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Abstract 

Background:  Given its narrow treatment window, high toxicity, adverse effects, and individual differences in its use, 
we collected and sorted data on tacrolimus use by real patients with kidney diseases. We then used machine learning 
technology to predict tacrolimus blood concentration in order to provide a basis for tacrolimus dose adjustment and 
ensure patient safety.

Methods:  This study involved 913 hospitalized patients with nephrotic syndrome and membranous nephropathy 
treated with tacrolimus. We evaluated data related to patient demographics, laboratory tests, and combined medica-
tion. After data cleaning and feature engineering, six machine learning models were constructed, and the predictive 
performance of each model was evaluated via external verification.

Results:  The XGBoost model outperformed other investigated models, with a prediction accuracy of 73.33%, F-beta 
of 91.24%, and AUC of 0.5531.

Conclusions:  Through this exploratory study, we could determine the ability of machine learning to predict TAC 
blood concentration. Although the results prove the predictive potential of machine learning to some extent, in-
depth research is still needed to resolve the XGBoost model’s bias towards positive class and thereby facilitate its use 
in real-world settings.

Keywords:  Blood concentration prediction, Machine learning, Tacrolimus, Nephrotic syndrome, Membranous 
nephropathy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Tacrolimus (TAC, FK506) is a new immunosuppres-
sant that functions by inhibiting the activity of calcineu-
rin and interfering with T cell activation and cytokine 
transcription after binding to intracellular FK binding 
protein. Recent studies have shown that TAC is effec-
tive in the treatment of a variety of chronic kidney dis-
eases [1, 2]. However, its narrow treatment window, high 
toxicity, adverse effects, and individual differences in 
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pharmacokinetics and pharmacodynamics have hindered 
its application in clinical treatment. Therefore, in clinical 
use, monitoring the blood concentration, adjusting the 
treatment plan, and administering individualized dosages 
of TAC are necessary to achieve the best treatment effect 
[3].

Real-world medical data are widely stored in hospi-
tal information systems, which include comprehensive 
diagnostic and treatment information. The optimization, 
upgrading, and popularization of hospital information 
systems not only provide a basis for the medical treat-
ment of patients but also supply real-world data for ret-
rospective research. Machine learning (ML) is a set of 
computer algorithms driven by data [4]. Its algorithms 
include the following: artificial neural network, deci-
sion tree, random forest, and support vector machine. 
ML is suitable for analyzing and mining real-world data 
in enormous quantities, high dimensions, complex rela-
tionships, and diverse forms. The rapid speed and strong 
generalizability of ML support its wide use in clinical 
decision-making. The application of ML algorithms to 
individualized medicine will aid in the understanding of 
precision medicine in clinical practice [5, 6]. The pur-
pose of this study was to explore the influencing factors 
of TAC blood concentration in real-world settings using 
ML technology to predict TAC blood concentration 
and assist clinicians in adjusting TAC dosage, ensuring 
patient safety, and reducing adverse drug reactions.

Methods
Study population
The data of patients with nephrotic syndrome and/or 
membranous nephropathy treated with TAC in PLA 
General Hospital from January 1, 2013, to December 31, 
2020, were collected retrospectively. The inclusion crite-
ria were as follows: (1) diagnosis of nephrotic syndrome 
or membranous nephropathy; and (2) administration 
of TAC during hospitalization. The exclusion criteria 
were as follows: (1) use of TAC only during surgery; (2) 
TAC administration by skin test; and (3) patients with 
any missing data. This study was approved by the Eth-
ics Committee of the Chinese People’s Liberation Army 
General Hospital [S2022-278–01].

The data mining and modeling processes are shown 
in Fig.  1. Following the cleaning step, the final data set 
comprised 913 patients and the blood TAC concentra-
tions from 1829 blood tests. Data from January 1, 2013, 
to December 31, 2019, including 821 patients and 1,649 
blood tests, were randomly divided into a training set and 
a test set at an 8:2 ratio. The data from January 1, 2020, to 
December 31, 2020, including 115 patients and 180 blood 
tests, were used as the external validation set (Fig. 2).

Data extraction
The relevant patient information was extracted from 
the database, including demographic, laboratory, and 
medical order information. Demographic information 
included data on age, sex, height, and weight. The labo-
ratory information included the blood TAC concentra-
tions, serum creatinine levels, sample receiving times, 
and result indicators. The medical order information 
included the name of the medication, dose, frequency 
of administration, and start and end times of the treat-
ment. Because the medical order consisted of long-term 
information, it was split by frequency and processed into 
time-series data. To facilitate data processing, we stored 
patient hospitalization information in a tree structure 
rather than a two-dimensional table to build the data set 
(Fig. 3).

Data processing
First, data distribution was drawn according to the demo-
graphic information, and samples with outliers were 
deleted. Second, the medication and laboratory informa-
tion were associated according to time. When there were 
multiple administrations of TAC before the collection of 
blood samples, we selected the data from the last TAC 
administration before sample collection to ascertain the 
test results matched the corresponding TAC adminis-
tration. Additionally, a box plot was drawn for the time 
interval between the last administration and sample-
receiving time, and only the samples between quartile 1 
(Q1) and quartile 3 (Q3) were reserved to eliminate sam-
ples whose medication information was not related to the 
laboratory information. Seven doses of TAC were admin-
istered, and we organized them by the frequency of use 
as follows: 2.0, 1.0, 1.5, 3.0, 0.5, 2.5, and 4.0 mg.

In terms of combined medication, we extracted infor-
mation on some of the most commonly prescribed medi-
cations by clinicians, including compound α-ketoacid, 
Shenyankangfu, ShenYanShu, Shenshuaining, Huangkui, 
Bailing, pidotimod, methylprednisolone, prednisone ace-
tate, mycophenolate mofetil, and tripterygium glycoside. 
The variables of combined medication were dummy vari-
ables. Patients who had used one of these drugs between 
two blood tests were recorded as 1, and those who did 
not were recorded as 0.

Although blood concentration is a continuous variable, 
it was treated as a dummy variable in this study and clas-
sified according to the safe range of blood drug concen-
tration [7, 8]. Concentrations were defined as 0 within 
the safety range, and those outside the safety range were 
defined as 1.

In this study, the blood concentration ratio of TAC 
classes 0 to 1 was unbalanced at 3:7. Therefore, we used 
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the over-sampling method, SMOTE (Synthetic Minor-
ity Oversampling Technique), to balance the data. The 
core of SMOTE is to insert randomly generated new 
samples between those of minority and adjacent cat-
egories to increase the number of minority categories 
and improve the unbalanced distribution of the data 
set [9]. As XGBoost and LightGBM (LGBM) algorithms 
have hyperparameters for processing unbalanced data, 
we directly adjusted the super parameters without addi-
tional SMOTE processing of data for these algorithms.

Feature selection
The extracted variables included demographic informa-
tion (age, sex, height, and weight), laboratory information 
(numerical results and collection time of blood TAC con-
centration and serum creatinine levels), medical order 
information (drug name, medication time, and dose), and 
medication combinations.

Various tools from different models were used to cal-
culate the importance value of each factor. For example, 
logistic regression (LR), random forest, and AdaBoost 

Fig. 1  Flow chart of data mining and modeling

Fig. 2  Division of datasets
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(adaptive boosting) used the eli5 Library in SK-learn 
to visually display the value of each feature, whereas 
XGBoost and LGBM used their own algorithms. We 
removed the features with relatively low importance to 
reduce the feature dimension, simplify the model, and 
improve its generalization ability.

Model building
Classification algorithms in supervised learning included 
LR, artificial neural network, Naïve Bayes, and integra-
tion algorithms. In this study, six ML models, LR, random 
forest, AdaBoost, gradient boost decision tree, XGBoost, 
and LGBM, were established to classify and predict the 
blood concentration of TAC. All models except for LR 
belonged to the Ensemble Algorithms, which integrate 
several weak classifiers into one strong classifier. The 
Ensemble Algorithms have rapid speed and strong gen-
eralization ability, and they are suitable for application in 
many fields, including medical diagnosis [10].

In the process of model establishment, Grid Search was 
used to choose the hyperparameter of the model. Grid 

Search uses an exhaustive method to train the learner 
with the hyperparameter in the user-defined range, 
and then find the optimal value for the hyperparameter 
within this range. Table 1 lists the core hyperparameters 
of the six models. In addition, the threshold was continu-
ously adjusted to achieve the best performance of the 
model.

Model assessment
The evaluation criteria of binary factors generally include 
accuracy, precision, recall, F-1 score, and area under 
the curve (AUC) and come from the confusion matrix 
(Table  2). Accuracy refers to the prediction accuracy of 
positive sample results and was calculated as follows:

where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 3  Patient information in a tree structure
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Recall refers to how many positive samples in the data 
set are identified and can be calculated as follows:

In the ideal state, accuracy and recall are as high as pos-
sible; however, the two factors are inversely related, and 
a balance must be achieved. Therefore, the F-beta score 
was used to reflect the comprehensive situation of the 
model. The F-beta score was calculated using the follow-
ing formula:

where precision is calculated using Eq. 4, β equals 1, and 
the F-beta score is calculated using Eq. 5.

When the accuracy and recall are equally important, they 
are given the same weight, that is, beta = 1 (F-1 score). 
However, in this study, type II errors were particularly 
important. Thus, we closely monitored situations in 
which patients with abnormal blood concentrations were 
not assessed, which had a negative effect on the treat-
ment outcomes. Type II errors were generally measured 
by recall. Therefore, in this study, greater weight was 
given to recall, where beta = 2 (F-2 score). The F-beta 

(2)Recall =
TP

TP + FN

(3)F − beta = 1+ β2
×

Precision× Recall

β2 × Precision+ Recall

(4)Precision =
TP

TP + FP

(5)F1 = 2×
Precision× Recall

Precision+ Recall

score was > 0 and < 1, and the larger the value, the better 
the performance of the model. Finally, when the AUC 
was > 0.5, the model was meaningful. AUC can be calcu-
lated as follows:

where true positive rate (TPR) and false positive rate 
(FPR) are calculated using Eqs. 7 and 8, respectively.

Results
Baseline information
Data from 913 patients and 1829 blood tests were 
included in this study. The baseline information of the 
study population is shown in Table  3. Continuous vari-
ables are presented as median (interquartile range [IQR]) 
and categorical variables as frequency (percentage). The 
median age of the patients in this study was 53 (39–64) 
years, median weight was 72 (64–80) kg, median height 
was 170 (162–174) cm, median serum creatinine level 
was 80.9 (65.8–103.1) μmol/L, and proportion of male 
patients was 66%. Additionally, the proportion of com-
bined medication was as follows: 8.64% for compound 
α-ketoacid, 6.01% for Shenyankangfu, 12.30% for Shen-
YanShu, 6.51% for Shenshuaining, 45.05% for Huang-
kui, 39.58% for Bailing, 46.53% for pidotimod, 29.36% 
for methylprednisolone, 16.07% for prednisone acetate, 
1.04% for mycophenolate mofetil, and 2.35% for trip-
terygium glycoside.

Model performance
The prediction performance of the six models is shown in 
Table 4. In terms of accuracy, only XGBoost and LGBM 
displayed an accuracy of > 70%; the accuracy of XGBoost 

(6)AUC =
1+ TPR− FPR

2

(7)TPR =
TP

TP + FN

(8)FPR =
FP

FP + TN

Table 1  Hyperparameters for models

LR logistic regression; RF random forest; GBDT gradient boost decision tree; LGBM LightGBM

Model Core Hyperparameters

LR Penalty; class_weight; C

RF min_samples_split; n_estimators; max_features; min_samples_leaf; max_depth

Adaboost n_estimators; learning_rate

GBDT n_estimators; learning_rate; subsample; loss; max_depth; min_samples_split; min_samples_leaf; max_features

XGBoost learning_rate; max_depth; subsample; n_estimators; scale_pos_weight; min_child_weight; gamma

LGBM learning_rate; max_depth; subsample; n_estimators; min_child_weight; min_child_samples; num_levels; 
colsample_bytree; boost_type

Table 2  Confusion matrix

FN positive class is judged as negative (type I error); FP negative class is judged 
as positive (type II error)

Predicted: True Predicted: False

Actual: True True Positive (TP) False Negative (FN)

Actual: False False Positive (FP) True Negative (TN)
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was higher than that of LGBM at 73.33%. The accuracy 
of the other models was low, and the effect was poor. We 
evaluated type II errors through the recall rate. A higher 
recall rate means that more patients with abnormal blood 
drug concentrations were correctly predicted, and cli-
nicians can therefore adjust the dosage to reach effec-
tive and safe blood drug concentrations. However, when 
the probability of type II errors was low, the probabil-
ity of type I errors increased. Therefore, XGBoost per-
formed the best in balancing type I and II errors (F-beta 
score = 0.9124). In addition, the AUC value of XGBoost 
was the highest among all models. Therefore, considering 
the generalization ability and accuracy of the model, we 
believe that the XGBoost model is ideal for predicting the 
blood concentration of TAC.

Feature analysis
Table  5 shows the performance of the XGBoost model 
under different quantitative features. The features were 
selected from top to bottom according to the feature 
importance of the XGBoost model. Although the recall 
rate of the model was 1 when the number of features in 
the model was three or less, the AUC was only 0.5, and 
the model was extremely poor with no effective discrimi-
native ability. Thus, very few features will lead to the 
underfitting of the model. With an increase in the num-
ber of features during modeling, the evaluation indexes in 
Table 5 increased even if they slightly fluctuated. When 
the number of features was eight, all evaluation indexes 
were maximized (accuracy = 0.7333, F-beta = 0.9124, and 
AUC = 0.5531), and the performance of the model was 
the best. When the number of features increased beyond 
eight, the evaluation indexes decreased overall. Thus, too 
many features weakened the generalization ability of the 
model, causing the overfitting phenomenon. Therefore, 
the performance of the model was optimized when using 
the top eight features for modeling.

As shown in Fig.  4, the top eight features in the 
XGBoost model in descending order were serum creati-
nine level, weight, age, height, TAC dosage, pidotimod, 
Bailing, and Huangkui usage. Among them, serum cre-
atinine level was nearly twice as important as any other 
feature, indicating that serum creatinine has a significant 

Table 3  Baseline information

SC serum creatinine; CαK compound α-ketoacid; SYKF Shenyankangfu; 
SYS ShenYanShu; SSN Shenshuaining; HK Huangkui; BL Bailing; MPS 
methylprednisolone; PA prednisone acetate; MM mycophenolate mofetil; TG 
tripterygium glycoside

Feature n (%)

Independent Variable

Blood Concentration of TAC, n, Class 1 1292 70.64

Class 0 537 29.36

Demographic Information

Age, yr, median (IQR) 53 (39, 64) –

Weight, kg, median (IQR) 72 (64, 80) –

Height, cm, median (IQR) 170 (162, 174) –

FK506, mg, median (IQR) 1.5 (1, 2) –

Sex, Male 1241 67.85

Female 588 32.15

Laboratory Information

SC, μmol/L, median (IQR) 80.9 (65.8, 103.1) –

Combined Medication

CαK, n, Class 1 158 8.64

Class 0 1671 91.36

SYKF, n, Class 1 110 6.01

Class 0 1719 93.99

SYS, n, Class 1 225 12.30

Class 0 1604 87.70

SSN, n, Class 1 119 6.51

Class 0 1710 93.49

HK, n, Class 1 824 45.05

Class 0 1005 54.95

BL, n, Class 1 724 39.58

Class 0 1105 60.42

Pidotimod, n, Class 1 851 46.53

Class 0 978 53.47

MPS, n, Class 1 537 29.36

Class 0 1292 70.64

PA, n, Class 1 294 16.07

Class 0 1535 83.93

MM, n, Class 1 19 1.04

Class 0 1810 98.96

TG, n, Class 1 43 2.35

Class 0 1786 97.65

Table 4  Performance of the models

LR logistic regression; RF random forest; GBDT gradient boost decision tree; LGBM LightGBM; AUC​ area under the curve

Metrics model RF LR AdaBoost GBDT XGBoost LGBM

Accuracy 0.6556 0.5444 0.6667 0.6556 0.7333 0.7167

F-beta 0.8221 0.5810 0.8638 0.7967 0.9124 0.9075

Recall 0.8527 0.5504 0.9147 0.8140 0.9690 0.9165

Precision 0.7190 0.7474 0.7066 0.7343 0.7396 0.8730

AUC​ 0.5048 0.5399 0.4770 0.5344 0.5531 0.4947
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effect on the blood concentration of TAC. Weight, age, 
and height were also more important than many other 
characteristics, whereas sex and some combined medica-
tions had relatively little influence on the model.

Discussion
This study revealed that the XGBoost model—with 
an accuracy of 0.7333 and an F-beta score of 0.9124—
showed the best effect that could be used to monitor 
the blood concentration of TAC. Zheng et  al. [11] also 
achieved the best results in regression prediction of 
TAC blood concentration from real-world data using 
the XGBoost model. Thus, the XGBoost model has cer-
tain advantages for clinical data prediction in real-world 
settings.

The feature importance ranking of XGBoost revealed 
that the serum creatinine level of the patients with kidney 
diseases, particularly nephrotic syndrome and membra-
nous nephropathy, had a significant effect on their blood 
TAC concentration, thus confirming that the blood TAC 
concentration is positively correlated with the serum 
creatinine level [12]. Weight and height also ranked 
high, in this study, as factors that affect the blood TAC 
concentration, which is consistent with the results from 
Zheng et al. [11, 13]. Patient age is routinely evaluated by 
researchers [14, 15]. In this study, it ranked third among 
all features. Finally, the importance of sex in the predic-
tion model was relatively low and did not participate in 
the establishment of the final model.

Previous studies have focused on the effect of TAC 
combined with other drugs [16, 17], but did not evalu-
ate the effect of the combination on blood TAC con-
centration. Our study showed that the combination of 
Bailing and Huangkui with TAC affects blood TAC con-
centration. However, although pidotimod also had a high 
importance value in our study, there are no reports to 
support this result. It is speculated that it may be related 
to the medication habits of physicians. These conclusions 
warrant future research.

In the last decade, a few studies have described the 
prediction of TAC concentration in the blood using 
ML technology. Additionally, the models used in previ-
ous research were mostly artificial neural networks and 
regression models [18, 19], the amount of data obtained 
was lower, the models were not verified externally, and 
the research is still in the exploratory stage. In this study, 
using patients with nephrotic syndrome and membra-
nous nephropathy as examples, blood TAC concentration 
was classified according to the safe blood concentration 
range and predicted using a variety of ML models. The 
number of real-world samples included in this study was 
considerably more than that in previous research, and 
an external validation set was used to verify the model. 
Thus, the model results are more authentic and have clin-
ical significance over previous models.

This study had several limitations. First, owing to the 
lack of information about blood sample collection time, 
we had to use the sample-receiving time. Ideally, the 
laboratory department can obtain the sample collection 

Fig. 4  Feature importance of the XGBoost model



Page 9 of 10Yuan et al. BMC Medical Informatics and Decision Making          (2022) 22:336 	

time in the future to further strengthen the integrity 
and analyzability of medical data. Second, more labora-
tory and genetic data should be analyzed.

Conclusion
In this study, an ML model was established to classify 
the blood TAC concentration in patients with nephrotic 
syndrome and membranous nephropathy. The over-
sampling method was used to manage unbalanced data, 
the variables were screened according to their impor-
tance value, and the performance of the six models was 
compared. Finally, XGBoost was selected as the best 
prediction model, considering its accuracy of 0.7333, 
F-beta score of 0.9124, and AUC of 0.5531, which were 
higher than those of other models, demonstrating a 
better prediction ability. In the XGBoost model, serum 
creatinine, weight, age, height, TAC dose, and the use 
of pidotimod, Bailing, and Huangkui were the main 
influencing factors of blood TAC concentration. The 
low AUC and high sensitivity of the model also implies 
that it is biased towards positive class, which may have 
a negative impact on the prediction of clinical dose of 
TAC in patients with negative class. In this exploratory 
study, the ability of machine learning in predicting TAC 
blood concentration was investigated. The study find-
ings prove the predictive potential of machine learning 
to a certain extent; however, further in-depth research 
is needed to resolve the model’s bias towards positive 
class.
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