con-
volutional layers in the local feature extraction branch of 
MCAC-Net have filter sizes of 5, 3 and 3, and the number 
of each layer is 64, 64 and 64 in that order. The convolu-
tional layers in the global feature extraction branch have 
a filter size of 320 and a number of 64.

In the second part of the out-of-distribution detection 
experiments, we compare three types of models. First, 
the traditional anomaly detection models include LOF 
(local outlier factor). Breunig  et  al.  [23], one class SVM 
[24], and a minimum covariance determinant (MCD) 
[25] model, are used based on the features output from 
the last fully connected layer of MCAC-Net. For these 
methods, the training set of the normal class is needed. 
In this paper, the training set of the two classes from the 
classification experiment is used as the out-of-distribu-
tion detection training set. Then, the information entropy 
of the MCAC-Net output is calculated, and if it is higher 
than a certain threshold, it is an out-of-distribution sam-
ple. This method does not require additional training. 
Finally, for the confidence-based algorithm, the train-
ing set from an anomalous FVEP dataset is needed in 

addition to the training sets of the two categories in the 
classification experiment

Hyperparameters
The MCAC-Net2 model adopts pretraining technol-
ogy and sets the local branch learning rate to 0.001. The 
remaining parameters are kept consistent with all the 
models, the learning rate is set to 0.01, the batch size 
is set to 128 and the number of iterations is 50. All the 
neural network models have focal loss as their loss func-
tion, which is expressed as eq. We select the model with 
the lowest training loss during training as the best model 
in the training set and report their test set evaluation 
results.

Training and testing
For the normal FVEP dataset, the RP FVEP dataset was 
grouped according to the patients’ ID, data from 70% of 
the patients were randomly selected as the training set 
data, and data from 30% of the patients were used as the 
test set data. For the abnormal FVEP dataset, 30% of the 
data were randomly selected as the training set, and 70% 
of the data were used as the test set. The data of each 
patient includes the FVEP signal, age and disease type.

Development environment
For the experiments in this paper, the computer configu-
ration is composed of an AMD 2600 CPU, GTX1070 TI 
GPU and 16 GB of RAM. The data preprocessing, man-
ual feature extraction, and MCSA-Net models are run on 
the Windows 10 64-bit operating system, and the deep 
learning framework used is Tensorflflow 2.0, executed in 
the Anaconda program.

Evaluation criteria and results
Evaluation criteria
The classification and out-of-distribution detection tasks 
are evaluated separately. To implement a comprehensive 
and objective evaluation of the model, we will evaluate 
the experiments using four different evaluation metrics. 
First, we introduce the basic few terms of the confusion 
matrix, true positives (TP) for the positive classes judged 
as positive classes, false-positives (FP) for the negative 
classes judged as positive classes, false negatives (FN) for 
the positive classes judged as negative classes, and true 
negatives (TN) for the negative classes judged as negative 
classes. The specific five metrics are shown below.

Accuracy (Acc): indicates the number of correctly pre-
dicted samples/total number of samples. Acc represents 
the overall classification performance of the model.

Precision: Precision indicates the proportion of the 
samples determined to be positive classes that are true 
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positive classes. It measures how many of the positive 
classes predicted by the model are wrong.

Recall (Recall): Recall indicates the proportion of 
positive class samples that are judged to be positive and 
measures the model’s ability to check the positive class.

Results for classification
In this section, the purpose of the experiment is to com-
pare the classification performance of different models. 
In Table  1, we provide five metrics to fully evaluate the 
different models. The bolded cells are cells that outper-
form the state-of-the-art model. The performance in 
Table 1 indicates the superiority of MCAC-Net2 over the 
existing state-of-the-art models.

The classification experiment is divided into three 
subexperiments. First, to compare network architec-
tures, manual features were not added first. The results 
obtained from Table 1 show that the proposed CAC-Net 
has the best performance among the top five models that 
have no manual features. Then, to compare the change 
in model performance after adding manual features, we 
add manual features in the last two models. It can be seen 
from the data in Table 1 that MCAC-Net1 and MCAC-
Net2 have significant performance improvements com-
pared to CAC-Net. Finally, when we adopt prelearning 
technology, Table 1 shows a slight performance increase. 
Moreover, as shown in Fig.  8, the peak-to-peak dis-
tance feature has the highest importance value among 
the seven manual features,indicating that it is the most 
important for RP model identification.

Results for out‑of‑distribution detection
In this section, the purpose of the experiment is to com-
pare the out-of-distribution detection performance of 
different models. In Table  2, we provide five metrics to 
fully evaluate the different models. The bolded cells are 
cells that outperform the state-of-the-art model. The per-
formance in Table 2 indicates the superiority of MCAC-
Net over the existing state-of-the-art models.

It can be seen from the data in Table 2 that the tradi-
tional information entropy method based on the output 
of neural networks has the lowest accuracy for out-of-
distribution detection. However, at the same time, it does 
not require additional training, and can be used as a base-
line model for comparison. From Table 2, it can be seen 
that the performance of the model for out-of-distribution 
detection using traditional anomaly detection algorithms 
based on the features extracted by MCAC-Net is between 
the information entropy and the proposed model, and 
requires in-distribution samples for training.

Conclusions
In this paper, an RP disease identification and out-of-dis-
tribution detection framework is highlighted to achieve 
a distinction between the normal classes as well as the 
RP classes and to perform out-of-distribution detection 
of the samples that do not belong to these two classes. 
First,we build a neural network model, MCAC-Net, that 
extracts the global and local features of the FVEP sig-
nal by relying on global and local convolutions, while 
incorporating a priori manual features, including sev-
eral statistical features of the FVEP signal and age. Then, 
we compared different advanced time-series neural 
network architectures with the proposed architecture 
MCAC-Net. It was observed that MCAC-Net outper-
forms the other models, which were validated using the 
clinical dataset. Furthermore, other out-of-distribution 

Table 1  The experiment results of classification

Bold indicates optimal values

Accuary Precision Recall F1

BP 0.776 0.844 0.885 0.864

FCN 0.797 0.848 0.910 0.878

ResNet 0.801 0.861 0.897 0.879

CNN-LSTM 0.799 0.857 0.901 0.878

CAC-Net 0.810 0.864 0.906 0.885

MCAC-Net1 0.891 0.942 0.921 0.931

MCAC-Net2 0.907 0.944 0.940 0.942

Fig. 8  Manual feature importance visualization

Table 2  The experiment results of out-of-distribution detection

Bold indicates optimal values

Accuary Precision Recall F1 Auc

Entropy 0.603 0.777 0.488 0.600 0.600

LOF 0.752 0.846 0.610 0.742 0.701

OCSVM 0.744 0.810 0.640 0.715 0.715

MCD 0.818 0.844 0.694 0.762 0.762

MCAC-Net 0.933 0.868 0.905 0.891 0.835
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detection algorithms were compared, and MCAC-Net 
outperformed the other models. The results suggest that 
our model contributes to the primary screening for RP 
disease.

Discussion
Traditional deep learning models focus on classification 
accuracy, while in the clinical setting the complexity of 
diseases, with many types of diseases and uneven distri-
bution, makes physicians urgently need a classification 
model with more generalization capability. For exam-
ple, in the traditional binary classification model, sam-
ples that appear in the third category are recognized by 
the model as one of the two categories. DeVries T et al. 
proposed a method to add confidence branching with 
modified loss function to the existing neural network to 
achieve a fast scaling of the classification model and solve 
the out-of-distribution detection problem. Therefore, this 
paper proposes a confidence branching-based RP recog-
nition and out-of-distribution detection model, which 
has the ability to recognize out-of-distribution samples 
and is experimentally proven to have excellent prediction 
accuracy.

In the visual electrophysiological examination, flash 
visual evoked potential (FVEP) varies greatly among 
individuals, resulting in different waveforms in differ-
ent normal subjects. Moreover, most of the FVEP wave 
labelling was automatically performed by a machine, 
and sometimes was manually corrected by professional 
clinical technicians. These labels may have biases due to 
individual variations in the subjects, incomplete clini-
cal examination data, different professional skills, per-
sonal habits and other factors. The labelling results can 
be very different and time consuming, which disrupts 
the clinical diagnosis process. The RP disease identifi-
cation and out-of-distribution detection model devel-
oped in this paper has some limitations. There are many 
diseases related to vision that appear in patients in the 
clinic, not only RP diseases. Therefore, in future work, 
more types of optic nerve diseases should be classi-
fied. Additionally,physicians deciding whether there 
is an optic nerve disease should combine information 
such as the patient descriptions and imaging examina-
tions, and to achieve more accurate classifications, clas-
sification models that handle multimodal data should be 
developed.

In the future, we will collect more RP disease data. 
The model in this paper identifies both normal and Rp 
categories, as well as out-of-distribution samples. By 
comparing the two sets of experiments, the F1-score 
of the proposed MCAC model for the classification 
experiment is significantly higher than the F1-score of 

the out-of-distribution identification experiment by 
5.1%. In addition, the abnormal FVEP dataset contains 
only 800 samples, which has a large gap with the posi-
tive class samples. It can be seen that the two-category 
ratio of the out-of-distribution recognition experiment 
is more disparate compared to the two-category ratio 
of the classification experiment. In addition, there are 
many out-of-distribution sample categories, and this 
paper only includes several, and the proportion of each 
sample varies, further increasing the difficulty of out-
of-distribution recognition, which leads to its low rec-
ognition performance. In the future, we will extend the 
model to be able to distinguish more classes of FVEP 
signals, and also generate more RP samples using gen-
erative adversarial networks.
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