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Abstract 

Background Biguanides and sulfonylurea are two classes of anti-diabetic medications that have commonly been 
prescribed all around the world. Diagnosis of biguanide and sulfonylurea exposures is based on history taking and 
physical examination; thus, physicians might misdiagnose these two different clinical settings. We aimed to conduct a 
study to develop a model based on decision tree analysis to help physicians better diagnose these poisoning cases.

Methods The National Poison Data System was used for this six-year retrospective cohort study.The decision tree 
model, common machine learning models multi layers perceptron, stochastic gradient descent (SGD), Adaboosting 
classiefier, linear support vector machine and ensembling methods including bagging, voting and stacking methods 
were used. The confusion matrix, precision, recall, specificity, f1-score, and accuracy were reported to evaluate the 
model’s performance.

Results Of 6183 participants, 3336 patients (54.0%) were identified as biguanides exposures, and the remaining were 
those with sulfonylureas exposures. The decision tree model showed that the most important clinical findings defin-
ing biguanide and sulfonylurea exposures were hypoglycemia, abdominal pain, acidosis, diaphoresis, tremor, vomit-
ing, diarrhea, age, and reasons for exposure. The specificity, precision, recall, f1-score, and accuracy of all models were 
greater than 86%, 89%, 88%, and 88%, respectively. The lowest values belong to SGD model. The decision tree model 
has a sensitivity (recall) of 93.3%, specificity of 92.8%, precision of 93.4%, f1_score of 93.3%, and accuracy of 93.3%.

Conclusion Our results indicated that machine learning methods including decision tree and ensembling methods 
provide a precise prediction model to diagnose biguanides and sulfonylureas exposure.
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Introduction
Sulfonylureas and biguanides are two types of anti-dia-
betic medications widely prescribed in the United States 
[1]. Some of the biguanides medications are buformin, 
phenformin, and metformin. Phenformin has not been 
used in the United States or Europe since 1978 due to 
concerns about lactic acidosis, while metformin is still 
available to treat diabetes [2, 3]. According to the US 
National Poison Data System (NPDS), exposure to oral 
anti-diabetic medications increased by 35% between 
2001 and 2004 [4–6]. Based on the NPDS report in 2015, 
3837 and 8733 exposures to sulfonylureas and biguanides 
were reported to the poison control centers, respectively. 
The majority of them were unintentional [7]. In 2007, sul-
fonylureas overdoses accounted for 34% of all oral hypo-
glycemic and antihyperglycemic medication overdoses 
[8]. The mortality rate of biguanides overdose (6.1%) is 
greater than that of sulfonylureas overdoses (3.6%) [9]. 
Sulfonylureas poisoning gives rise to symptoms includ-
ing dizziness, weakness, headache, confusion, lethargy, 
slurred speech, coma, seizures, tachycardia, palpitations, 
nausea, and diaphoresis [10]. Abdominal pain, vomit-
ing and diarrhea, altered mental state, lactic acidosis, 
hypotension, and arrhythmia are the presentations of 
biguanide overdose [11, 12]. Anti-diabetic medication 
overdoses, including biguanides or sulfonylureas poi-
soning, are a common cause of hypoglycemia; however, 
hypoglycemia caused by sulfonylurea overdose is more 
prevalent than biguanides overdose [13]. The overdose 
of these medications may cause serious morbidity and 
necessitate extensive and prolonged medical treatment. 
Early therapy reduces the risk of fatalities and permanent 
consequences [6, 14]. The toxicity of oral antidiabetic 
agents differs widely in clinical manifestations, severity, 
and treatment [6, 15]. It is important for the emergency 
physician to identify the drug class to which the patient 
may have been exposed during blood glucose stabiliza-
tion and assessment in order to predict complications 
and make appropriate decisions  [14]. The management 
of the sulfonylureas focuses primarily on restoring and 
maintaining euglycemia. The greatest risk associated with 
antihyperglycemic agents is with regards to metformin. 
With this medication, hypoglycemia is not a major con-
cern; the primary concerns are cardiovascular collapse 
and renal failure caused by profound lactic acidosis. The 
treatment of these adverse events focuses on restoring 
the acid-base balance through the use of sodium bicarbo-
nate and hemodialysis [6, 14].

Since the diagnosis of biguanides and sulfonylureas 
overdoses is based on history taking and physical exam-
ination, it is crucial to develop an algorithm to help 
physicians make a better diagnosis. Although these 
drugs might be detected in urine analysis, this method 

is not commonly employed in facilities with limited 
resources. So, designing a clinical decision algorithm 
for distinguishing exposure to these pharmaceutical 
drugs is crucial. Clinical decision analysis is a powerful 
tool for addressing complexity and uncertainty in medi-
cal problems by utilizing evidence-based medicine [16]. 
Machine learning (ML) can be used to make diagnoses, 
determine treatment decisions, and predict outcomes 
[17].

Due to its superior classification accuracy and sim-
ple representation of collected data, the decision tree 
(DT) is one of the most commonly used machine learn-
ing methods in a wide range of medical situations 
requiring consistent decision-making [18]. A growing 
body of studies has demonstrated the effectiveness of 
decision tree analysis in disease diagnosis [19–22]. A 
robust classification tool is provided by this model. This 
approach proposes an understandable model based 
on current observations using a simple technique. The 
model proposed by the structure is both understand-
able and accessible [23]. The decision tree has the fol-
lowing advantages: 1- It can be visualized and is simple 
to understand and interpret. It requires very little 
data preparation compared to other techniques which 
often require the normalization of data, the creation 
of dummy variables and the removal of blank values. 
In addition, the cost associated with using the tree (for 
predicting data) is directly proportional to the num-
ber of data points used to train the tree. In contrast to 
other techniques, decision trees are capable of handling 
both categorical and numerical data. Other techniques 
are specialized for only one type of variable. There is no 
limit to the number of outputs that can be handled by 
decision trees. This model utilizes a white box model, 
which means that there are usually two outputs, which 
can be explained easily by Boolean logic. For instance, 
yes or no [24]. In some studies, data mining and statis-
tical approaches have been compared in order to solve 
prediction problems. In these comparison studies, data 
sets or distributions of dependent variables have been 
mainly considered. A comparison of logistic regres-
sion and decision trees was carried out by Long et  al. 
Both the LR tool and the improved trees were found 
to perform at a level similar to that of the physicians 
[25]. A number of different methods are examined by 
Li and Jain for the classification of documents. These 
methods include naive Bayes classifiers, nearest neigh-
bour classifiers, decision trees, and a subspace method. 
Experimental results indicate that all four classification 
algorithms perform reasonably well [26]. In medical 
toxicology, few studies to date have used some machine 
learning algorithms on national poisoning data to iden-
tify the potential cause of the poisoning [27–31] and 
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to our knowledge there is no study on prediction of 
patients with anti-diabetic exposure using decision tree 
model. Given the growing utilization of decision trees 
in disease diagnosis and the concern over biguanides 
and sulfonylureas overdose misdiagnosis, we aimed 
to conduct a study to develop a model based on deci-
sion tree analysis to help physicians better diagnose 
biguanide and sulfonylurea poisoning.

Materials and methods
Study design and population
The data of this observational study on the general popu-
lation was obtained from the NPDS. The American Asso-
ciation of Poison Control Centers (AAPCC) maintains 
that the National Poison Data System (NPDS) contains 
de-identified case records of self-reported information 
collected from callers during exposure management and 
poison information calls managed by the 55 country’s 
poison control centers across the United States. NPDS 
data do not reflect the entire universe of exposure to a 
particular substance, as additional exposure to PCCs 
may be unreported. Therefore, NPDS data should not be 
interpreted as the total incidence of US exposure to any 
substance (s). In addition, exposures do not necessar-
ily represent a poisoning or overdose, and AAPCC can-
not fully verify each report’s accuracy. Therefore, results 
based on NPDS data do not necessarily reflect the opin-
ions of the AAPCC. The inclusion criteria were any expo-
sure to biguanides and sulfonylureas between January 
1, 2012, and December 31, 2017, reported to the poison 
control centers across the United States. Exclusion crite-
ria were missing demographic data or irrelevant medical 
outcomes. Sex, the reason for exposure, age, exposure’s 
signs, and symptoms were among the variables obtained 
for analysis and evaluation of basic characteristics. 
Hence, the study size was determined based on the num-
ber of participants meeting eligibility criteria. We defined 
reasons for exposure as following: intentional exposure, 
unintentional exposure, and others. Medical outcomes 
were classified as minor, moderate, and major, and were 
assessed by expert medical toxicologist blindly. Full defi-
nitions of clinical features can be found in the NPDS 
coding manual version 3.1 [29, 32]. The outcome that is 
predicted by the prediction model was sulfonylureas and 
biguanides poisoning. Regarding the guidelines and poli-
cies of the Colorado Multiple Institutional Review Board 
on Human Subjects Protection, the analysis of NPDS 
data for this research study does not meet the criteria 
for human subjects under the 45 Code of Federal Regu-
lations (CFR) 45 CFR 46.101(b) and hence, no approval 
of the institutional review board was required. This study 
was reviewed by Colorado Multiple Institutional Review 

Board on Human Subjects Protection and determined to 
be exempt (COMIRB#: 22-1088).

Pre processing
We used Recursive Feauture Elimination (RFECV) to 
select optimal features, then we standardize the data and 
used 10 folds cross validation to minimize the overfitting 
risk and finally generated the classification report.

Decision tree development and evaluation
In recent years, the decision tree has found itself in medi-
cine to offer suggestions to decide the medical diagnosis, 
treatment, and prognosis. The mechanism by which a 
decision tree functions is based on some IF-THEN rules, 
meaning that the outcomes are illustrated through some 
conditions. Decision trees are a kind of non paramet-
ric models that can be used for both classification and 
regression. They can either output a categorical predic-
tion or a numerical prediction. They classify instances 
by sorting them down from the root to some leaf nodes. 
The ease of interpretation is one of the primary benefits 
of decision trees. Decision trees provide the results in a 
graphical and tree-shaped diagram. They require less 
training data than other machine learning algorithms. 
And they are tolerant to missing values. Every decision 
tree model applies the rules down the path from the root 
node, which is the first node of the model, to the leaf 
nodes, which are the outcomes that the model considers 
following a decision-making process. In our model, right 
and left directions represent that the rules are true and 
false, respectively. We utilized recall, specificity, f1-score, 
accuracy, confusion matrix, and precision in evaluation. 
Recall means that the true positive proportion is divided 
into the number of positive events regardless of whether 
they are predicted correctly. Precision means the pro-
portion of the true positive divided by the total positive 
prediction in our sample. Accuracy means how many 
predictions are correctly made by our model. F1-score 
represents a weighted proportion of recall and preci-
sion. Lastly, the confusion matrix is regarded as a visually 
appealing method of assessing the model’s performance.

Comparative analysis
In order to compare decision tree with other machine 
learning models, we applied stochastic gradient descent 
(SGD), gradient boosting classification, multi layers per-
ceptron (MLP),

Adaboosting classiefier, linear support vector machine 
(SVM_linear), gradient boosting, light gradient boosting, 
voting, bagging and stacking ensembling to our datasets. 
After 10-fold cross validation, the metrics for each model 
were reported.
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Statistical analysis
To assess the normality of the quantitative variables, we 
employed the Kolmogorov–Smirnov test. Student’s t-test 
or Mann–Whitney U and the chi-squared test was used 
to compare the two groups.The analysis of the data was 
performed with python 3.7. A P-value < 0.05 was consid-
ered statistically significant.

Results
Among the 6183 participants, 3336 patients (54.0%) 
were identified as biguanides exposure cases, and the 
remaining were the ones with sulfonylureas exposures. 
This populationcomprised of 3706 females (59.9%) and 
2477 males (40.1%). Intentional and unintentional expo-
sures were found in 2246 (36.3%) and 3199 (51.7%) cases, 
respectively. Minor, moderate, and major outcomes were 
reported in 2461 (39.8%), 3244 (52.4%), and 419 (6.8%) 
cases, respectively (Table 1). The size of the decision tree 
developed in this study was 39, which included 20 leaves 
and 11 layers (Fig. 1). Hypoglycemia was the root node of 
our model.

The rules derived from the decision tree are shown in 
Table 2. The characteristics of machine learning models 
used for comparative analysis are shown in Table 3. The 
specificity, precision, recall, f1-score, and accuracy of 

all models were greater than 86%, 89%, 88%, and 88%, 
respectively. The lowest values belong to SGD model. 
The decision tree model has a sensitivity (recall) of 93.3%, 
specificity of 92.8%, precision of 93.4%, f1_score of 93.3%, 
and accuracy of 93.3%.

The confusion matrices of training and test datasets is 
shown in Table 4. The Stacking ensemble and MLP have 
lowest false detections assigned to Biguanides and Sulfo-
nylurea, respectively. The area under the curve for deci-
sion tree model was 0.97 (Fig. 2). In Fig. 3, we evaluated 
important clinical findings that affect the DT’s perfor-
mance (i.e., feature importance) in the classification task. 
A few features like ‘hypoglycemia’ and ‘acidosis’ contrib-
uted most to classifying two products, respectively. The 
feature importance implicitly indicates that if we look at 
only these few features and combine their presence in 
a test case, we might identify a poisoning/exposure to a 
specific product.

Discussion
Biguanide and sulfonylureas are two popular antihyper-
glycemic agents commonly used by diabetic patients. In 
addition, antihyperglycemic side effects or overdoses are 
also common in these patients. Sometimes the clinical 
symptoms of these drugs are close, which leads to mis-
diagnosis. So correct diagnosis at an early stage is criti-
cal for treatment and management. This study proposed 
an accurate decision tree prediction model for biguanide 
and sulfonylurea poisoning diagnoses using a retrospec-
tive analysis of large-scale NPDS data. This study found 
that the decision tree is a reliable algorithm for identify-
ing and distinguishing antihyperglycemic agents. Also, 
hypoglycemia, abdominal pain, acidosis, diaphoresis, 
tremor, vomiting, diarrhea, age, and reasons for exposure 
were critical for making the diagnosis.

There are three means of learning: experience, which 
is the most challenging; imitation, which is the simplest; 
and thinking, which is the most complex [33]. Algo-
rithmic thinking in medicine for the prediction of the 
prognosis or diagnosis of a disease or the selection of 
appropriate treatment are very helpful. Typically, this 
type of thinking arises from the analysis of prospective 
clinical studies data, which can be done by a human, or 
using biostatistical models, or both. Doctors are learned 
to use algorithmic thinking in the following manner: 
they check for the symptoms, signs, or risk factors indi-
cated, they add the points, and they obtain a diagnostic 
or prognostic probability of the presence of the disease. 
It is difficult to diagnose many diseases, and their clini-
cal symptoms are often hard to identify. Fortunately, 
many medical algorithms are validated. Algorithms 
are frequently used by emergency physicians. They are 
particularly fond of scoring systems. In addition, the 

Table 1 Baseline characteristics of study participants

Variables Biguanides Sulfonylureas p-value

Sex

Male 1127 (33.8) 1350 (47.4) < 0.001

Female 2209 (66.2) 1497 (52.6)

Reason of exposure

Intentional

 Yes 1828 (54.8) 418 (14.7) < 0.001

 No 1508 (45.2) 2429 (85.3)

Unintentional

 Yes 1189 (35.6) 2010 (70.6) < 0.001

 No 2147 (64.4) 837 (29.4)

Other

 Yes 64 (1.9) 83 (2.9) 0.01

 No 3272 (98.1) 2764 (97.1)

Medical outcomes

Minor

 Yes 2012 (60.3) 449 (15.8) < 0.001

 No 1324 (39.7) 2398 (84.2)

Moderate

 Yes 1063 (31.9) 2181 (76.6) < 0.001

 No 2273 (68.1) 666 (23.4)

Major

 Yes 210 (6.3) 209 (7.3) 0.10

 No 3126 (93.7) 2638 (92.7)
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knowledge of algorithms, both practical and theoreti-
cal, allows physicians to better understand their limita-
tions. Furthermore, algorithmic thinking has become 
widespread in medical knowledge as a result. As such, 
physicians are intrigued by algorithmic thinking when 
diagnosing disease, predicting prognosis, or choosing 
appropriate treatment. Many decision trees are sug-
gested in medical textbooks. As a result, decision tree 
algorithms found in ML algorithms have the potential to 
attract physicians’ attention. Thus, the DT does not only 
assist physicians in diagnosing a disease or predicting the 
outcome, but also assists them in organizing algorithmic 
reasoning. In recent years, predictive models have been 
employed for disease diagnosis [34]. The decision tree 
model is a data mining algorithm for disease prediction 
by employing multiple variables and risk factors [35]. In 
addition, decision tree analysis is a prominent approach 

for dealing with non-linear relationships and developing 
feasible and clear rules [36–38]. It is a non-parametric 
modeling algorithm and can fit any type of functional 
forms. In addition, it uses a recursive binary partitioning 
algorithm that divides the sample into partitions with the 
strongest association with the response variable based on 
the partitioning variable [39]. Therefore, this model is a 
robust classification tool. Furthermore, this approach 
suggests a comprehensible model for the current obser-
vations using a simple technique. Therefore, it suggests 
a model structure that is understandable and accessi-
ble [40]. Some documents have shown that predicting 
models can identify diseases with an accuracy similar to 
that of human specialists [41–45]. In general, the predic-
tion algorithms may not go beyond human judgment; 
instead, they can be a powerful auxiliary tool to cir-
cumvent when used properly by trained physicians [46]. 

Table 2 The 20 rules extracted through the decision tree

1 IF there is hypoglycemia, acidosis, and vomiting, THEN the patients are poisoned by biguanides (100%)

2 IF there is hypoglycemia and acidosis, vomiting is not present; THEN the patients are more likely to be poisoned by biguanides (72%)

3 IF hypoglycemia and vomiting are present, without acidosis, THEN the patients are more likely to be poisoned by sulfonylureas (57.5%)

4 If hypoglycemia and abdominal pain are present, acidosis and vomiting are not present, the reason for exposure is unintentional, THEN the patients 
are poisoned by sulfonylureas (100%)

5 If hypoglycemia and abdominal pain are present, acidosis and vomiting are not present, the reason for exposure is not unintentional, THEN the 
patients are poisoned by biguanides (100%)

6 If hypoglycemia is present, acidosis, vomiting, abdominal pain are not present, and the age is greater than 11.5 years, THEN the patients are poi-
soned by sulfonylureas (96.6%)

7 If hypoglycemia is present, acidosis, vomiting, and abdominal pain are not present, and the age is less than 11.5 years, THEN the patients are poi-
soned by sulfonylureas (99.4%)

8 If hypoglycemia is not present, the reason for exposure is intentional, and vomiting is present, THEN the patients are more likely to be poisoned by 
biguanides (98.9%)

9 IF hypoglycemia and vomiting are not present, the reason for exposure is intentional, and acidosis is present, THEN the patients are more likely to 
be poisoned by biguanides (98.8%)

10 IF hypoglycemia, acidosis, and vomiting are not present, the reason for exposure is intentional, and age is greater than 32.5 years, THEN the patients 
are more likely to be poisoned by biguanides (88.2%)

11 IF hypoglycemia, acidosis, and vomiting are not present, the reason for exposure is intentional, and age is less than 32.5 years, THEN the patients are 
more likely to be poisoned by biguanides (97.1%)

12 If hypoglycemia is not present, the reason for exposure is not intentional, and diaphoresis is present, THEN the patients are more likely to be poi-
soned by sulfonylureas (77.6%)

13 IF hypoglycemia and diaphoresis are not present, the reason for exposure is not intentional, and diarrhea is present, THEN the patients are more 
likely to be poisoned by biguanides (97.9%)

14 IF hypoglycemia, diaphoresis, and diarrhea are not present, the reason for exposure is not intentional, and acidosis is present, THEN the patients are 
more likely to be poisoned by biguanides (98.7%)

15 IF hypoglycemia, diaphoresis, diarrhea, and acidosis are not present, the reason for exposure is not intentional, and age is less than 7.5 years, THEN 
the patients are more likely to be poisoned by biguanides (56.4%)

16 IF hypoglycemia, diaphoresis, diarrhea, and acidosis are not present, the reason for exposure is not intentional, and age is greater than 7.5 years old, 
vomiting is present, THEN the patients are more likely to be poisoned by biguanides (97.1%)

17 IF hypoglycemia, diaphoresis, diarrhea, vomiting, and acidosis are not present, the reason for exposure is not intentional, and age is greater than 7.5 
years old, abdominal pain is present, THEN the patients are more likely to be poisoned by biguanides (98.7%)

18 IF hypoglycemia, diaphoresis, diarrhea, vomiting, abdominal pain, and acidosis are not present, the reason for exposure is not intentional, and age 
is greater than 7.5 years old, tremor is present, THEN the patients are more likely to be poisoned by sulfonylureas (83.3%)

19 IF hypoglycemia, diaphoresis, diarrhea, vomiting, abdominal pain, tremor, and acidosis are not present, the reason for exposure is not intentional, 
and age is greater than 61.5 years, THEN the patients are more likely to be poisoned by biguanides (63%)

20 IF hypoglycemia, diaphoresis, diarrhea, vomiting, abdominal pain, tremor, and acidosis are not present, the reason for exposure is not intentional, 
and age is between 7.5–61.5 years old, THEN the patients are more likely to be poisoned by biguanides (82.8%)
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Table 3 Characteristics of ML models used in comparative analysis

Labels ML models Biguanides Sulfonylurea Average Weighted_average

Specificity Adaboosting 0.907973 0.954436 0.931205 0.929368

DT 0.898138 0.963429 0.930784 0.928202

SGD 0.790657 0.960731 0.875694 0.868969

SVM_linear 0.896382 0.962230 0.929306 0.926702

MLP 0.913593 0.952338 0.932966 0.931434

Gradient boosting 0.901300 0.969125 0.935212 0.932530

Light gradient boosting 0.909730 0.954736 0.932233 0.930453

Voting-ensemble 0.895328 0.972422 0.933875 0.930827

Bagging ensemble 0.892870 0.973022 0.932946 0.929776

Stacking ensemble 0.893572 0.973321 0.933447 0.930293

Precision Adaboosting 0.923970 0.944465 0.934217 0.933407

DT 0.917237 0.954461 0.935849 0.934377

SGD 0.843199 0.945004 0.894102 0.890076

SVM_linear 0.915835 0.952950 0.934392 0.932925

MLP 0.928133 0.942391 0.935262 0.934698

Gradient boosting 0.920034 0.961409 0.940721 0.939085

Light gradient boosting 0.925334 0.944911 0.935122 0.934348

Voting-ensemble 0.915867 0.965165 0.940516 0.938566

Bagging ensemble 0.914109 0.965805 0.939957 0.937913

Stacking ensemble 0.914648 0.966198 0.940423 0.938385

Recall Adaboosting 0.954436 0.907973 0.931205 0.933042

DT 0.963429 0.898138 0.930784 0.933366

SGD 0.960731 0.790657 0.875694 0.882420

SVM_linear 0.962230 0.896382 0.929306 0.931910

MLP 0.952338 0.913593 0.932966 0.934498

Gradient boosting 0.969125 0.901300 0.935212 0.937894

Light gradient boosting 0.954736 0.909730 0.932233 0.934013

Voting-ensemble 0.972422 0.895328 0.933875 0.936924

Bagging ensemble 0.973022 0.892870 0.932946 0.936115

Stacking ensemble 0.973321 0.893572 0.933447 0.936600

F1_score Adaboosting 0.938956 0.925860 0.932408 0.932926

DT 0.939766 0.925443 0.932605 0.933171

SGD 0.898136 0.860968 0.879552 0.881022

SVM_linear 0.938459 0.923801 0.931130 0.931710

MLP 0.940080 0.927769 0.933924 0.934411

Gradient boosting 0.943942 0.930384 0.937163 0.937699

Light gradient boosting 0.939805 0.926986 0.933396 0.933903

Voting-ensemble 0.943297 0.928936 0.936117 0.936685

Bagging ensemble 0.942646 0.927907 0.935276 0.935859

Stacking ensemble 0.943073 0.928467 0.935770 0.936348

Accuracy Adaboosting – – 0.933042 0.933042

DT – – 0.933366 0.933366

SGD – – 0.882420 0.882420

SVM_linear – – 0.931910 0.931910

MLP – – 0.934498 0.934498

Gradient boosting – – 0.937894 0.937894

Light gradient boosting – – 0.934013 0.934013

Voting-ensemble – – 0.936924 0.936924

Bagging ensemble – – 0.936115 0.936115

Stacking ensemble – – 0.936600 0.936600

DT Decision tree, MLP Multi layers perceptron, SGD Stochastic gradient descent, Adaboosting classiefier, SVM_linear: linear support vector machine
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Prediction models can help in clinical decisions making 
but it will not replace the physician completely. In medi-
cine, human errors are associated with large financial 
problems, and many of them can be prevented with the 
help of these models [47]. The first line who benefits of 
DT could be specialists in poisoning information (SPIs). 
Other clinicians who might encounter poisoned patients 
during their practice would also be targeted. Several of 
them lacked medical toxicology training, so the system 
would be helpful to them. It is important to note, how-
ever, that not all patients present to the emergency room 
with a classic symptom. Furthermore, some centers lack 
laboratory facilities. As a result, even the medical toxi-
cologist will benefit from this system. We also achieved 
a very high specificity, which makes it easier for medical 
toxicologists to confirm their initial diagnosis. Therefore, 
this system can also be utilized as a confirmation method.

In our decision tree model, the most relevant clinical 
finding and the essential variable in predicting was hypo-
glycemia, selected as the tree’s root node. Hypoglycemia 
is the most common side effect of sulfonylureas over-
dose [2]. Biguanides can modify blood glucose levels in 
diabetic individuals but not in non-diabetic persons [48]. 
Bron et  al. conducted a study on over 200,000 type-2 
diabetes mellitus patients who were on anti-diabetic 

medications to evaluate the risk of hypoglycemia and 
found that sulfonylureas were more likely to cause hypo-
glycemia than biguanides, such as metformin [49]; unlike 
sulfonylurea, hypoglycemia rarely occurs in biguanides 
poisoning [50, 51]. Moreover, it has been noted that 
metformin-induced hypoglycemia has an incidence rang-
ing from 0.6 to 12.2% [52]. Hypoglycemia in biguanides 
exposure is not common because they increase insulin 
sensitivity and does not increase insulin release. In con-
trast, hypoglycemia following sulfonylureas exposure 
would be more common due to neuroglycopenic effects 
and counterregulatory hormonal response [13]. Besides, 
sulfonylureas could increase insulin release from pan-
creatic beta cells by acting on ATP-sensitive potassium 
channels, leading to hypoglycemia [53]. Sulfonylurea-
induced hypoglycemia depletes ATP levels in the central 
nervous system, which can lead to clinical manifesta-
tions such as dizziness or vertigo, tremors, restlessness, 
drowsiness, or lethargy, as well as hormonal counter-
regulatory responses like diaphoresis [13]. Metformin 
is one of the largest reported drugs to the US poison 
control centers with many serious outcomes and fatali-
ties compared to any other oral anti-diabetic medicine 
[5]. Metabolic acidosis is the most serious adverse effect 
of biguanides overdose, including metformin [54]. The 
mechanism of metabolic acidosis associated with met-
formin inhibits mitochondrial complex-I of the electron 
transport chain in the mitochondria. Inhibition of com-
plex-I causes a decrease in adenosine triphosphate, an 
increase in adenosine monophosphate, an overproduc-
tion of Reactive Oxygen Species (ROS), which contribute 
to metabolic acidosis. Besides, metformin exposure may 
cause (1) Inhibition of mitochondrial glycerophosphate 
dehydrogenase, (2) Blunting the conversion of glycerol-
3-phosphate to Dihydroxyacetone phosphate, (3) Inhib-
iting gluconeogenesis from glycerol. The combination 
of these pathways finally contributes to metabolic aci-
dosis [55]. Several studies have reported gastrointestinal 
symptoms associated with biguanide overdose, including 
nausea, vomiting, abdominal pain, diarrhea, and acido-
sis [56–59]. There is no clear explanation for how met-
formin overdose leads to gastrointestinal complications 
[60]. Although, it may be the result of increased intestinal 
glucose circulation, increased glucagon-like peptide-1, 
altered bile acid circulation, or altered intestinal bacterial 
flora [61].

Even though biguanides and sulfonylureas may be 
identified in urine analysis, this method is not com-
monly employed in facilities with limited resources. 
Our approach has the advantage of being based entirely 
on clinical presentation and laboratory data available in 
most healthcare systems. Considering this model, the 
patients exposed to antihyperglycemic agents would be 

Table 4 Confusion matrice of ML models used in comparative 
analysis

DT Decision tree, MLP Multi layers perceptron, SGD Stochastic gradient descent, 
Adaboosting classiefier, SVM_linear: linear support vector machine

Prediction true Models Biguanides Sulfonylurea

Biguanides Ada 3184 152

DT 3214 122

SGD 3205 131

SVM_linear 3210 126

MLP 3177 159

Gradient Boosting 3233 103

Light Gradient Boosting 3185 151

Voting-ensemble 3244 92

Bagging ensemble 3246 90

Stacking ensemble 3247 89

Sulfonylurea Ada 262 2585

DT 290 2557

SGD 596 2251

SVM_linear 295 2552

MLP 246 2601

Gradient Boosting 281 2566

Light Gradient Boosting 257 2590

Voting-ensemble 298 2549

Bagging ensemble 305 2542

Stacking ensemble 303 2544
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diagnosed earlier. Because the prognosis for this type of 
exposure depends on how soon therapy is started. The 
most important point to remember is that since expo-
sure to biguanides has a different complication than 
exposure to sulfonylureas, the management will differ. 
However, the clinical and laboratory findings are quite 
comparable; therefore, it is imperative to differentiate 
between them when making a diagnosis.

The strength of our study is that we use large-
scale data from the National Poison Data System that 
help physicians diagnose biguanide and sulfonylurea 

overdoses accurately. However, some limitations should 
be taken into account. First, given that the case record-
ing is based on self-report, the American Association 
of Poison Control Centers has found it difficult to con-
firm the exposures as poisoning. Second, there has 
been no information on the long-term outcomes of 
biguanides and sulfonylureas poisoning. Third, over-
fitting is a common problem in machine learning mod-
els, especially for decision tree. We used 10-fold cross 
validation and also different max_dept and other hyper 
parameters tuning to minimize the overfitting risk. In 

Fig. 1 Decision tree model with training data. Values are the percentages of (Biguanides exposure, sulfonylureas exposure). The blue color indicates 
sulfonylurea, while the orange color shows biguanide exposure
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order to increase predictive accuracy, future research 
should be conducted using novel biomarkers, larger 
datasets, improved data collection methods, and more 
sophisticated modeling methods. Furthermore, it is 
recommended that future studies in other settings use 
an external validation methodology through a separate 
cohort study in order to evaluate the generalizability 
of the model. Fourth, the NPDS database is not pub-
licly available and it is recommended to evaluate the 
same approach with similar datasets which are openly/
publicly available, for common features to validate the 
approach and reproducibility of the claimed findings.

Conclusion
We successfully developed a different machine learning 
model as well as a decision tree-based approach with 
high accuracy to diagnose these two anti-diabetic poi-
sonings. Physicians, can take advantage of this model 
and utilize it to early diagnose biguanides and sul-
fonylureas exposure because of its clear and concise 
interpretation and high accuracy. This model can help 
toxicology consultants in discriminating of biguanides 
and sulfonylureas poisonings. These machine learnig 
models could be improved in the future by applying 
the results of this study in generating practical appli-
cations or software, which can generate more features 
in clinical practice. Also the current algorithms should 
be tested prospectively in poison centers and clinical 
settings.
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