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Abstract 

Background:  Causal inference is a crucial element within medical decision-making. There have been many methods 
for investigating potential causal relationships between disease and treatment options developed in recent years, 
which can be categorized into two main types: observational studies and experimental studies. However, due to the 
nature of experimental studies, financial resources, human resources, and patients’ ethical considerations, research-
ers cannot fully control the exposure of the research participants. Furthermore, most existing observational research 
designs are limited to determining causal relationships and cannot handle observational data, let alone determine the 
dosages needed for medical research.

Results:  This paper presents a new experimental strategy called quasi-intervention for quantifying the causal effect 
between disease and treatment options in observed data by using a causal inference method, which converts the 
potential effect of different treatment options on disease into computing differences in the conditional probability. 
We evaluated the accuracy of the quasi-intervention by quantifying the impact of adjusting Chinese patients’ neu-
trophil-to-lymphocyte ratio (NLR) on their overall survival (OS) (169 lung cancer patients and 79 controls).The results 
agree with the literature in this study, consisting of nine papers on cohort studies on the NLR and the prognosis of 
lung cancer patients, proving that our method is correct.

Conclusion:  Taken together, the results imply that quasi-intervention is a promising method for quantifying the 
causal effect between disease and treatment options without clinical trials, and it could improve confidence about 
treatment options’ efficacy and safety.
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Background
In biomedicine, causal inference often relies on the 
framework of counterfactual reasoning. For example, 
given an observed target image with lesions and a refer-
ence image without lesions in the corresponding region, 
what would the features of the target image look like if 
the lesions were removed? Through such comparison 
or thinking, researchers can quickly estimate the causal 

relationship, find the answer to the question, and relieve 
the suffering of the patient. Counterfactuals are located 
at the top of the ladder of causation [1], which is Judea 
Pearl’s ladder of three different levels based on cognitive 
ability, with the remaining two levels being association 
and intervention. Under counterfactual theory, everyone 
has a potential outcome in different states, and by com-
paring the outcomes of individuals in different states, 
the causal effect of treatment on the outcome can be 
obtained [2]. However, in practice, counterfactuals are 
never observed because a single person (or group) cannot 
choose different states at the same time and place, so how 
to use observational and experimental data to extract 
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information about counterfactual scenarios becomes the 
focus of scholarly research.

The most common experimental strategy is to con-
duct a randomized controlled trial (RCT). Because of 
the randomized nature of RCTs, the subject and their 
"counterfactual" counterpart have the same or similar 
values for the confounding variables, except for the rel-
evant condition variables, to approximate the potential 
outcome [2]. However, RCTs are expensive, time-con-
suming, and ethically concerning, making many experi-
ments a luxury [3]. In statistics, researchers are fond of 
viewing the counterfactual causal inference problem as a 
missing data problem, i.e., solving for the potential out-
comes corresponding to different individuals in differ-
ent states. Common methods for inferring missing data 
include matching [4] and linear regression. Matching 
methods refer to finding several pairs of individuals who 
match well on all other variables except the target vari-
able, and then we can calculate the missing data based on 
this matching relationship. However, there will always be 
special cases in the data that cannot be matched. Linear 
regression methods assume that the data come from a 
random source at some location, then use standard sta-
tistical methods to find the best-fitting straight line for 
the data, and finally use padding techniques to resolve 
the missing data. Although this method cleverly cal-
culates an approximation of the missing outcome, the 
number is not a potential outcome and cannot be used 
to make counterfactual causal inferences. The reasons for 
this are as follows: on the one hand, the method is data-
driven rather than model-driven by nature; on the other 
hand, and more importantly, there is simply no situation 
where a Tier 1 method of the ladder of causation can 
solve the counterfactual problem (Tier 3). In the ladder of 
causation, the three levels correspond to complex causal 
problems, and each level holds power beyond the reach 
of the next. Thus, the data cannot tell us that we are in a 
counterfactual or fictional world or what will happen.

In this paper, we present a new experimental strategy 
called quasi-intervention for quantifying the causal effect 
between disease and treatment options in observed data 
by using a causal inference method, which converts the 
potential effect of different treatment options on disease 
into computing differences in the conditional probability. 
With the given observed data, quasi-intervention takes 
advantage of a quasi-experimental design (QED) [5–7] to 
determine the causal relationship between variables and 
uses a sign test to ensure the reliability of the results. To 
quantify the causal effect between disease and treatment 
options, with the help of hypothetical interventions [8–
11], we implemented different treatment options for the 
patients and compared the difference between the means. 
We evaluated the accuracy of the quasi-intervention by 

quantifying the causal effect between the NLR and OS 
(169 lung cancer patients and 79 controls) among Chi-
nese patients. Our results showed that quasi-intervention 
could compute OS well corresponding to the average 
causal effect (34.4%) under variable NLR intervention 
conditions. The result agrees with the literature findings 
[12–20], which consist of nine papers on cohort studies 
on the NLR and the prognosis of lung cancer patients, 
proving that our method is correct.

Methods
Determination of causal relationships between variables
Correct causality is the primary premise of this study and 
the guarantee of the correct conclusion. If intervening 
variable (X) and outcome variable (Y) have a purely cor-
relational relationship, rather than causality, then this will 
lead to poor business decisions. In this method, we used 
a QED to infer causality from observed data. We sup-
posed we had a pre-processed (e.g., factorization) dataset 
Q, which consists of epidemiological information, such 
as age, sex, and clinical records, for all patients who do 
not intersect. To make better counterfactual causal infer-
ences, the following assumptions were made about the 
study population: there is no crossover treatment effect 
between individuals; all individuals are treated to the 
same extent; the assignment of treatment is independent 
of the potential outcome; and the probability of assign-
ment of treatment is nondeterministic for all individu-
als. We will consider here in detail that the sample size 
is larger than 20. The specific experimental steps are as 
follows:

(a)	 We defined a matched set of pairs P as follows. Let 
T (T ⊆ Q) be the set of all patients who have been 
treated. Then, we picked the intervention patient 
u(u ∈ T) and paired them with a patient v picked 
uniformly and randomly from a noninterventional 
patient set D, which means u and v have similar age, 
same sex, similar clinical notes and so on.

(b)	 For each pair (u, v) ∈ P, we assigned outcome (u, 
v) to + 1 if Yu (patient u corresponding to Y) was 
larger than Yv, -1 if the outcome variable of Yu was 
smaller than Yv, and 0 otherwise.

(c)	 The matching algorithm’s net outcome (δ) can be 
viewed as the difference between Yu and Yv. The 
positive value of δ provides strong evidence of the 
causality between X and Y, while a negative value 
provides negative evidence.

(1)

value(δ) = (u,v)∈P outcome(u, v)

|P|
∗ 100%
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The QED obtained a causal effect between X and Y 
by controlling for observable confounders in the data. 
For the accuracy and completeness of the trial, the sub-
sequent hypothetical intervention continued to explore 
the causal effects of the two variables under unknown 
confounding conditions. The fusion of the two methods 
overcomes their respective limitations and enhances the 
credibility of the experimental results.

To confirm the reliability of the result, we also used the 
sign test to determine whether our result was statistically 
significant. We formulated H0, which states that X has a 
null significant impact on Y, and let H1 be the alternative 
hypothesis in which it was assumed that X has an impact 
on Y. The number of positive or zero values of outcome 
(u, v) corresponded to m and n, respectively. After the 
removal of matching pairs with the same treatment 
effect, the sample size(s) was |P| − n. The measurement 
data m obeys an approximate normal distribution with a 
mean (μ) of 1

2
s and a variance (σ) of 

√
s
2

 . The significance 
level was set at an α of 0.05, and therefore, the statistic(Ζ) 
is m−µ

σ
 . The null hypothesis H0 is rejected when Ζ > Z 

α/2
.

Evaluating the effect of interventions
The chi-square test was used to compare the relationship 
between the clinicopathological data between groups 
with a given state x of X as a cut-off value. Kaplan–Meier 
univariate survival analysis and the log-rank test were 
used to analyse the survival of different patients, and the 
factors with statistical significance (P < 0.05) in the uni-
variate analysis were independent factors affecting the 
prognosis of patients.

There are three basic types of junctions in the causal 
graph: chain, fork, and collider. Through analysis, we can 
see that X and Y can only have the following three forms 
of causal diagrams (among them, “fork” can be divided 
into two types, and “collider” cannot form a bivariate 
causal diagram). These disturbance terms (e.g., Ux, Uy) 
in Fig.  1, which are mutually independent, arbitrarily 
distributed random disturbances, represent exogenous 

factors that the investigator chose not to include in the 
analysis.

(a)	 A potential confounding factor is identified from 
the observed data, which means that the con-
founder blocks all backdoor paths from X to Y 
and is not a descendant of X. This is illustrated in 
Fig. 1a.

(b)	 If there are no obvious confounding factors in the 
observed data but a mediator (W) can be found to 
transmit the effect of X on Y, which means that all 
causal paths from X to Y pass through W, there is 
no unobstructed backdoor path from X to W, and 
all backdoor paths from W to Y are blocked by X. 
This is illustrated in Fig. 1b.

(c)	 If we are willing to accept the assumption of lin-
earity or monotonicity, then an instrumental vari-
able can be used to estimate the intervention effect 
(assuming the variable can be present in the data). 
Instrumental variables are required to affect X and 
not (directly) affect Y, as illustrated in Fig. 1c.

Supposing that we have the structure of a causal graph 
G, where some nodes are observable and others are not. 
Our main goal is to progressively reduce the expres-
sion P(y|do(x)) to an equivalent expression containing 
the standard probabilities of the observations. Notably, 
P(y|do(x)) stands for the probability of achieving a yield 
level of Y = y given that the treatment is set to level 
X = x by external intervention. It can be further stated 
that evaluating the effect of intervention involves com-
puting the average causal effect (ACE):

where do(.) set X to a value, e.g., (x + 1). This interven-
tion is equivalent to removing X from the influence of 
the old functional mechanism X = f (pax, ε) and plac-
ing it under the influence of a new mechanism that sets 
its value to x + 1 while keeping all other mechanisms 

P(Y |do(X = x′))− P(Y |do(X = x))

Fig. 1  Three types of causal graphs. A confounding factor in the data (a), X can exert an indirect effect on Y through an intermediary variable (b); an 
instrumental variable is found for replacement studies (c). Ux and Uy are exogenous variables, representing any location or random effect that can 
affect the relationship between endogenous variables
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undisturbed. Clearly, an intervention do(x) can affect 
only the descendants of X in G. The do operation allows 
the intervention effect to be obtained without the actual 
intervention, the counterfactual answer to be obtained, 
and thus the causal effect to be ascertained. The inter-
vention not only replaced the causal mechanism linking 
X to its preintervention parents with a new mechanism 
X = x but also gave us a new manipulated graph. Inter-
ventional distributions (such as P (Y |do(X = x)) are 
conceptually quite different from the observational dis-
tributions (such as P(Y |X = x) ). Because the latter does 
not have the do-operator, we can observe data from the 
dataset without carrying out any experiment. With the 
aid of the manipulated graph and the do-algorithm [8, 10, 
11, 21], we eliminate the do operation in P(Y |do(X = x)) , 
which represents hypothetical intervention and cannot 
be obtained from the dataset.

A causal relationship model characterized by graph G 
is identifiable, which has been demonstrated in Ref. [3]. 
This means that in a finite sequence of transformations, 
the causal relationship Q can be reduced to a check-
free, probabilistic expression involving the observed 
quantity according to the do-algorithm. The deriva-
tion process is as follows: the probability distribution 
is first expanded according to a Bayesian formula, and 
then the expression is appropriately added, deleted, or 
replaced according to the do-algorithm, and the process 
is iterated until the expression no longer contains the 
do operation. It is noted that the experiment assumes 
that interventions are local and the global Markov 
assumption is true in the causal graph.

The do algorithm is described as follows:
G is the direct acyclic graph, X, Y, Z, W are any sets 

of variables in G, and P is the probability distribution. 
We use G x (G x , respectively) to denote that all arrows 
pointing to (emerging from, respectively) node X are 
deleted in G, and Z(W) is the set of Z nodes that are not 
ancestors of any W node in G x.

Role 1)	 Insertion/deletion of observations

Role 2)	 Action/observation exchange

Role 3)	 Insertion/deletion of actions

If we cannot find a way to estimate P(Y |do(X)) from 
the data in rules 1 to 3, then the solution does not exist 
for this problem. In this case, we realize that we have 

P
(

y|do(x), z,w
)

= P
(

y|do(x),w
)

if(Y||Z|X,W)Gx

P
(

y|do(x), do(z),w
)

= P
(

y|do(x), z,w
)

if(Y||Z|X,W)Gxz

P
(

y|do(x), do(z),w
)

= P
(

y|do(x),w
)

if(Y||Z|X,W)Gxz(w)

no choice but to run a RCT. In addition, it tells us what 
additional hypotheses or experiments could make the 
causal effect change from nonestimable to estimable for 
a particular problem. According to the derived causal 
diagram and do-calculus, we can eliminate the do oper-
ation in the ACE and quantify the effect of interven-
tions between X and Y. The experimental workflow is 
shown in Fig. 2.

Results
Context of the study
Lung cancer is the most common form of cancer, with 
the highest morbidity and mortality in most countries 
[22–28]. The neutrophil-to-lymphocyte ratio (NLR) has 
been confirmed as an essential indicator of cancer prog-
nosis and a risk of cancer metastasis in patients with lung 
cancer, and a high NLR was associated with poor over-
all survival (OS) [29–32]. However, most current stud-
ies reveal only a correlational relationship between the 
NLR and OS rather than a causal effect. Our study aimed 
to identify a causal relationship of the NLR with OS by 
quasi-intervention and quantify the impact of the NLR 
on OS, which contributes significantly to elucidating the 
cause of cancer and clinical treatment.

Data source
Lung cancer patients who were treated in the Affiliated 
Nanhua Hospital, University of South China, and the 
First Affiliated Hospital of the University of South China 
from January 2012 to December 2017 were selected from 
the experimental dataset as the research participants. A 
summary of 169 Chinese lung cancer patients’ demo-
graphics is shown in Tables  1 and 2. Table  3 shows the 
peripheral leukocyte levels in lung cancer patients and 
normal subjects. All patients had no other history of 
malignant disease, and samples were collected before 
treatment, such as chemoradiotherapy, radiotherapy, and 
other treatment samples. One week before surgery, we 
identified the individual’s Karnofsky Performance Sta-
tus (KPS) score. In addition, the anticoagulant tube was 
used to take 2–3 mL of fasting peripheral venous blood 
from each eligible patient, which was stored at 4 °C and 
examined within 1 h. In addition to patient demograph-
ics (including age, sex, date of diagnosis, smoking status, 
clinical stages, neutrophil count, KPS score, and lym-
phocyte count), the data collected included 79 healthy 
controls with normal lung condition from the physical 
examination centre in the Affiliated Nanhua Hospital, 
University of South China. All patients were followed 
until December 2018 by regular outpatient reviews and 
telephone. We extracted anonymized patient records 
from the electronic patient files. All patients who 
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participated in the present study signed informed con-
sent before the experiment, which was approved by the 
South China Ethics Committee. The experiment assumed 
that the neutrophil and lymphocyte count in the patient 

were according to the patient’s condition; the researchers 
did not deliberately interfere with the change.

Most patients were aged > 55 years (74.56%, 126/169), 
were female (24.26%, 41/169), and were smokers 

Fig. 2  Experimental Flowchart of the Quasi-intervention

Table 1  Comparison of clinicopathological characteristics of lung cancer patients in the high NLR group and low NLR group

Characteristic All patients (n = 169) Higher NLR Lower NLR X2 P value

Age, n (%) 0.001 0.974

 ≤55 43 (25.44) 10 33

 >55 126 (74.56) 29 97

Sex, n (%) 2.174 0.14

 Male 130 (76.92) 35 95

 Female 39 (23.08) 6 33

KPS score, n (%) 8.131 0.043

 60 11 (6.5) 3 8

 70 45 (26.63) 15 30

 80 93 (55.01) 43 50

 90 20 (11.83) 3 17

Histology, n (%) 1.189 0.756

 Adenocarcinoma 73 (43.2) 19 54

 Squamous cell carcinoma 77 (45.56) 16 61

 Small cell carcinoma 17 (10.06) 4 13

 Other 2 (1.18) 0 2

Disease stage 2.276 0.517

 I–II 12 (7.1) 4 8

 III–IV 157 (92.9) 35 122
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(26.63%, 45/169). Based on the standard for tumour, 
node, metastasis (TNM) stage, 12 patients (7.1%) were 
in stage I + II, and 157 patients (92.9%) were in stage 
III + IV. There were 73 cases of lung adenocarcinoma, 
77 cases of lung squamous cell carcinoma, 17 cases of 
small cell carcinoma, and two other diseases among 
the lung cancer samples. Patients were dichotomized 
according to a prespecified cut-off value of an NLR ≥ 5 
vs. < 5, as an NLR ≥ 5 has been previously validated as 
being associated with overall survival (OS) in patients 
with lung cancer [33]. In addition, the cut-off value of 
OS was set to the median value of 27.

Table 2  Univariate analysis of patient survival

Characteristic All patients (n = 169) Median OS P value

Age, n (%) 0.204

 ≤55 43 (25.44) 28.9

 >55 126 (74.56) 26.29

Sex, n (%) 0.713

 Male 130 (76.92) 26.77

 Female 39 (23.08) 27.54

Smoking status, n (%) < 0.001

 Never 124 (73.37) 26.86

 Ever 45 (26.63) 19.51

Therapy, n (%) 0.278

 Chemotherapy 152 (89.94) 27.16

 Palliative care 17 (10.06) 23.21

Lymphocyte count (109/L), n (%) 0.539

 ≤7.22 103 (60.95) 26.4

  > 7.22 36 (39.05) 27.13

Basophil count (109/L), n (%)

 ≤ 0.01 126 (74.56) 26.3 0.333

 > 0.01 33 (25.44) 27.79

NLR, n (%) < 0.001

 ≤ 5 130 (76.92) 26.48

  > 5 39 (23.08) 28.39

KPS score, n (%) < 0.001

 60 11 (6.5) 19.01

 70 45 (26.63) 21.17

 80 93 (55.01) 29.4

 90 20 (11.83) 32.95

Histology, n (%) 0.715

 Adenocarcinoma 73 (43.2) 26.77

 Squamous cell carcinoma 77 (45.56) 28.19

 Small cell carcinoma 17 (10.06) 22.53

 Other 2 (1.18) 24

Disease stage 0.019

 I–II 12 (7.1) 36.58

 III–IV 157 (92.9) 26.22

Table 3  Comparison of peripheral leukocyte levels in lung 
cancer patients and normal controls

Subgroups (109/L) Normal group Lung cancer group P value

White blood cell count 6.471 ± 0.149 7.031 ± 0.141 0.001

Neutrophil count 3.628 ± 0.118 4.849 ± 0.122 < 0.001

Lymphocyte count 2.210 ± 0.069 1.415 ± 0.041 < 0.001

Mononuclear cell 
count

0.619 ± 0.114 0.599 ± 0.020 0.879

Eosinophils 0.161 ± 0.012 0.156 ± 0.011 0.491

Basophils 0.045 ± 0.008 0.011 ± 0.001 0.027

Neutrophils/lympho-
cytes

1.774 ± 0.082 4.067 ± 0.178 < 0.001



Page 7 of 11Yang et al. BMC Medical Informatics and Decision Making          (2022) 22:337 	

Determination of causal relationships between the NLR 
and OS
To test causal relationships between variables, patients 
were subdivided into two groups (N = 130–39). The 
higher NLR group had an NLR > 5 (n = 39, 23.08%), and 
the lower NLR group had an NLR ≤ 5 (n = 130, 76.92%). 
We took patient u at random in the lower NLR group and 
selected v with similar conditions, which means similar 
age, same sex, same cancer type and so on, with u from 
the control set for pairing. Then, the outcome (u, v) varia-
bles and overall evaluation parameter δ of each matched 
pair were calculated to determine whether there was a 
causal relationship between the research variables. All 
patients were divided into 35 matching pairs, including 
22 positive pairs, 10 negative pairs, and 3 zero pairs. 
Therefore, the value of δ was 34.286%, which provided 
strong evidence of the causality between the NLR and 
OS. In addition, we used the sign test (95% confidence 
interval) to ensure the credibility and reliability of the 
results. The mean and variance were 34.5 and 4.153 
throughout, respectively. The model’s Z statistic (2.04656) 
was larger than the Z 

α/2
 (1.96) statistic, implying a 

causal relationship between the two.

Evaluation of the causal effect
Based on the previous results, the NLR was regularly 
altered with the change in OS,while our data analy-
sis (Fig.  3) was contradictory. Therefore, according to 
the method in the above exposition, we analysed the 
observed data from different perspectives.

From Table  3, we can draw some conclusions. The 
peripheral white blood cell count, neutrophil count, and 
NLR of lung cancer patients were significantly higher 
than those of healthy controls (P < 0.05), while the lym-
phocyte count and basophil count were lower than those 
of healthy controls (P < 0.05), and the difference was sta-
tistically significant. In the high NLR group and the low 
NLR group, we counted the number of patients with each 
clinicopathological datum in each group and compared 
them with the X2 test. The results showed that the differ-
ence in the NLR in the KPS score of lung cancer patients 
before treatment was statistically significant (P < 0.05); 
there was no significant difference in clinical data, such 
as classification (P > 0.05). In addition, we also performed 
univariate analysis on peripheral blood leukocytes and 
clinicopathological data of lung cancer patients. The 
results showed that smoking, tumour stage, KPS score, 
and NLR were all factors affecting the survival of lung 
cancer patients. The age, sex, cancer type, white blood 
cell count, neutrophil count, lymphocyte count, and 
basophil count of lung cancer patients were not associ-
ated with the survival and prognosis of the patients.

Combining Tables  1, 2, 3 and Fig.  4, we find that OS 
decreases significantly as the NLR increases in Fig.  4e. 
We can explain this phenomenon through theoreti-
cal common sense. The NLR is an inflammatory marker 
with high sensitivity and specificity, and it represents 
the balance between inflammatory activator neutrophils 
and inflammatory regulator lymphocytes. The essence 
of an elevated NLR is the increase in neutrophils and 

Fig. 3  Relationship between baseline NLR and OS
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the decrease in lymphocytes. The higher the NLR is, the 
more pronounced the imbalanced state and the more 
serious the inflammation. Severe inflammation may lead 
to a decline in the patient’s mobility, deterioration of their 
disease, and limit the patients’ self-care ability, which will 
lead to a decrease in KPS score. Our conclusion was also 

confirmed through the literature [20, 34–36]. The causal 
graph between the NLR and OS is shown in Fig. 5a. The 
modified graphical model (denoted in alphabetical letters 
as G x ), which is necessary for us to quantify the causal 
relationship between them, representing an intervention 
in the model in Fig. 5a is shown in Fig. 5b.

Fig. 4  Relationship between baseline NLR and OS under different type, cancer stages (a, g), cancer type (b, f), age (c, h), sex (d, i), and KPS score 
(e). Among them, a–d is a confounding factor analysis, and e–i is an intermediate value analysis. Due to the lack of data, we used SPSS to fill in the 
missing data, but for the categories with fewer data (the second stage of cancer), we adopted the omission and merge method

Fig. 5  Causal graph between the NLR and survival time. A graphical model representing the causal effects of the NLR on OS; confounders are an 
unknown element, and KPS score is a mediator(a). An intervention on the model in Fig. 4a that changes the NLR in the population (b)



Page 9 of 11Yang et al. BMC Medical Informatics and Decision Making          (2022) 22:337 	

In this study, X = 1 stands for the lower NLR (defined 
by the previous), Z stands for the KPS scores of 
patients, and Y = 1 stands for the higher OS (defined 
by the median OS). To evaluate the effect of interven-
tions in the study, we need to eliminate the do opera-
tion in P(Y |do(X = x)) and estimate the difference 
P(Y = 1|do(X = 1))− P(Y = 1|do(X = 0)) . The deriva-
tion process is as follows:

Formulas (2) and (6) were constructed using the Bayes-
ian formula; Formulas (3), (4) and (7) were constructed 
using Role 2; and Formulas (5) and (8) were constructed 
using Role 3. Bringing the experimental data into Eq. (9) 
to obtains:

P
(

Y = y|do(X = x)
)

(2)=
∑

Z

P(Y |do(X),Z)P(Z|do(X))

(3)=
∑

Z

P(Y |do(X), do(Z))P(Z|do(X))

(4)=
∑

Z

P(Y |do(X), do(Z))P(Z|X)

(5)=
∑

Z

P(Y |do(Z))P(Z|X)

(6)=
∑

X ′

∑

Z

P
(

Y |do(Z),X ′)P
(

X ′|do(Z)
)

P(Z|X)

(7)=
∑

X ′

∑

Z

P
(

Y |Z,X ′)P
(

X ′|do(Z)
)

P(Z|X)

(8)

=
∑

z

P(Z = z,X)
∑

X

P(Y |X = x,Z = z)P(X = x)

(9)

P
(

Y = y|do(X = x)
)

=
∑

z

P(Z = z,X)
∑

X

P(Y |X = x,Z = z)P(X = x)

(10)P(Y = 1|do(X = 0)) = 0.173077 ∗ 0.047337+ 0.453963 ∗ 0.195266
+ 0.699023 ∗ 0.426036+ 0.864253 ∗ 0.100592 = 0.481582

(11)P(Y = 1|do(X = 1)) = 0.173077 ∗ 0.017751+ 0.453963 ∗ 0.071006+ 0.699023 ∗ 0.12426
+ 0.864253 ∗ 0.017751 = 0.137509

Thus, comparing the effect of NLR-higher (X = 1) to the 
effect of NLR-lower (X = 0), we obtain:

giving a clear positive advantage to NLR-lower. The 
causal association between the NLR and OS is 34.4%; that 
is, under the same survival environment, patients with 
lower NLRs have a higher survival rate.

Accuracy of the result
In medicine, a cohort study is often undertaken to obtain 
evidence to refute the existence of a suspected asso-
ciation between cause and effect, and failure to refute a 
hypothesis often strengthens confidence in it. Crucially, 
the cohort is identified before the appearance of the dis-
ease under investigation, which aids greatly in studying 
causal associations [37, 38]. In survival analysis, the haz-
ard ratio (HR) [39] is the ratio of the hazard rates corre-
sponding to the condition described by the two levels of 
the explanatory variable. In addition to capturing infor-
mation about the entire Kaplan–Meier (KM) survival 
curve, the HR also provides an estimate of the relative 
efficacy between treatment groups (e.g., HR = 0.75 for 
the OS endpoint, which means that the mortality rate of 
the experimental group is reduced by approximately 25% 
compared to the control group). Therefore, we selected 
nine papers on cohort studies on the NLR and the prog-
nosis of lung cancer patients. The relative ranges of the 
NLR and OS causality were determined by HRs (0.2291, 
0.6487). Our result agrees with the literature findings 
and with real-world data, which further proves that our 
method is correct.

Discussion
There have been many methods for investigating poten-
tial causal relationships between disease and treatment 
options in recent years, which can be categorized into 
two main types: experimental studies and observa-
tional studies. Researchers control the experimen-
tal conditions and evaluate the intervention effects in 
experimental studies. Due to the nature of experimen-
tal studies, financial resources, human resources, and 
patients’ ethical considerations, the researchers cannot 

(12)
ACE = P(Y = 1|do(X = 0))− P(Y = 1|do(X = 1))=0.344073
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fully control the exposure of the research participants. 
Therefore, many of the findings are from observational 
studies, specifically from case–control studies. Regard-
less of the method adopted, the results in most cases 
only determine causal relationships. They cannot inter-
vene with observational data, let alone answer the 
questions needed for medical research.

This work presents a new experimental strategy called 
quasi-intervention for evaluating the effects of specific 
treatments without clinical trials by using a causal 
inference method. The quasi-intervention consisted of 
a QED [5–7], sign test [40] and hypothetical interven-
tion [8–11]. We used the QED to establish the causal 
association between the intervening and outcome 
variables and used a sign test to ensure the reliability 
of the results. Hypothetical intervention can quantify 
the causal effect without simulating the intervention, 
which saves money and is easy to implement to evalu-
ate the accuracy of the quasi-intervention by quanti-
fying the causal effect between the NLR and OS. Our 
results showed that a low or decreased NLR leads to a 
significant improvement in OS. This result was consist-
ent with a previous study, proving that our method is 
correct.

Compared with other observational studies, our 
study is unique in the following aspects:

(1)	 The method incorporates as many confounding fac-
tors as possible into the study, making the experi-
ment more rigorous. A QED considers known con-
founders in the data, and hypothetical interventions 
consider potential confounders.

(2)	 The method relaxes the conditions of the research 
environment, uses a series of ingenious, intelligent 
observation methods to simulate the actual experi-
ment, and combines the cause-and-effect diagram 
to obtain the actual intervention effect.

(3)	 This method can complete some intervention 
experiments that cannot actually be completed for 
factors such as patient’s obesity, blood pressure, 
and smoking status. It allows us to determine causal 
effects in nonexperimental studies.

There are some limitations to this study. First, our 
data was retrospectively collected and selected from the 
hospital, so there might be selection bias or recall bias. 
Second, a causal graph critically influences the obtained 
results, and it is affected by assumptions and confound-
ing factors. Although we excluded some confounders, 
unmeasured confounders still impacted the results. These 
factors would introduce more bias and limit the method’s 
generalizability to a broader patient population.

Conclusion
In summary, this work provides a new method for evalu-
ating the effect of interventions that can be applied in the 
fields of clinical medicine. The presented results from our 
method could provide a causal effect between disease and 
treatment options. We believe that the proposed method 
can be applied to clinically relevant research to obtain more 
results.
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