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Abstract 

Background:  Ovarian cancer is the fifth leading cause of mortality among women in the United States. Ovarian 
cancer is also known as forgotten cancer or silent disease. The survival of ovarian cancer patients depends on several 
factors, including the treatment process and the prognosis.

Methods:  The ovarian cancer patients’ dataset is compiled from the Surveillance, Epidemiology, and End Results 
(SEER) database. With the help of a clinician, the dataset is curated, and the most relevant features are selected. 
Pearson’s second coefficient of skewness test is used to evaluate the skewness of the dataset. Pearson correlation 
coefficient is also used to investigate the associations between features. Statistical test is utilized to evaluate the 
significance of the features. Six Machine Learning (ML) models, including K-Nearest Neighbors , Support Vector 
Machine (SVM), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting 
(XGBoost), are implemented for survival prediction in both classification and regression approaches. An interpretable 
method, Shapley Additive Explanations (SHAP), is applied to clarify the decision-making process and determine the 
importance of each feature in prediction. Additionally, DTs of the RF model are displayed to show how the model 
predicts the survival intervals.

Results:  Our results show that RF (Accuracy = 88.72%, AUC = 82.38%) and XGBoost (Root Mean Squad Error 
(RMSE)) = 20.61%, R2 = 0.4667) have the best performance for classification and regression approaches, respectively. 
Furthermore, using the SHAP method along with extracted DTs of the RF model, the most important features in the 
dataset are identified. Histologic type ICD-O-3, chemotherapy recode, year of diagnosis, age at diagnosis, tumor stage, 
and grade are the most important determinant factors in survival prediction.

Conclusion:  To the best of our knowledge, our study is the first study that develops various ML models to predict 
ovarian cancer patients’ survival on the SEER database in both classification and regression approaches. These ML 
algorithms also achieve more accurate results and outperform statistical methods. Furthermore, our study is the first 
study to use the SHAP method to increase confidence and transparency of the proposed models’ prediction for clini-
cians. Moreover, our developed models, as an automated auxiliary tool, can help clinicians to have a better under-
standing of the estimated survival as well as important features that affect survival.
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Background
Cancer is the second deadliest disease around the world 
[1]. Due to the Coronavirus Disease 2019 (COVID-19) 
pandemic [2], cancer diagnosis and treatment were hin-
dered [3]. With transforming and reorganizing healthcare 
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systems to overcome COVID-19 difficulties, the screen-
ing, diagnosis, and treatment of cancers were not consid-
ered sufficiently. As a result, the pandemic raised serious 
concerns about the progression and increased mortality 
of cancers because clinicians do not have a tool for pri-
oritizing high-risk patients in such a low-resource condi-
tion [4].

Ovarian cancer has a poor prognosis in most women 
since it is diagnosed at advanced stages [5]. This cancer 
is called forgotten cancer and is sometimes misdiagnosed 
[5]. Ovarian cancer has the fifth highest mortality rate 
among women living in the United States (US) [6]. The 
incidence rate of this cancer was 10.9 per 100,000 women 
in 2014–2018, and its mortality rate was 6.5 per 100,000 
women in 2015–2019 [7]. It was estimated that new cases 
of ovarian cancer would be 21,410, accounting for 1.1% 
of all new cancer cases, and the estimated deaths due to 
ovarian cancer would be 13,770, accounting for 2.3% of 
all cancer deaths in the US in 2021 [4, 7].

Prognosis and survival prediction estimate the likeli-
hood of recovery from a disease based on a patient’s clin-
ical condition [8]. Determining a disease prognosis plays 
an important role, especially in malignant diseases such 
as cancer. It is one of the most important elements that 
help clinicians decide on more appropriate treatments. 
Survival prediction helps patients be informed about 
treatment decisions and reduce their anxiety [9].

Different methods have been used to predict cancer 
prognosis [10–15]. Some of these studies have paid atten-
tion to ovarian cancer, and researchers have utilized sta-
tistical methods to predict the survival of patients with 
ovarian cancer [11–13]. For instance, Stenzel et  al. [12] 
analyzed the overall survival of ovarian cancer patients 
using a multivariable Cox proportional hazard model on 
the Surveillance, Epidemiology, and End Results (SEER) 
dataset. The results showed a 28% increased mortal-
ity risk in non-Hispanic black women compared to 
non-Hispanic white women. They also observed no dif-
ference in the risk of mortality between the survival of 
Hispanic women and non-Hispanic white women. Rut-
ten et al. [13] predicted the five-year survival of ovarian 
cancer using a Cox proportional hazard model. Dataset 
was collected from three registries that included ovar-
ian cancer patients who received bulking surgery. They 
also developed a nomogram to predict one-year, three-
year, and five-year survival of ovarian cancer patients. 
The c-statistic their model achieved was 0.71. However, 
in statistical methods, all samples in datasets are not uti-
lized, and the wrong sampling method could lead to data 
misinterpretation. Moreover, the statistical models are 
not explainable.

In addition to statistical techniques, the use of Machine 
Learning (ML) algorithms in the field of healthcare and 

medicine, to solve problems with different procedure 
and perspective, are growing dramatically [16]. Apply-
ing ML algorithms for predicting the survival of cancer 
patients is a relatively new field of study. Almost ML 
models are explainable models that use all samples of the 
training dataset and their output could be non-binary. 
Furthermore, they can be used for both classification 
and regression approaches simultaneously. Black box 
ML models are models that have low interpretability and 
transparency and the clinicians cannot see the models’ 
decision-making process. To address these challenges 
interpretable ML techniques have been developed and 
used to explain the process of predictions for black box 
ML models. Therefore, ML models can be made more 
understandable and reliable by using interpretable ML 
methods [17]. Shapley Additive Explanations (SHAP) is 
one of the methods based on game theory to interpret 
and explain the ML black box models. These models are 
used in various applications, including diagnosing, treat-
ing, and prognosis of different types of cancers. The liter-
ature shows that utilizing ML techniques in this domain 
has been promising, and there is some evidence that ML 
algorithms can outperform traditional statistical models 
[18–24].

In recent years, ovarian cancer has attracted research-
ers’ attention, and some studies developed ML classifiers 
to predict patients’ survival [14, 15]. For instance, Chen 
[14] used L2-regularized logistic regression to predict the 
mortality rate of fewer than 20 months of ovarian can-
cer patients in the SEER dataset. They achieved 0.62 for 
the Area Under the Curve (AUC) metric. Grimley et al. 
[15] used two datasets of ovarian carcinomas from the 
SEER database. The first dataset contained cases that 
had been staged for the extent of the tumor using T, N, 
and M criteria, and the second dataset was a derivative 
of the first one by treating age, histologic type, and grade 
as additional factors. They generated prognostic groups 
with the depiction in dendrograms using the Ensemble 
Algorithm for Clustering Cancer Data. Results revealed 
that the C-index of the International Federation of Gyne-
cology and Obstetrics staging system was 0.7371, which 
is slightly lower than the C-index of 0.7391 from the 
Ensemble Algorithm for Clustering Cancer Data in the 
first dataset. The analysis of the second dataset revealed 
that the A and H could be smoothly integrated with the 
T, N, and M criteria. Survival data were classified into 
nine prognostic groups with a C-index of 0.7605. Never-
theless, our literature review showed that there are some 
research aspects that need further research. The identi-
fied research gaps in this field are as follows:

•	 SEER database features have not been studied clini-
cally to extract the most relevant features affecting 
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the survival. In health informatics and bioinformatics 
fields of research, it is important that the parts of the 
study, including the dataset and its features, are clini-
cally reliable.

•	 In most studies, the dataset size is small and the 
number of samples used is low.

•	 Even though the existing dataset is imbalanced, 
balancing techniques that can have a constructive 
impact on the performance of ML models have not 
been considered.

•	 Statistical techniques, which are used to explain the 
relationship between variables, have been the main 
technique; and accurate prediction for survival has 
not been performed.

•	 Classification is the common approach used for 
survival prediction, and there is no study utilizing a 
regression approach for predicting ovarian cancer 
patients’ survival.

•	 Only binary classification was used; and multiple 
clinically meaningful classes have not been consid-
ered for different survival time intervals of ovarian 
cancer patients.

•	 Interpretability and explainability of ML models in 
this field of research have not been addressed in pre-
vious studies.

In this study, six ML models of K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), Decision Tree 
(DT), Random Forest (RF), Adaptive Boosting (Ada-
Boost), and Extreme Gradient Boosting (XGBoost) 
were developed to predict the survival of ovarian cancer 
patients in two approaches of classification and regres-
sion [25–27]. KNN uses proximity to make predictions. 
It votes for the most frequent label among the nearest 
neighbors in classification and the average of the labels 
of the nearest neighbors in regression [26]. SVM uses 
a hyperplane to classify the data points. This algorithm 
aims to maximize the margin of dissociation between 
classes [26]. DT is an ML algorithm with a tree structure 
that consists of branches and nodes that illustrates every 
possible solution for a problem. This algorithm uses 
impurity metrics to make decisions [26, 27]. RF algorithm 
is an ensemble of multiple DTs, and the final outcome of 
RF is the aggregation of the DTs’ results [26]. AdaBoost 
is an ensemble of multiple classifiers or regressors. The 
final outcome of this algorithm is the combination of 
the results of its classifiers or regressors [26]. XGBoost 
consists of multiple weaker classifiers or regressors, the 
results of which are combined to determine the final out-
put [25, 27]. It is the first time these algorithms are used 
to predict the survival of ovarian cancer patients based 
on the SEER database with classification and regres-
sion approaches simultaneously. These algorithms were 

modified since the best combination of hyperparameters 
was found using Grid Search. Grid Search is a method 
that evaluates all possible combinations of hyperparam-
eters and picks the combination with the best results.

Objectives and contributions
The current study is designed to address the men-
tioned research gaps in this domain. Therefore, it aims 
to provide models in both classification and regression 
approaches to determine the survival time period classes 
and the number of survival months using ML algo-
rithms. The proposed methods consist of a modified RF 
algorithm for the classification approach and a modified 
XGBoost algorithm for the regression approach. In sum-
mary, the followings are the main contributions of this 
study:

•	 Feature engineering for SEER dataset is done based 
on discussion between engineers and clinicians of 
this study.

•	 It is the first study that predicts ovarian cancer 
survival using both classification and regression 
approaches.

•	 It is the first study that utilizes the mentioned six ML 
models to predict ovarian cancer patients’ survival 
based on the SEER dataset.

•	 Classification and regression models of ML are used 
to accurately predict the number of survival months 
and the survival class of the patients, respectively.

•	 Classes are defined based on clinical guidelines to 
have meaningful results from a clinical point of view.

•	 Imbalanced data issue is addressed for the classifi-
cation approach to enhance the performance of the 
models.

•	 Models tuning are applied using Grid Search to find 
the best hyperparameters for the proposed ML models.

•	 An ML interpretable method has been used to 
explain how models make decisions to increase the 
chance of deploying these models in real practice.

Materials and methods
The methodology of this study is illustrated in Fig. 1. Dif-
ferent components of our method are described in the 
following sections.

Study design and cohort selection
There are serious concerns about reporting the findings 
of utilizing ML in the health domain, and there are ongo-
ing debates that most of the studies are not reproducible, 
and very difficult to judge their methodology and results. 
To address this issue, we followed transparent reporting 
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Fig. 1  Diagram of the steps performed in this study
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of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD) checklist [28, 29]. In this 
study, ovarian cancer data were collected from the SEER 
database. The SEER Stat program provides a database of 
cancer-related details and statistics. The SEER database 
is one of the most comprehensive and extensive pop-
ulation-based cancer registry data [4]. Ovarian cancer 
patients’ data between 2000 and 2016 were used in this 
study.

Outcome
For the classification approach, five clinically meaning-
ful classes of survival namely, Class 0 (zero to 6 months), 
Class 1 (6 months to one year), Class 2 (one to three 
years), Class 3 (three to five years), Class 4 (five years and 
older) were defined. For the regression approach, the sur-
vival time in the number of months was considered.

Data preparation
SEER database is one of the most comprehensive and 
largest cancer databases that contains information on 
cancer patients of 48% of the US population [30]. Various 
information like data on tumor morphology and stage 
at diagnosis, primary tumor site, patient demograph-
ics, the first course of treatment, and follow-up for vital 
status (survival) from the 22 geographic areas of the US 
has been collected. It is supported by the Surveillance 
Research Program in National Cancer Institution’s Divi-
sion of Cancer Control and Population Sciences [31].

For this study, the data of ovarian cancer patients 
between 2000 and 2016 was picked from the SEER data-
base. This database contained many features; there-
fore, we performed feature selection. Feature selection 
is the process of removing irrelevant features and noise 
from the dataset to increase the accuracy and predic-
tive power and decrease the learning time of the models. 
We performed feature selection under the supervision of 
a clinical researcher. So clinically significant and neces-
sary features in predicting the survival of ovarian cancer 
patients were selected. The final dataset contained 42,827 
samples and 17 features, as shown in Table 1. The survival 
months in this dataset were between 0 and 198 months.

Then, we used the Min-Max normalization method 
from the Sklearn library of Python. Doing so, the data 
was mapped to the range of (0,1) according to Eq.  (1), 
where Xmin is the minimum value, and Xmax is the maxi-
mum value of a feature in the dataset.

(1)Xnormalize =
X − Xmin

Xmax − Xmin

The survival of ovarian cancer has been evaluated 
in terms of 1, 3, 5, and 10 years following the diagno-
sis of cancer [32, 33]. However, shorter intervals can 
be selected to make survival predictions more precise. 
Therefore, for the classification approach, five classes of 
survival months, namely Class 0 (zero to six months), 
Class 1 (six months to one year), Class 2 (one year to 
three years), Class 3 (three years to five years), and Class 
4 (five years and above) were considered. Furthermore, 
to examine the survival of ovarian cancer patients accu-
rately, patients’ survival in the number of months was 
also predicted using the regression approach.

Feature importance
The collected dataset included many numerical and cat-
egorical features. Based on discussions with clinicians, 
irrelevant features and incomplete records were removed 
from the dataset. Then, pearson correlation coefficient 
was used to investigate the associations between all fea-
tures of the dataset. The correlation coefficient deter-
mines the degree and type of pairwise associations 
between features [34]. These coefficients have values 
between − 1 and 1, where 1 is the maximum correlation.

Determining the features’ importance of a dataset can 
be useful to support medical decisions and improve the 
patients’ quality of treatment [35]. It can be effective in 
predicting the survival of cancer patients to help clini-
cians make decisions by visualizing how decisions are 
made in the models [36, 37]. Therefore, we applied the 
SHAP library to interpret the model on our dataset. This 
vision and insight determine each feature’s importance 
and effectiveness in decision-making within the model 
[38].

Data imbalance
Data skewness measures the asymmetry of the distribu-
tion of a dataset. It is one of the inevitable challenges in 
many datasets, especially medical datasets. Skewed data 
can lead to a non-uniform sampling of the target feature 
and have an adverse effect on the performance of ML 
models. To solve this issue, Synthetic Minority Over-
sampling Technique (SMOTE) was used. SMOTE is a 
technique that creates synthetic data to oversample the 
minority classes in a dataset [39, 40]. After balancing the 
dataset, we have 14,778 samples for each class resulting 
in a total of 73,890 samples for all classes in the classi-
fication approach.  One of the methods of testing the 
skewness of dataset is Pearson’s second coefficient  of 
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Table 1  Dataset description

Feature Domain of values Type of feature

County 165 different values Categorical

Histologic type ICD-O-3 150 different values Categorical

Laterality 1. Bilateral, single primary
2. Paired site, but no information concerning laterality
3. Right - origin of primary
4. Left - origin of primary
5. Only one side - side unspecified

Categorical

Radiation sequence with surgery 1. No radiation and/or cancer-directed surgery
2. Radiation after surgery
3. Radiation prior to surgery
4. Sequence unknown, but both were given
5. Radiation before and after surgery
6. Intraoperative radiation

Categorical

Reason no cancer-directed surgery 1. Surgery performed
2. Not recommended
3. Recommended but not performed, unknown reason
4. Not recommended, contraindicated due to other cond; autopsy only
5. Not performed, patient died prior to recommended surgery

Categorical

Sequence number 1. One primary only
2. 1st of 2 or more primaries

Categorical

Race recode 1. White
2. Black
3. Asian or Pacific Islander
4. American Indian/Alaska Native

Categorical

Marital status at diagnosis 1. Married (including common law)
2. Widowed
3. Single (never married)
4. Divorced
5. Separated
6. Unmarried or Domestic Partner

Categorical

PRCDA region 1. Pacific Coast
2. East
3. Northern Plains
4. Southwest
5. Alaska

Categorical

Summary stage 1. Distant
2. Regional
3. Localized

Categorical

Insurance recode 1. Insured
2. Insured/No specifics
3. Any Medicaid
4. Insurance status unknown
5. Uninsured

Categorical

CS site-specific factor 1 6 different numeric values (Mean:509, Standard deviation: 535.71, Range: 10–999) Numerical

Year of diagnosis 17 different years (Range: 2000–2016) Numerical

Age at diagnosis 100 different ages (Range: 0-113) Numerical

Chemotherapy recode 1. yes
2. no

Categorical

Rural-Urban continuum code 1. Counties in metropolitan areas GE 1 million pop
2. Counties in metropolitan areas of 250,000 to 1 million pop
3. Counties in metropolitan areas of LT 250 thousand pop
4. Urban pop of 2,500 to 19,999, adjacent to a metro area
5. Urban pop of 2,500 to 19,999, not adjacent to a metro area
6. Urban pop of GE 20,000 adjacent to a metropolitan area
7. Urban pop of GE 20,000 not adjacent to a metropolitan area
8. Comp rural LT 2,500 urban pop, not adjacent to metro area
9. Comp rural LT 2,500 urban pop, adjacent to a metro area

Categorical

Grade 1. Well differentiated; Grade I
2. Moderately differentiated; Grade II
3. Poorly differentiated; Grade III
4. Undifferentiated; anaplastic; Grade IV

Categorical
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skewness test. This method determines the symmetry of 
the distribution  of the dataset.  Therefore, according to 
Eq. (2), this skewness test method was used to show the 
symmetry of the distribution of our dataset [41].

In Eq. (2), x is the mean, m is the median, and s is the 
standard deviation.

Predictive models development
The KNN algorithm is one of the simplest supervised 
ML algorithms. This algorithm processes all the samples 
of training to make a prediction. For the classification 
approach, it finds the K-nearest neighbors and predicts 
the class with the majority of votes of the nearest neigh-
bors. For the regression approach, this algorithm finds the 
K-nearest neighbors and predicts the desired value by cal-
culating the average value of the nearest neighbors [26].

The SVM algorithm is an instance-based and super-
vised ML method that separates data samples using 
hyperplanes. It maximizes the margin between classes. 
The samples on one side of the line are considered simi-
lar and have the same category. This algorithm is used for 
both classification and regression approaches [26]. Equa-
tion (3) shows SVM’s optimization problem.

In Eq. (3), the tradeoff between guaranteeing that sam-
ples are located on the correct side of decision bounda-
ries and expanding the size of decision boundaries is C , 
and the number of samples is N  . To create non-linear 
boundaries, SVM uses kernels. The most common ker-
nel is the Radial Basis Function kernel which is shown in 
Eq. (4).

In Eq.  (4), the Euclidean distance of two vectors is 
∥
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criterion, which is shown in Eq. (5). This algorithm con-
sists of leaves, roots, and branches [26, 27].

In Eq. (5) ratio of class at the node of i is P.
The RF algorithm is one of the most popular supervised 

ML algorithms. This algorithm is used for classification 
and regression approaches. To reach a more robust per-
formance, it considers many trees instead of relying on 
one DT and makes predictions from each tree based 
on the majority vote. More trees in this algorithm often 
improve performance and prevent over-fitting. This algo-
rithm is one of the most effective algorithms of ML in 
many applications [26].

The AdaBoost algorithm is a supervised ML tech-
nique that belongs to the boosting family of algorithms. 
In this algorithm, a problem is predicted by several 
different classifiers or regressors, usually DT, and the 
results are combined to determine the final result for 
the problem. The training of the classifiers or regres-
sors of this algorithm is sequential, which means they 
are trained based on the result of the previous classifier 
or regressor [26].

One of the most powerful supervised ML algorithms 
is the XGBoost algorithm. This algorithm is an enhanced 
form of Gradient Boosting (GB). In this algorithm, sev-
eral different classifiers or regressors predict a problem, 
and the combination of the results is the final result for 
the problem. Compared with GB, the model gener-
alization capabilities of XGBoost are better due to the 
advanced regularization. It is also faster and more effi-
cient than GB. This algorithm is used to predict classifi-
cation and regression approaches [25, 27].

Moreover, five-fold cross-validation was applied to pre-
vent over-fitting and evaluate the performance of imple-
mented models [42]. In each iteration, 80% of the dataset 

(5)Gini(t) = 1−
∑

i=1

P( i|t)2

Table 2  The best hyperparameters of models for the 
classification approach

Model Hyperparameters

KNN Algorithm: kd_tree, p: 2, n_neighbors: 2

SVM Kernel: rbf, gamma: 0.1, C: 1

DT Spliter: best, max_depth: none, criterion: gini

RF Criterion: gini, max_depth: none, n_estimators: 100

AdaBoost n_estimators: 100, learning_rate: 1.5, algorithm: SAMME.R

XGBoost Sampling method: gradiant_based, eta: 0.5, booster: gbtree
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was dedicated for training, and the rest part was used for 
testing.

This study determined a range of hyperparameters’ 
values for experimental implementation. They are 
shown   in Table 10 in Appendix 1. Using the Grid Search 
method, the optimal hyperparameters of all models were 
achieved. The best hyperparameters selected by this 
method are shown in Tables 2 and 3 for the classification 
and regression approaches, respectively.

Predictive models evaluation
Various performance metrics were used for the evalua-
tion of ML models. Ordinary Least Squares is a type of 
linear least-squares method to estimate the parameters in 
a linear regression model that describes the relationship 
between independent quantitative features and depend-
ent features [43, 44]. It is used to show the statistically 
significant difference between the values of features. This 
test considers statistical significance (p-value) at different 
levels of 0.05, 0.01, and 0.001.

The confusion matrix is one of the classification evalua-
tion criteria. This matrix is a square matrix whose dimen-
sion is n× n . The parameter n is equal to the number of 
classes in the classification [45]. After training and testing 
the models, we used the following ML evaluation criteria 
for the classification approach [46–48]. Accuracy is the 
ratio between the correct predictions of the data points 
to the total number of predictions. This criterion is used 
to evaluate the ML classification models [47]. The accu-
racy formula is shown in Eq. (6).

Precision or Positive Predictive Value (PPV) is one 
of the evaluation criteria of ML models. This criterion 
is the ratio between the total number of true positives 
to the total number of false positives and true posi-
tives. Precision indicates the accuracy of a model in a 

(6)Accuracy =
TP + TN

TP + FP + FN + TN

positive prediction [48]. Equation (7) shows the formula 
of Precision.

Negative predictive value (NPV) is calculated as the 
ratio between the total number of true negatives to the 
total number of false negatives and true negatives. It is 
one of the evaluation criteria of ML classification mod-
els that shows the probability that a person whose dis-
ease test is negative is truly healthy [48]. NPV formula is 
shown in Eq. (8).

Sensitivity or Recall is the ratio between the total num-
ber of true positives to the total number of false negatives 
and true positives. This criterion is used to evaluate ML 
models and the model’s ability in detecting positive sam-
ples [46]. The sensitivity formula is shown in Eq. (9).

Specificity is defined as the ratio between the total 
number of true negatives to the total number of false 
positives and true negatives. It is used in the performance 
evaluation of ML models. This criterion is important 
when the negative cases have priority. Because it shows 
the ability of the model to correctly detect true negatives. 
Equation (10) shows the formula of Specificity [46].

F1-Score calculates the harmonic mean of recall 
and precision and combines them into one metric so 
that models can be compared with one metric. A high 
F1-Score indicates low false positives and low false nega-
tives [46, 48]. The F1-Score formula is shown in Eq. (11).

In Eqs.  (6–10), TP stands for true positive, TN stands 
for true negative, FP stands for false positive, and FN 
stands for false negative.

The AUC means the area bounded by the Receiver 
Operating Characteristic curve. It is a measure of the 
overall accuracy of the models. The results of AUC range 
from 0 to 1, where a low value means bad model perfor-
mance and a high value means an accurate model [47].

(7)

Precision ∨ Positive Predictive Value (PPV ) =
TP

FP + TP

(8)Negative Predictive Value (NPV ) =
TN

FN + TN

(9)Sensitivity ∨ Recall =
TP

FN + TP

(10)Specificity =
TN

FP + TN

(11)F1− Score =
2× Precision× Recall

Precision+ Recall

Table 3  The best hyperparameters of models for the regression 
approach

Model Hyperparameters

KNN Algorithm: ball_tree, p: 2, n_neighbors: 14

SVM Kernel: rbf, gamma: 1, C: 10

DT Spliter: best, max_depth: none, criterion: gini

RF Criterion: gini, max_depth: none, n_estimators: 150

AdaBoost n_estimators: 50, learning_rate: 0.5, algorithm: SAMME

XGBoost Sampling method: uniform, eta: 0.3, booster: gbtree
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We also used the following evaluation criteria for the 
regression approach (prediction and prognosis of patients’ 
survival months). Root Mean Square Error (RMSE) calcu-
lates the standard deviation of the prediction errors. Pre-
diction errors are the distance between the regression line 
and the data points. It measures the data’s concentration 
around the regression line. RMSE’s value is always non-
negative, and a lower RMSE value is better than a higher 
value [49]. Equation (12) shows the formula of RMSE.

In Eq. (12), i is a sample, m means the number of sam-
ples, Xi shows the actual target value for sample i , and Yi 
denotes the predicted target value for sample i.

R-Squared (R2)  is a statistical measure that is used in 
the regression. It determines the proportion of variance 
in the dependent variable that is explained by the inde-
pendent variable. R² indicates how well the regression 
model fits the data. Higher R² indicates that the relation-
ship between the dependent variables and the regression 
model is strong [50]. The R² formula is shown in Eq. (13).

In Eq. (13), TSSmeans the total sum of squares and RSS
means the residual sum of squares.

(12)

RootMeanSquareError(RMSE) =

√

1

m
×

∑m

i=1
(Xi − Yi)

2

(13)R− Squared
(

R2
)

=
TSS − RSS

TSS

Results
Using the Pearson correlation coefficient, the correlation 
between features of the primary dataset was investigated. 
Some of these features had correlation coefficient values 
greater than 0.5 and consequently had a strong associa-
tion with each other. The year of diagnosis was related to 
the insurance record with a correlation coefficient value 
of 0.85. Furthermore, the year of diagnosis was related to 
the CS site-specific factor 1 with a correlation coefficient 
value of 0.52. For other features, the correlation coeffi-
cient values were less than 0.5. Moreover, there was no 
complete inverse relevance between the features.

Furthermore, the skewness test was conducted in this 
study, where values greater than 1 and less than − 1 
indicate high skewness. The initial value for the origi-
nal dataset was 0.213, which is acceptable, but it can be 
improved by using a proper balancing technique. There-
fore, SMOTE was applied to the original dataset, and 
the skewness was measured. The skewness value for the 
new dataset was − 0.032, which is closer to 0, indicating a 
more symmetric and balanced distribution.

Table  4 shows the comparison of the significance of 
the relation between the features of our dataset and the 
outcome variable. Some of the features were rejected at 
0.05 and some at 0.01. The 0.001 level was used to ensure 
that there was no feature that we did not know had been 
rejected or accepted.

Table 4  Comparing the level of significance of the dataset’s features

Feature P-Value < 0.05 P-Value < 0.01 P-Value < 0.001

County Reject Reject Reject

Histologic type ICD-O-3 Accept Accept Accept

Laterality Accept Accept Accept

Radiation sequence with surgery Reject Reject Reject

Reason no cancer-directed surgery Accept Accept Accept

Sequence number Accept Accept Accept

Race recode Accept Accept Accept

Marital status at diagnosis Accept Accept Accept

PRCDA region Reject Reject Reject

Summary stage Accept Accept Accept

Insurance recode Accept Accept Accept

CS site-specific factor 1 Accept Accept Accept

Year of diagnosis Accept Accept Accept

Age at diagnosis Accept Accept Accept

Chemotherapy recode Accept Accept Accept

Rural-Urban continuum code Accept Accept Reject

Grade Accept Accept Accept
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Classification models
Accuracy, PPV, NPV, sensitivity or recall, specificity, 
F1-Score, and AUC were calculated to evaluate the per-
formance of the proposed classification models. Table 5 
shows the average performance of the five folds of cross-
validation of the proposed models.

Similar to other studies, accuracy and AUC met-
rics were considered as the most important criteria for 
evaluating the models [51, 52]. As shown in Table 5, on 

Table 5  Average performance of the five folds of the proposed classification models

Model Class Accuracy (%) PPV (%) NPV (%) Sensitivity or 
recall (%)

Specificity (%) F1-Score (%) AUC (%)

KNN Class 0 85.68 63.45 91.64 67.07 90.34 65.20 78.70

Class 1 90.23 70.04 97.16 89.45 90.43 78.56 89.94

Class 2 81.41 54.77 86.02 40.45 91.65 46.52 66.05

Class 3 89.52 74.53 93.13 72.34 93.82 73.41 83.08

Class 4 93.26 84.66 95.29 80.99 96.33 82.78 88.66

Average 88.02 69.49 92.65 70.06 92.51 69.29 81.29

SVM Class 0 83.14 56.78 91.09 65.80 87.47 60.95 76.64

Class 1 74.69 35.30 83.36 31.85 85.39 33.48 58.62

Class 2 78.05 37.21 81.38 13.89 94.09 20.20 53.99

Class 3 75.78 35.80 82.74 26.51 88.11 30.45 57.31

Class 4 70.98 37.64 90.12 68.62 71.58 48.61 70.10

Average 76.53 40.55 85.74 41.33 85.33 38.74 63.33

DT Class 0 83.60 59.42 89.29 56.67 90.33 58.01 73.50

Class 1 84.38 60.52 90.67 63.08 89.71 61.77 76.39

Class 2 76.15 39.99 84.74 38.34 85.61 39.13 61.98

Class 3 82.09 55.18 88.91 55.80 88.67 55.48 72.23

Class 4 86.27 65.16 91.77 67.40 90.99 66.26 79.19

Average 82.50 56.05 89.08 56.26 89.06 56.13 72.66

RF Class 0 88.51 69.79 93.63 74.99 91.88 72.30 83.44

Class 1 92.09 83.16 94.08 75.81 96.16 79.31 85.98

Class 2 81.61 54.08 88.37 53.35 88.68 53.70 71.01

Class 3 89.21 74.04 92.81 70.95 93.78 72.46 82.37

Class 4 92.18 78.49 95.91 83.96 94.24 81.13 89.10

Average 88.72 71.91 92.96 71.81 92.95 71.78 82.38
AdaBoost Class 0 85.17 63.25 90.50 61.53 91.10 62.02 76.32

Class 1 78.13 46.17 85.55 40.85 87.46 42.77 64.16

Class 2 75.37 38.95 84.99 40.60 84.07 39.70 62.34

Class 3 76.70 36.97 82.46 23.43 90.02 28.67 56.72

Class 4 75.86 42.85 89.27 61.87 79.37 50.62 70.62

Average 78.25 45.64 86.55 45.66 86.40 44.76 66.03

XGBoost Class 0 87.98 67.12 94.33 78.28 90.41 72.27 84.34

Class 1 85.78 68.45 89.01 53.69 93.81 60.18 73.75

Class 2 76.64 43.22 87.63 53.47 82.44 47.78 67.95

Class 3 80.73 52.87 84.89 34.29 92.34 41.56 63.31

Class 4 82.60 55.61 90.79 64.68 87.08 59.79 75.88

Average 82.75 57.45 89.33 56.88 89.22 56.32 73.05

Table 6  The computational time of one cycle of classification 
models

Model Time (Seconds)

KNN 59.64

SVM 2109.13

DT 280.74

RF 7.57
AdaBoost 171.68

XGBoost 15.07
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Fig. 2  Confusion matrices of all models in the average of all folds
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Fig. 3  The AUC diagrams of all models in the fifth fold
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average, RF had the best performance for all evaluation 
criteria for the classification approach,  which is bolded 
and italicized in Table  5. Furthermore, the computing 
time of one cycle of each fold of classification models is 
shown in Table 6.The lowest computing time is bolded in 
Table 6.

RF model achieved 88.72%, 71.91%, 92.96%, 71.81%, 
92.95%, 71.78%, and 82.38%, on average, for all classes 
regarding the accuracy, PPV, NPV, sensitivity or recall, 
specificity, F1-Score, and AUC, respectively. More 
detailed values obtained for five folds of the RF model are 
illustrated in Table 11 of Appendix 1. Also, the RF model 
in the classification approach achieved the lowest execu-
tion time in one-fold among all other proposed models.

Moreover, the performances of all models for all folds were 
compared using confusion matrices, and the results were 
shown in Fig. 2. The fifth fold was used for visualizing the 
performance of the developed models based on the AUC 
metric, and the results are provided in Fig. 3. Moreover, as 
the best model (RF model), the confusion matrices and AUC 
diagrams of the RF model for all folds are shown in  Fig. 7 
and Fig. 8 in Appendix 1, respectively.

Regression models
To evaluate the performance of the proposed models 
of this study for the regression approach, the values of 

RMSE and R2 were calculated due to their importance 
which is in the same direction as the study’s criteria [53]. 
Furthermore, the computing time of one cycle of each 
fold of regression models is shown in Table 7.The lowest 
computing time is bolded in Table 7.

The average performance of the five folds cross-valida-
tion of the proposed models is shown in Table 8. As seen, 
XGBoost with RMSE = 20.61% and R2 = 0.4667 had the 
best performance for all evaluation metrics. The results 
of XGBoost for all five folds are listed in Table  12 in 
Appendix 1. Also, the XGBoost model in the regression 
approach achieved the lowest execution time in one-fold 
among all other proposed models.

Evaluation of the best‑proposed models
The results showed that RF and XGBoost had the best 
performance for predicting the survival of ovarian can-
cer patients in classification and regression approaches, 
respectively.

The most important features determined by RF are 
shown in Fig.  4. As seen, the nine most important fea-
tures with an average SHAP value greater than one are 
histologic type ICD-O-3, chemotherapy recode, year of 
diagnosis, age at diagnosis, summary stage, grade, mari-
tal status at diagnosis, laterality, and sequence number. 
The histologic type ICD-O-3 is the most discriminative 
feature for the purpose of predicting survival.

Figure  5 shows the effect of nine important features 
of this study and their impacts on the models’ output 
using the SHAP value. We randomly selected the 20th, 
40th, 60th, 80th, and 100th trees created by our RF 
model with a depth of four to display predicted classes as 
shown in Figs. 9, 10, 11 and 12 in Appendix 1 and Fig. 6, 
respectively.

Discussion
In this study, we developed six ML models, including 
SVM, KNN, DT, RF, AdaBoost, and XGBoost, to predict 
the survival of ovarian cancer patients. For this aim, both 
classification and regression approaches for the SEER 
dataset were implemented. The promising results of this 
study are due to the appropriate size of the dataset’s sam-
ples and correct preprocessing. Therefore, we were able 
to get accurate outcomes with relatively few errors in the 
results [54].

The survival intervals of cancer patients are important 
and meaningful for clinicians, and they can plan patients’ 
treatment better based on that [55]. Therefore, in this 
study, with the help of an expert clinician, five classes 
including Class 0 (zero to 6 months), Class 1 (6 months 

Table 7  The computational time of one cycle of regression 
models

Model Time (Seconds)

KNN 15.82

SVM 102.84

DT 178.01

RF 16.26

AdaBoost 12.17

XGBoost 0.71

Table 8  Average performance of the five folds of the proposed 
regression models

Model RMSE (%) R2

KNN 24.71 0.2372

SVM 25.62 0.1804

DT 25.14 0.2104

RF 24.25 0.2658

AdaBoost 27.76 0.3682

XGBoost 20.61 0.4667
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Fig. 4  The most important features of the dataset of this study

Fig. 5  Impact of the features of the dataset on the model’s decision-making



Page 15 of 24Sorayaie Azar et al. BMC Medical Informatics and Decision Making          (2022) 22:345 	

to one year), Class 2 (one to three years), Class 3 (three 
to five years), Class 4 (five years and older) were consid-
ered. For the regression approach, the number of survival 
months was predicted.

Some studies have used the SEER dataset to predict 
ovarian cancer survival [11–15]; however, this field 
has some open areas that need further research. In the 
current study, we identified some of those gaps and 
addressed them. First, as interdisciplinary research, 
it is necessary to have a clinician in the research team 
to curate data, so our clinician evaluated the dataset 
carefully to identify the relevant features for survival 
prediction. Second, based on discussions with the 

clinician, we defined five classes that are meaningful 
from the clinical point of view. Third, to the best of 
our knowledge, the current approach in the studies is 
to develop classifiers; however, to have more accurate 
results, we implemented the regression approach to 
predict survival in months. Fourth, we paid attention to 
the interpretability and transparency of our system, so 
SHAP was used to explain the impact and importance 
of each feature on the model prediction performance. 
Moreover, we developed DTs of the RF technique that 
can help clinicians better understand the prediction 
process.

Fig. 6  100th tree of our RF model

Table 9  Comparison between previous studies and this study

Study Dataset Model Class/group Accuracy AUC​ F1-score C-index Explainability

Chen [14] SEER (4,128 samples) L2-regularized 
logistic regres-
sion

Binary classifica-
tion (survived 
more than 22 
months, sur-
vived less than 
22 months)

0.761 0.621 0.216 - no

Grimley et al. 
[15]

SEER Dataset 1 (39,514 
samples)

Ensemble Algo-
rithm for cluster-
ing Cancer Data 
(EACCD)

9 epithelial ovar-
ian carcinoma 
prognostic 
groups

- - - 0.7391 -

Dataset 2 (25,291 
samples, derived 
from dataset 1)

0.7605

This study SEER (42,827 samples) Random Forest Multiclass 
classification (5 
classes)

0.887 0.823 0.717 - yes
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Our results showed that RF, with an accuracy of 88.72% 
and AUC of 82.38% on average, had the best performance 
for the classification approach, which is also better than 
models presented in the previous literature [14, 15]. For 
the regression approach, the XGBoost model with a 
RMSE of 20.61% and an R2 of 0.4667 had the best perfor-
mance. Our proposed best models in each approach have 
the least computing time in one cycle run time compared 
to other proposed models.

Moreover, the performance of the ML models for each 
class was evaluated. Based on the results, for Class 0, the 
XGBoost model had the best performance, with an AUC 
of 84.34%. For Class 1, KNN obtained an AUC of 89.94%. 
For Class 2, RF model had an AUC of 71.01%. For Class 
3, KNN gained an AUC of 83.08%. Finally, for Class 4, 
RF had an AUC of 89.10%. These findings show that the 
best ML algorithm in each survival class is different. The 
proposed RF and XGBoost models are both tree-based; 
therefore, they are explainable, which means they can be 
interpreted to make them understandable for humans, 
and their DTs can be easily displayed. These two attributes 
can help clinicians better comprehend the models’ deci-
sion-making. Furthermore, their computational cost is 
acceptable, and they can be easily used for large datasets.

Table  9 compares the dataset, method, outcome, per-
formance, and explainability of two previous studies and 
this study. Our study and Chen’s study [14] used clas-
sification models, and Grimley et  al. study [15] used a 
clustering model. As shown in the table, this study used 
a larger number of samples compared to the two other 
studies. Comparing the first study [14] with this study, it 
can be seen that the first study [14] used binary classifi-
cation and predicted whether the patient would survive 
more than 22 months or not; however, we used multiclass 
classification to predict the survival intervals of patients. 
This range of classification provides more detailed infor-
mation and planning possibilities for the clinicians. 
Despite using multiclass classification, the performance 
of our study is better than Chen’s study [14] in all crite-
ria. Moreover, unlike Chen’s study [14], our study used 
an interpretation method to clarify the decision-making 
process of the proposed model.

The pandemic of COVID-19 has delayed the screen-
ing, diagnosis, and treatment of cancers, including ovar-
ian cancer, which is expected to increase their mortality 
rates in future [56, 57]. Nevertheless, providing a tool 
that can accurately predict the survival of cancer patients 
will enable clinicians to recognize high-risk patients, pri-
oritize them in case of using limited resources, and make 
evidence-based treatment decisions for them. The ML 

models proposed in this study have shown satisfactory 
performance in predicting the survival of ovarian can-
cer patients. The accuracy of predicting patients’ survival 
and diagnosis using ML models has increased signifi-
cantly since 2000 [58]. In addition, the use of interpret-
able ML models has been able to show better and more 
understandable results than statistical models [59]. ML 
models’ interpretability and explainability, which show 
the effect of each feature on the prediction and decision-
making of models, increase clinical and healthcare con-
fidence in ML models [59]. In this study, histologic type 
ICD-O-3 is the most important feature in the model’s 
decision-making and has the highest SHAP value, as it is 
selected as the root of the tree in three of the five cases. 
This feature is a code that describes the morphology and 
topography of the tumors [60], both of which should be 
considered in predicting survival and planning treatment 
of ovarian cancer patients, as they influence survival [61, 
62]; therefore, histologic type ICD-O-3 is an effective and 
important feature in ovarian cancer patients’ survival 
prediction. The effectiveness, importance, and usefulness 
of this feature have also been identified in other studies 
[62, 63].

It is noteworthy that ML models have the ability to pre-
dict from large and complex datasets, which highlights 
their increasing importance [37]. The prediction pro-
vided by ML algorithms is different from the epidemio-
logical predictions since ML algorithms predict based 
on individual patients’ features and not on the base of a 
population average. Therefore, using ML algorithms as a 
valuable tool in times of crisis can be very helpful to clini-
cians, and the results of our study contribute to realizing 
the availability of such a tool using ML algorithms.

Strengths and limitations
This study has various strengths. The dataset features used 
were clinically meaningful and selected by our expert cli-
nician. Correct and accurate preprocessing has been done 
on the dataset to avoid errors and mistakes during train-
ing and testing of ML models. For the first time, both clas-
sification and regression approaches simultaneously with 
multiple ML models have been implemented on the ovar-
ian cancer patients’ dataset from the SEER database. To 
increase the performance of the models, the dataset has 
been balanced using the SMOTE method. The proposed 
models had an acceptable computational cost and were 
explainable. The SHAP method has been used to increase 
the confidence and clarity of clinicians in deciding on the 
best ML model in the classification approach. Moreover, 
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the DTs of the best classification model of this study were 
drawn to provide better insight for clinicians.

However, this study has some limitations. First, it 
was not possible for us to implement the proposed 
models with more hyperparameters due to the limited 
resources. Second, it was not possible to validate our 
predictive models externally due to lack of similar avail-
able datasets.

Implication
The main audience of this study is clinical and ML 
researchers who are interested in the detailed analy-
sis of the survival of cancer patients. Since we consider 
explainability, our best models can be tested as a prac-
tical tool to help clinicians to get an insight about the 
patients’ condition. Our results have many implications 
for managing ovarian cancer patients. These include 
updating or developing clinical guidelines and proto-
cols based on the most important factors affecting these 
patients’ survival. Developing a clinical decision support 
tool based on our results is also another possible impli-
cation. The findings of this study can also be interesting 
for other researchers from different fields. Furthermore, 
developers in the field of ML can use the findings of this 
study to evaluate various techniques and create predic-
tion models.

Conclusion
Ovarian cancer is one of the most common cancers in 
women. In this study, we developed ML techniques for 
both classification and regression approaches using the 
SEER dataset. An expert clinician helped us in prepar-
ing the data as well as design the classes to gain clini-
cally meaningful results. To the best of our knowledge, 
our study is the first study using the regression approach 
for predicting ovarian cancer patients’ survival months.

In classification, RF, and in regression, XGBoost had 
the best performance. Both are tree-based and explain-
able. In addition, we considered the interpretability and 
transparency of the decision-making process by report-
ing the results using SHAP. The results of our study were 
promising and can be used as an auxiliary tool for clini-
cians to get insights into the condition of ovarian cancer 
patients, especially in situations like COVID-19, where a 
vast load goes to healthcare systems, and clinicians’ pri-
orities would be changed.

We are currently collecting a new dataset of ovarian can-
cer patients in West Azerbaijan of Iran and will externally 
evaluate our proposed models in the future using this data.

Appendix
See Tables 10, 11 and 12. 

Table 10  Examined hyperparameters for proposed ML models

Model Hyperparameters

KNN algoritgm: (kd_tree, ball_tree, auto)
p: (1, 2)
n_neighbors: (1–15)
other hyper-parameters values: default

SVM kernel: (rbf, poly, linear)
gamma: (0.01, 0.1, 1, 10, 50, 100)
C: (0.01, 0.1, 1, 10, 50, 100)
other hyper-parameters values: default

DT spliter: (best, random)
max_depth: (5, 10, 20, None)
criterion: (entropy, gini)
other hyper-parameters values: default

RF criterion: (entropy, gini)
max_depth: (5, 10, 15, None)
n_estimators: (50, 100, 150, 200)
other hyper-parameters values: default

AdaBoost n_estimators: (50, 100, 150, 200)
learning_rate: (0.5–2.0)
algorithm: (SAMME, SAMME.R)
other hyper-parameters values: default

XGBoost sampling method: (gradiant_based, uniform, subsample)
eta: (0.1–0.9)
booster: (dart, gblinear, gbtree)
other hyper-parameters values: default
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Table 11  Performance of the RF model in all the folds of the dataset

Model Class Accuracy (%) PPV (%) NPV (%) Sensitivity or 
Recall (%)

Specificity (%) F1-Score (%) AUC (%)

Fold 1 Class 0 88.40 68.93 93.74 75.12 91.67 71.89 83.40

Class 1 92.10 83.96 93.90 75.27 96.36 79.38 85.82

Class 2 81.31 53.98 87.86 51.56 88.85 52.74 70.21

Class 3 89.69 74.19 93.45 73.25 93.74 73.72 83.49

Class 4 91.96 77.96 95.82 83.68 94.05 80.71 88.86

Fold 2 Class 0 88.67 70.21 93.68 75.14 92.04 72.59 83.59

Class 1 92.25 82.25 94.50 77.15 95.93 79.62 86.54

Class 2 81.81 56.45 88.05 53.72 89.16 55.05 71.44

Class 3 89.16 73.17 92.98 71.32 93.56 72.24 82.44

Class 4 92.18 78.46 95.88 83.67 94.30 80.98 88.98

Fold 3 Class 0 88.49 70.53 93.36 74.22 92.12 72.33 83.17

Class 1 92.29 83.34 94.34 77.09 96.12 80.09 86.60

Class 2 82.08 53.42 89.20 55.14 88.52 54.27 71.83

Class 3 89.13 74.16 92.59 69.86 93.93 71.95 81.90

Class 4 92.32 79.73 95.74 83.57 94.56 81.60 89.06

Fold 4 Class 0 88.75 70.52 93.89 76.52 91.86 73.40 84.19

Class 1 91.95 83.40 93.82 74.63 96.29 78.77 85.46

Class 2 81.36 54.23 87.98 52.40 88.73 53.30 70.57

Class 3 89.21 73.84 92.88 71.22 93.70 72.51 82.46

Class 4 92.61 78.39 96.44 85.55 94.31 81.81 89.93

Fold 5 Class 0 88.25 68.78 93.49 74.00 91.75 71.29 82.87

Class 1 91.87 82.88 93.86 74.94 96.11 78.71 85.53

Class 2 81.49 52.38 88.79 53.96 88.15 53.16 71.05

Class 3 88.89 74.87 92.17 69.15 94.00 71.89 81.57

Class 4 91.87 77.92 95.71 83.35 94.02 80.54 88.69

Average Class 0 87.98 67.12 94.33 78.28 90.41 72.27 84.34

Class 1 85.78 68.45 89.01 53.69 93.81 60.18 73.75

Class 2 76.64 43.22 87.63 53.47 82.44 47.78 67.95

Class 3 80.73 52.87 84.89 34.29 92.34 41.56 63.31

Class 4 82.60 55.61 90.79 64.68 87.08 59.79 75.88

Table 12  Performance of the XGBoost model in all the folds of the dataset

Fold RMSE (%) R2

Fold 1 23.48 0.3061

Fold 2 19.74 0.5010

Fold 3 20.46 0.5016

Fold 4 19.32 0.5234

Fold 5 20.06 0.5016

Average 20.61 0.4667



Page 19 of 24Sorayaie Azar et al. BMC Medical Informatics and Decision Making          (2022) 22:345 	

See figures 7, 8, 9, 10 , 11 and 12 

Fig. 7  Confusion matrices of all folds of the RF model.
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Fig. 8  AUC of all the folds of the RF model
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Fig. 9  20th tree of our RF model.

Fig. 10  40th tree of our RF model.
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Fig. 11  60th tree of our RF model.

Fig. 12  80th tree of our RF model.
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