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Abstract 

Background:  Care during pregnancy, childbirth and puerperium are fundamental to avoid pathologies for the 
mother and her baby. However, health issues can occur during this period, causing misfortunes, such as the death of 
the fetus or neonate. Predictive models of fetal and infant deaths are important technological tools that can help to 
reduce mortality indexes. The main goal of this work is to present a systematic review of literature focused on com-
putational models to predict mortality, covering stillbirth, perinatal, neonatal, and infant deaths, highlighting their 
methodology and the description of the proposed computational models.

Methods:  We conducted a systematic review of literature, limiting the search to the last 10 years of publications 
considering the five main scientific databases as source.

Results:  From 671 works, 18 of them were selected as primary studies for further analysis. We found that most of 
works are focused on prediction of neonatal deaths, using machine learning models (more specifically Random For-
est). The top five most common features used to train models are birth weight, gestational age, sex of the child, Apgar 
score and mother’s age. Having predictive models for preventing mortality during and post-pregnancy not only 
improve the mother’s quality of life, as well as it can be a powerful and low-cost tool to decrease mortality ratios.

Conclusion:  Based on the results of this SRL, we can state that scientific efforts have been done in this area, but there 
are many open research opportunities to be developed by the community.
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Introduction
Pregnancy has its natural physiological path for a healthy 
baby to have its life started. However, when this path is 
discontinued due to a stillbirth, it may impact nega-
tively on the quality of life of all individuals related to the 

misfortune, involving physical, psychological, economic 
and/or social aspects. Furthermore, the stillbirth rate is 
also a sensitive indicator that reflects on socioeconomic 
conditions and is related to the quality of prenatal care 
and care during pregnancy [1, 2].

In 2020, an estimated two million pregnancies were 
not completed due to stillbirths. Among these, more 
than 40% of deaths occurred during the labor [1]. In the 
same year, 2.4 million children died in the first 28 days 
(neonatal mortality), representing 47% of all deaths of 
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children under 5 years old. In 2019, about 1 million new-
borns died in the first 24  h (early neonatal mortality) 
[3], and approximately 1.6 million babies aged between 
28 and 365 days died (infant mortality) [4]. Causes of 
death in the first weeks include low birth  weight, infec-
tions, neonatal asphyxia and complications of preterm 
birth. The lack  or poor quality of maternal health care 
services during childbirth contributes to causes of death. 
Furthermore, the absence of prenatal care interventions 
and prevention of maternal complications before delivery 
corroborate these data [2, 5].

Preterm birth and neonatal death are inversely con-
nected. The lower the gestational age of the newborn, 
higher the risk of death leading to greater attention 
to preterm births [2]. Some risk factors related to the 
mother such as age, smoking, diabetes, hypertension, 
fetal anomaly and miscarriages increase the chances of 
premature birth [2, 6].

The 2030 Agenda [7] proposed by the Organization of 
the United Nations (UN) predicts the reduction of neo-
natal mortality and mortality of children under 5 years of 
age in its Sustainable Development Goals (SDGs). How-
ever, specific targets aimed at reducing of fetal mortality 
were absent from the Millennium Development Goals 
(MDGs) [8] and were not covered by the Agenda 2030. 
Unfortunately, this public health issue has been over-
looked, and stillbirths have been largely absent from 
tracking health data around the world, hiding the true 
extent of this problem.

Given this context, public policies for maternal and 
child health are essential to prevent these deaths. It is 
possible to improve the quality of services provided in 
order to end preventable stillbirths and achieve good 
quality of health in newborns, with good antenatal care, 
specialized care in childbirth, postpartum care and espe-
cially, care for small and sick newborns [1, 3].

Recent studies demonstrate that Artificial Intelligence 
(AI), particularly through machine learning and deep 
learning models, offers considerable potential to predict 
prematurity, birth weight, mortality, hypertensive disor-
ders, postpartum depression, among others [9]. Machine 
learning is also being used to identify risks of perinatal 
mortality

[10–13] and fetal death [14, 15]. As they have feasible 
operational costs, which makes it easier to be imple-
mented, these computational tools can also be a valuable 
ally, especially for nations with limited resources.

We found only one systematic literature review (SLR) 
that addressed stillbirths, perinatal mortality, neonatal 
mortality, and infant mortality using these AI techniques, 
published in 2021 by Mangold et al. [16]. They focused on 
works for predicting neonatal mortality. In contrast, in 
this SLR, our interest is to evaluate in the state-of-the-art 

on works that proposed machine learning and deep 
learning models to classify stillbirth, perinatal, neonatal 
and infant deaths. Hereafter, whenever we mention mor-
tality, please consider stillbirth, perinatal mortality, neo-
natal mortality and infant mortality.

Material and methods
As discussed earlier, stillbirth is a real public health con-
cern around the world, and the development of AI based 
solutions is becoming an open field for research with 
many challenges. This SLR becomes necessary to under-
stand at what point AI has contributed to detect risk and 
undesirable outcomes for pregnancy, and also to under-
stand how the progress is in aspects related to stillbirths, 
such as neonatal, perinatal and infant mortality. The 
main goal of this work is to answer the following research 
questions (RQ):

•	 What types of mortality are the focus of researches 
that used machine learning and deep learning?

•	 What data is being used in researches on classifica-
tion of mortality?

•	 What machine learning and deep learning techniques 
are being used in researches related to the classifica-
tion of mortality?

•	 How is the performance of machine learning and 
deep learning models evaluated in the classification 
of mortality?

The methodology used to guide this SLR is based on the 
PRISMA statement, conformed to its checklist available 
at https://​prisma-​state​ment.​org/. We used this method-
ology to find works that addressed the use of machine 
learning and/or deep learning in the context of mortality.

Data sources and searches
We considered the following databases as the main 
sources for our research: IEEE Xplore1, PubMed2, ACM 
Digital Library3, Springer4 and Scopus5.

The collection of primary studies was done through 
searches in the databases, using the following search 
string: ((“deep learning” OR “machine learning”) AND 
(“stillbirth” OR “fetal death” OR “infant death” OR “neo-
natal mortality” OR ”neonatal death” OR “perinatal”) 
AND (“prediction” OR “classification”)) IN (Metadata) 
OR (Title) OR (Abstract).

1  https://​IEEEx​plore.​ieee.​org/​Xplore/​home.​jsp.
2  https://​pubmed.​ncbi.​nlm.​nih.​gov.
3  https://​dl.​acm.​org.
4  https://​link.​sprin​ger.​com.
5  https://​www.​scopus.​com.

https://prisma-statement.org/
https://IEEExplore.ieee.org/Xplore/home.jsp
https://pubmed.ncbi.nlm.nih.gov
https://dl.acm.org
https://link.springer.com
https://www.scopus.com


Page 3 of 17Silva Rocha et al. BMC Medical Informatics and Decision Making          (2022) 22:334 	

Eligibility criteria
As we can find many papers that are not strictly related 
to our RQ (or can not answer our research questions), 
we defined some inclusion and exclusion criteria.

The works must explicitly present abstract computa-
tional models to classify or classify mortality risks, use 
at least one real database and be from the last 10 years 
(between 2012 and 2021). We remove works that are 
duplicates, unavailable or not in English, poster, tuto-
rial or editorial works, and secondary or tertiary works.

Studies selection
Three reviewers (ESR, FLMM and PTE) were respon-
sible for identifying eligible works independently. 
When any disagreement came up, a fourth reviewer 
(VS) was consulted to reduce the risk of bias. At first, 
the title and abstract were screened and, after that, 
works retained went to a full-text reading. Lastly, works 
that passed the inclusion and exclusion criteria were 
selected for data extraction.

Data extraction
Works were evaluated considering their quality, consid-
ering these seven quality questions were defined:

•	 Does the study make clear what its objectives are?
•	 Does the study describe the entire methodology 

used?
•	 Does the study describe the database used and the 

pre-processing performed (when necessary)?
•	 Does the study describe the configurations of the 

proposed models?
•	 Does the study describe how it arrived at the pro-

posed models?
•	 Does the study clearly describe the results?
•	 Does the study make a good discussion based on 

the results?

For each quality question, the possibles answers and 
scores were: Yes (1 point), Partially (0.5 point), and 
No (0 point). Therefore, each study was graded with a 
score based on answers of each question. Studies that 
presented at least half (3.5) of the maximum score (7.0) 
were accepted for reading and further analysis.

After reading the 18 primary studies, we extracted 
information from each work, based on general char-
acteristics of the study, methodology, dataset, mod-
els, models’ performance, challenges and limitations 
in order to answer the research questions previously 
established.

Figure 1 presents the PRISMA flow diagram used to 
summarize the works identified and those excluded due 
duplication or quality criteria.

Results
Descriptive analysis
In November 2021, the search returned 29, 80, 54, 104, 
and 404 works from IEEE Xplore, PubMed, ACM Digital 
Library, Scopus, and Springer, respectively, totaling 671 
works. After removing duplicates, we read all abstracts 
applying the inclusion and exclusion criteria and then 
22 works were selected. After the quality assessment, we 
finally obtained the 18 primary works for reading and 
extraction of information.

Even with the large number of works found in Springer 
and Scopus, only 1 and 2 of them were selected from 
these sources, respectively. PubMed was the source with 
the most primary works, 13 out of 18. The other 2 works 
were from IEEE, while ACM had no works selected.

The search for this SLR was restrict between the years 
2012 to 2021, but the first work appeared in 2014. Of the 
primary works, 84% were published in the last three years: 
three in 2019, six in 2020 and six in 2021. This is a clear indi-
cation that AI still has a long way to go and good opportuni-
ties to develop scientific solutions for mortality prediction.

Fig. 1  PRISMA flowchart of the review process
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What types of mortality are the focus of researches 
that used machine learning and deep learning?
In this SLR, we are focused on studies that used 
machine learning and deep learning models to classify 
some types of mortality, such as stillbirth, perinatal, 
neonatal and infant. Figure 2 shows the amount of work 
by type of mortality.

The definition of stillbirth is not well established 
globally. The World Health Organization (WHO) rec-
ommendation defines fetal death as all deaths that 
occur after the 28th week of gestation or with a weight 
above 1000g; while intrauterine deaths occur during 
labor [17]. However, many countries use the definition 
of fetal death based on the 10th revision of the Interna-
tional Classification of Diseases (ICD-10), which con-
siders deaths that occur with a gestational age greater 
than 22 weeks, or with a weight greater than 500g, or 
height greater than 25 cm, including deaths during 

labor [18, 19]. This lack of a universal definition implies 
inaccurate comparisons when there is a need to use 
national and international reporting data together. The 
works that used stillbirth classification used the ICD-10 
rules. Figure  3 shows the definitions used in this SLR 
for deaths that occurred during pregnancy or up to 1 
year after birth.

Most of the works are focused on neonatal mortality, 
66% of the chosen works. Neonatal mortality is catego-
rized when the neonate dies between his/her birth (when 
vital signs are detected after delivery) and the twenty-
eighth day of his/her life. Many works focus on this stage 
because they can detect mortality based on comorbidity 
generated during the pregnancy or postpartum. Baker 
et  al. [20], Cerqueira et  al. [21], Sheikhtaheri et  al. [22], 
Sun et  al. [23] and Hsu et  al. [24] classify the mortality 
of babies that after their birth were referred to the Neo-
natal Intensive Care Unit (NICU); and Podda et al. [25], 
Jaskari et al. [26] and Lee et al. [27] rank the probability 
of death in premature babies; and Cooper et al. [28] clas-
sifies post-operative newborn mortality.

There are also works that are related to infant mortal-
ity (4 works), stillbirth (3 works), and perinatal mortality 
(only 1 work). Infant mortality refers to deaths occurring 
between 29 days of life and 365 days (1 year from birth); 
and perinatal is the period from stillbirth to early neona-
tal, until the 6th day of life, as shown in Fig. 3.

Four primary studies carried out research that focused 
on more than one type of mortality: Valter et al. [29], Sar-
avanou et al. [30] and Batista et al. [31] who worked with 
neonatal and infant deaths; and Shukla et  al. [10] who 
studied the spheres of stillbirths and neonates.

Fig. 2  Number of selected works by type of mortality

Fig. 3  Definition of deaths that occur during or post-pregnancy up to 1 year from birth
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What data is being used in researches on classification 
of mortality?
A summary of data sets found in the studies of this SLR is 
available in the Table 1, describing the location where the 
data were collected, number of records, total attributes 
of the original data set, number of attributes used for the 

model training, attribute selection technique, data bal-
ance and problems with missing data.

Data set size and balancing
The largest data set was used by Lee et al. [27] with over 
31 million records, followed by Koivu et  al. [15] and 

Table 1  Summary of the data sets

*Approximate value

**When the work used a number of different attributes

Work Location Number of 
records

Number of 
attributes

Attributes used 
for training

Attribute 
selection

Balancing Missing data

Valter et al. [29] Brazil 6241 27 26 Yes The data set is bal-
anced

Yes

Hajipour et al. [32] Iran 2386 Not described 16 Not specified The data set is bal-
anced

No

Saravanou et al. 
[30]

USA 12,000,000 128 128; 2; 1; 1 No The original data 
set is imbalanced, 
but it was balanced

No

Baker et al. [20] Israel 2751 Not described 17 No The original data 
set is imbalanced, 
but it was balanced

No

Cerqueira et al. [21] Brazil 293 114 4 Yes The data set is 
imbalanced

No

Shukla et al. [10] India; Pakistan; 
Congo; Zambia; 
Kenya; Guatemala

588,272 Not described 31 Yes The data set is 
imbalanced

Yes

Malacova et al. [14] Australia 960,745 Not described Not described Not specified The data set is 
imbalanced

No

Sheikhtaheri et al. 
[22]

Iran 1762 Not described 17 Yes The original data 
set is imbalanced, 
but it was balanced

Yes

Podda, et al. [25] Italy 29,557 Not described 13 Yes The data set is 
imbalanced

Yes

Batista et al. [31] Brazil 1,135,444 23 23 No The data set is 
imbalanced

No

Jaskari et al. [26] Finland 977 Not described Not described Yes The original data 
set is imbalanced, 
but it was balanced

Yes

Mboya et al. [12] Tanzania 42,319 32 20 Yes The original data 
set is imbalanced, 
but it was balanced

Yes

AlShwaish et al. 
[33]

USA 172,278 Not described Notdescribed Not specified The original data 
set is imbalanced, 
but it was balanced

Yes

Sun et al. [23] India 757 Not described 49 No The original data 
set is imbalanced, 
but it was balanced

Yes

Koivu et al. [15] USA 12,867,146 26 17; 14; 25 Yes The data set is 
imbalanced

No

Lee et al. [27] USA 31,287,801 Not described 34 No The original data 
set is imbalanced, 
but it was balanced

Yes

Cooper et al. [28] USA; Canada 6499 Not described 68 Yes The data set is 
imbalanced

Yes

Hsu et al. [24] Taiwan 1734 Not described 41 Not specified The data set is 
imbalanced

Yes
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Saravanou et al. [30] with approximately 12 million each. 
These three largest data sets collected data from the 
United States of America (USA). The smallest data sets 
were used by Cerqueira et al. [21] from Brazil, Sun et al. 
[23] from India and Jaskari et al. [26] from Finland with 
293, 757 and 977 records, respectively.

Although Lee et  al. [27], Koivu et  al. [15] and Sara-
vanou et al. [30] used the largest data sets, the majority 
class represented more than 99% of the data, according to 
Table 2. Another thirteen works also suffer from imbal-
anced data set problems.

According to Ramyachitra et al. [34], “a two-class data 
set is implicit to be imbalanced when one of the classes in 
the minority one is heavily under-represented in contrast 
to the other class in the majority one”. The imbalanced 
data set is a crucial challenge because the absent of solv-
ing this issue can lead classifiers to be biased towards the 
majority class.

From works with imbalanced data set, eight of them 
kept the data set as it is, while eight performed some 
balancing technique in order to cover this problem [12, 
20, 22, 23, 26, 27, 30, 33]. The most common approaches 
used to balance a data set were: random oversampling 
(ROS) and random undersampling (RUS) [35].

Saravanou et al. [30], Baker et al. [20], Jaskari et al. [26], 
Alshwaish et  al. [33], Sun et  al. [23] and Lee et  al. [27] 
applied the RUS technique, in which they re-sampled 
the data set based on the minority class; to do this, the 
majority class is cut randomly until it gets the same size 
of the minority class [36].

Sheikhtaheri et  al. [22] and Mboya et  al. [12] used a 
classic ROS technique, named Synthetic Minority Over-
sampling Technique (SMOTE), in which the majority 
class is kept as original and the minority class is ran-
domly increased with synthetic data.

Sheikhtaheri et al. [22] created four different data sets 
using the SMOTE technique, varying the ratio of classes; 
and they also created a data set using the ADASYN tech-
nique, in which a weighted distribution of the minority 
class is used and samples that are harder to learn are 
prioritized.

Of the three largest data sets mentioned above, only 
Koivu et al. [15] performed training with an imbalanced 
data set, making it the largest data set used for model 
training, followed by Batista et  al. [31] and Malacova 
et al. [14] with approximately 1 million records. However, 
these three works did not use balanced data, which can 
lead to problems in training the models and, therefore, 
it is important to analyze the evaluation metrics used by 
authors in order to present a fair comparison (see Section  
for details about metrics).

Regarding the smallest data sets, only Cerqueira et al. 
[21] did not perform the balancing and used all 293 data 

for training and testing, while Sun et al. [23] and Jaskari 
et al. [26] even with small databases, performed data bal-
ancing for training. On the other hand, the proportion of 
the majority class of the two works that performed the 
balancing was 0.98 and 0.936, respectively, and Cerqueira 
et al. [21] was 0.867.

Missing data
According to Phung et al. [37], “missing data is a frequent 
occurrence in medical and health data sets. The analysis 
of data sets with missing data can lead to loss in statisti-
cal power or biased results”. Eleven works cited problems 
of missing data with their respective data sets.

The technique most used to overcome this problem 
was the filling of missing data with the average, used by 
Sheikhtaheri et al. [22], Sun et al. [23] and Lee et al. [27], 
followed by the filling with the most frequent data of such 
attributed, which was used by Sheikhtaheri et al. [22] and 
Podda et al. [25]. Typically, mean values are used for con-
tinuous variables, while most frequent data is more used 
for categorical values.

Alshwaish et  al. [33] and Sun et  al. [23] used another 
technique that fill the missing data with a value not used 
by that attribute. For example, the weight attribute is 
filled with the value -1, and the smoking attribute (that 
accepted 0 for no and 1 for yes) is filled with value 2.

Some other works decided to remove the records that 
presented this problem (Shukla et  al. [10] and Podda 
et al. [25]), but Mboya et al. [12] removed only the col-
umns that contained a large number of missing data and 
Cooper et  al. [28] removed the records that contained 
more than 30% missing data. However, both did not 
report what was done with missing data in records or col-
umns with little missing data.

Valter et al. [29] and Hsu et al. [24] did not describe the 
strategies used to circumvent the problems with missing 
data.

It is worth mentioning that the same work can use dif-
ferent techniques to overcome the missing data problem, 
as was the case of Sheikhtaheri et al. [22], which used the 
mean for continuous data and more frequent values for 
boolean or categorical data. Podda et al. [25]) removed all 
records that contained missing data in the training phase 
and filled the missing data in the testing phase was filled 
in with the most frequent values.

Attribute selection
Attribute selection is widely applied to reduce the dimen-
sionality of problems and at the same time, according to 
Remeseiro et al. [38], it can also reduce measurement cost 
and improve model learning, impacting its performance. 
Most works (12 out of 18) did not describe the number of 
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Table 2  Distribution of samples per classes

Work Mortality Classes Samples Proportion*

Valter et al. [29] Neonatal Neonatal mort. 657 0.491

Non-neonatal mort. 682 0.509

Infant Infant mort. 911 0.489

Non-infant mort. 952 0.511

Hajipour et al. [32] Infant Infant mort. 1076 0.451

Non-infant mort. 1310 0.549

Saravanou et al. [30]** Infant Infant mort. 83,000 0.007

Non-infant mort. 12,000,000 0.993

Neonatal/Infant Died < 1 h – –

Died 1–23 h – –

Died 1–6 days – –

Died 7–27 days – –

Died 28–365 days – –

Non-infant mort. – –

Baker et al. [20] Neonatal Neonatal mort. 28 0.010

Non-neonatal mort. 2723 0.990

Cerqueira et al. [21] Neonatal Neonatal mort. 39 0.133

Non-neonatal mort. 254 0.867

Shukla et al. [10] Stillbirth Stillbirth 15,322 0.030

Non-stillbirth 487,326 0.987

Neonatal Neonatal mort. 6268 0.013

Non-neonatal mort. 481,058 0.987

Malacova et al. [14] Stillbirth Stillbirth 6836 0.007

Non-stillbirth 953,909 0.993

Sheikhtaheri et al. [22] Neonatal Neonatal mort. 138 0.078

Non-neonatal mort. 1624 0.922

Podda et al. [25] Neonatal Neonatal mort. 3570 0.121

Non-neonatal mort. 25,987 0.879

Batista et al. [31] Neonatal Neonatal mort. 7282 0.006

Non-neonatal mort. 1,128,162 0.994

Infant Infant mort. 10,902 0.010

Non-infant mort. 1,124,542 0.990

Jaskari et al. [26] Neonatal Neonatal mort. 63 0.064

Non-neonatal mort. 914 0.936

Mboya et al. [12] Perinatal Perinatal mort. 1561 0.037

Non-perinatal mort 40,758 0.963

AlShwaish et al. [33] Infant Minor 167,026 0.970

Moderate 2988 0.017

Major 1529 0.009

Extreme 735 0.004

Sun et al. [23] Neonatal Neonatal mort. 15 0.020

Non-neonatal mort. 742 0.980

Koivu et al. [15] Stillbirth Early stillbirth 7924 0.001

Late stillbirth 8310 0.001

Non-stillbirth 11,907,611 0.999

Lee et al. [27] Neonatal Neonatal mort. 97,200 0.003

Non-neonatal mort. 31,190,601 0.997

Cooper et al. [28] Neonatal Neonatal mort. 232 0.036

Non-neonatal mort. 6267 0.964

Hsu et al. [24] Neonatal Neonatal mort. 278 0.160

Non-neonatal mort. 1456 0.840

*Numbers were rounded
**Approximate value
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attributes of their original data set, but most of them cite 
how many attributes were selected for training.

Nine works [10, 12, 15, 21, 22, 25, 26, 28, 29] performed 
some technique for the selection of attributes, while five 
did not mentioned and four of them did not make clear if 
they used any attribute selection technique.

The use of an specialist in the area of interest was one 
of the techniques used by [21, 22, 25]. Commonly, this 
technique is used to validate the attributes selected by 
some other computational technique, but it can also be 
used individually. Using literature as a basis for choosing 
attributes was also a technique used by [10, 22].

Mboya et  al. [12] and Koivu et  al. [15] used Random 
Forest and Logistic Regression algorithms to perform the 
selection of attributes. This process can be carried out 
through an univariate evaluation (it uses one attribute at 
a time to evaluate how significant that variable can be for 
that problem) or through an additional evaluation (where 
the most significant variables are grouped until the addi-
tion of new variables does not further improve predicted 
outcomes) [39].

Other correlation methods were also used, such as 
Pearson’s correlation by Koivu et  al. [15], and correla-
tion-based resource subset selection by Sheikhtaheri 
et al. [22], which are methods that aim to find a correla-
tion between attributes, that is, measure how much one 
attribute influences another [40]. These methods are nor-
mally used for linear problems.

Statistical tests were also used to select the best attrib-
utes, such as the Wilcoxon test, the Mann-Whitney non-
parametric test and the Chi-square test. These type of 
technique typically analyze attributes individually and 
assess their statistical importance [39].

Three works did not specify nor the attributes of the 
data set, neither the final attributes: [14, 26, 33]. Having 
these information is crucial for reproductibility of the 
work, and the lack of them difficult a fair comparison and 
discussion of their results.

Saravanou et  al. [30] performed the biggest reduction 
of attributes, leaving models with one or two of the 128 
attributes from the original data set, a reduction of about 
99%; while Batista et al. [31] used all available attributes 
of the data set (23 attributes).

Regarding the attributes used, Fig. 4 presents the most 
frequent attributes found in the works, separated by the 
type of mortality.6,7 The attributes birth weight, gesta-
tional age and sex of the child were the most frequent 
with 16, 13 and 11 occurrences in the primary works. 

Followed by the apgar score, mother’s age, multiple births 
and mother’s education.

When working with prediction of neonatal mortality, 
the six most frequent attributes were: birth weight, gesta-
tional age, child sex, Apgar score, maternal age and mul-
tiple births.

For prediction of infant mortality, the four most fre-
quent attributes are birth weight, gestational age, child 
sex and Apgar score, followed by multiple deliveries. For 
the prediction of stillbirths, attributes such as mother’s 
age, education, and parity are the most frequent, followed 
by gestational age at enrollment, perinatal mortality clus-
ter,8 and the number of prenatal consultations. It is worth 
mentioning that many attributes regular in neonatal and 
infant mortality cannot be used when considering still-
birth cases, such as gestational age, since it is information 
about when the birth occurred. The detection of still-
births precedes this information.

Some attributes that appeared were related to comor-
bidities of the mother or child, such as diabetes, sepsis, 
hypertension and hemorrhage. Other attributes related 
to sociodemographics, such as mother and child race, 
mother’s job, mother’s marital status, and smoking. 
Several attributes are also related to previous pregnan-
cies, such as number of previous pregnancies, number 
of stillbirths, number of live births, number of cesarean 
sections; and the current pregnancy, such as prenatal 
care, type of delivery, height at birth, birth order, birth 
companion.

What machine learning and deep learning techniques 
are being used in researches related to the classification 
of mortality?
Classification problem
Of the 18 works selected in this SLR, 15 of them solved a 
binary classification problem, one work focused on mul-
ticlass classification and two works proposed models for 
both binary and multiclass classifications.

Of the binary classifications, all works are related to 
mortality and alive (neonatal mortality and alive, or 
infant and alive, or stillbirth and alive, or perinatal and 
alive), while the three multiclass classification works used 
another perspective. Saravanou et al. [30] considered six 
different classes: died < 1 h, died between 1 and 23 h, died 
between 1 and 6 days, died between 7 and 27 days, died 
between 28 and 365 days and alive. AlShwaish et al. [33] 
classified risk levels of mortality, considering four classes, 
from minor to extreme. And Koivu et  al. [15] classified 
into early stillbirth, late stillbirth and non-stillbirth, as 
shown earlier in Table 1.

6  The attributes that appear only once were removed from the figure.
8  This attribute is the mortality rate in previous years of that location to influ-
ence the forecast of new cases.

7  Perinatal mortality is not is in the Figure because the work that addresses 
this mortality has not described its attributes.
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Modeling techniques
Machine learning was the most common modeling tech-
nique found among the primary works of this SLR, being 
proposed by 16 of the 18 works [10, 12, 14, 15, 21, 22, 24–
33]. Deep learning models in turn were proposed by four 
works [15, 20, 23, 33]. In addition to machine learning 
and deep learning techniques, 11 works also presented 
Logistic Regression models [10, 12, 14, 15, 23, 25, 26, 28, 
31–33].

When analyzing Fig. 5, one can note that deep learning 
models appeared from 2019 on wards, showing that there 
may be a large field of search in relation to these models.

Figure 6 shows the number of works and the modeling 
technique that was proposed based on the type of mor-
tality classification.

Regarding the neonatal mortality works, ten machine 
learning models were proposed [10, 21, 22, 24–29, 31], 
two deep learning models were proposed [20, 23], and 
seven logistic regression models were proposed [10, 23–
26, 28, 31]. Even though infant mortality was the focus of 

more works than stillbirth, the total of proposed models 
was the same, seven for each.

Figure 7 presents the type of machine learning tech-
nique and the number of works that proposed them. 
The most common machine learning model among 
the primary works was the Random Forest, with 14 
proposals, followed by the Neural Network and Sup-
port Vector Machines (SVM) with 11 and 10 propos-
als, respectively. In addition to these models, other 
common machine learning models are Naive Bayes, 
K-Nearest Neighbors (KNN), XGBoost, Gradient Boost 
and ensemble models.

Figure  8 shows the deep learning models proposed 
by type of mortality. As mentioned before, deep learn-
ing models were found only in four works. The Fully 
Con- nected Neural Network (FCNN) was the most fre-
quent model, proposed by two works, followed by the 
Long Short-Term Memory (LSTM) model and the joint 
model called CNN-LSTM. The CNN-LSTM unites two 

Fig. 4  Common features used by primary works, considering fetal, neonatal and infant death
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deep learning models (Con- volutional Neural Network 
(CNN) and LSTM) into a single model.

As observed, Random Forest and FCNN were the most 
common machine learning and deep learning models 
proposed to predict mortality, respectively. As primary 
works are handling with tabular data, the usage of Ran-
dom Forest is expected since they are Valter et  al. [29], 
Hajipour et  al. [32], Shukla et  al. [10], Malacova et  al. 
[14], Sheikhtaheri et  al. [22], Podda et  al. [25], Jaskari 
et  al. [26], Mboya et  al. [12], AlShwaish et  al. [33], Lee 
et al. [27], Cooper et al. [28] and Hsu et al. [24]. However, 
we would like to highlight other tree-based algorithms 
that have been gained attention in literature, such as 
XGBoost and Gradient Boost. They are Saravanou et al. 

[30], Shukla et al. [10], Malacova et al. [14], Podda et al. 
[25], Batista et  al. [31], AlShawaish et  al. [33] and Hsu 
et al. [24].

Hyperparameter optimization
According to Yu et al. [41], an expert can provide a con-
sistent set for model initialization parameters (hyper-
parameter), but in most cases, these parameters may 
not be optimal. Also, according to Yu et  al. [41], per-
forming the adjustments of these hyperparameters 
is a primordial phase in the entire process of training 
machine learning and deep learning models.

Of the primary works of this SLR, 10 of them (more 
than half ) did not applied any hyperparameter optimi-
zation. Of the 8 works that used it, 6 used a technique 
called Grid Search [14, 24, 25, 27, 29, 30]. Grid Search 
is a traditional technique that uses an exhaustive search 
within a given limited search space [42]. That is, it is 
necessary to define a range of values for specific hyper-
parameters, which, in a grid format, is evaluated one by 
one, in search of the best combination.

Batista et  al. [31] used the Bayesian algorithm, that 
in simple terms, creates an approximate function of 
the objective function to find the promising regions 
for the best hyperparameter. With this, its search field 
is very limited, but faster in the search for parameters 
[43]. Jascari et  al. [26] used nested cross-validation to 
estimate the generalization performance of selected 
parameters.

Fig. 5  Type of modeling technique by the year of work publication

Fig. 6  Number of primary works and the modeling technique that was proposed based on the type of mortality classification
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Model validation
There are different ways to calculate the classification 
error of a model and the most popular is the k-fold cross 
validation. According to Rodriguez et  al. [44], in this 
approach, the data set is divided into k folds and the tar-
get model is trained using k − 1 folds. The error value of 
the training phase is calculated by testing the model with 
the remaining fold (test fold) and the final error of the 
model is the average value of the errors calculated in each 
iteration.

Most of works (14 of 18) applied the k-fold cross-val-
idation approach to validate their models; of these 14 
works, nine of them used k = 10 , one used k = 8 and 
four used k = 5 . We highlight that, according to Fushiki 

[45], “k-fold cross validation has an upward bias, and the 
bias may not be neglected when k  is small” and therefore, 
it is important to analyze the value of k according to the 
size of the data set available for the study.

How is the performance of machine learning and deep 
learning models evaluated in the classification 
of mortality?
Evaluation metrics
Choosing the appropriate way to evaluate the proposed 
models plays a critical role in the process of obtaining the 
ideal classifier; that is, the selection of the metrics pertinent 
to the problem is a key to a better evaluation of the models 
and to detect the best classifier for the proposed trial [46].

Most evaluation metrics in classification problems are 
based on the confusion matrix. As shown in Table  3, a 
confusion matrix is composed of: True Positive (TP), 
when the positive class is correctly classified; True 
Negative(TN), when the negative class is correctly classi-
fied; False Positive (FP), when a negative class is classified 
as positive; and the False Negative (FN), when a positive 
class is classified as negative.

Based on TP, TN, FP, and FN, different evaluation met-
rics can be defined. The most commonly found metric 
is the accuracy. Accuracy calculates how often the clas-
sifier was correct in its classification, according to the 
Equation 1:

Fig. 7  Machine learning techniques and number of proposed models found in primary works

Fig. 8  Deep learning techniques and number of proposed models 
found in primary works
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Precision is the metric that calculates how many cases 
were classified as positive that were actually positive, as 
shown in Equation 2. It is used when the FP are consid-
ered more relevant than FN.

Sensitivity, also known as recall, is the metric that calcu-
lates the proportion of actual positives that was correctly 
classified, as presented in Equation 3. It is used when the 
FN is considered more relevant than FP.

Opposite to sensitivity, the specificity metric is the pro-
portion of negative cases correctly classified and it is cal-
culates according to Equation 4).

The F1-score metric is the harmonic mean between pre-
cision and sensitivity, calculated as shown in Equation 5. 
This metric gives greater weight to lower numbers, so 
if one of the two metrics has a low value, the result will 
be similarly low. This harmonic mean is advantageous 
when the objective is to seek a balance between these two 
metrics.

These are the most well-known and used metrics based 
on the confusion matrix. Table  4 presents the metrics 
used in the primary works. Sensitivity and accuracy 
appears in 11 works [12, 14, 20–22, 24, 26, 27, 29–33], 
specificity in nine [12, 14, 20–22, 26, 27, 31, 32], F1-score, 
and precision in seven [14, 22–24, 26, 30–33].

Area under the ROC curve (AUC ROC) was the met-
ric that appeared in all primary works of this SLR, show-
ing its importance in evaluating classifiers models. To 
understand this metric, let’s first understand the receiver 

(1)accuracy =
TP + TN

TP + TN + FP + FN

(2)precision =
TP

TP + FP

(3)sensitivity =
TP

TP + FN

(4)specificity =
TN

TN + FP

(5)F1-score = 2×
precision× sensitivity

precision+ sensitivity

operating characteristic curve (ROC curve). The ROC 
curve is a two-dimensional graph that balances the ben-
efits, True Positive Rate (TPR) (sensitivity), and the costs, 
False Positive Rate (FPR), which is calculates as shown in 
Equation 6:

However, using the ROC curve to compare different clas-
sifiers is not easy, so the AUC ROC [47] metric is used. 
The AUC ROC is the area under the ROC curve, which 
is bounded between 0 and 1. A model with an AUC 
ROC close to 1 has a good performance rating, while 
a model with an AUC ROC close to 0 is rated as poor 
performance.

Other metrics were also used, however, less fre-
quently, such as the Area under the precision-recall curve 
(AUPRC). The AUPRC is used in Baker et al. [20], Batista 
et al. [31], and Sun et al. [23] and it is a variance of the 
AUC ROC, a more appropriate metric for unbalanced 
class databases with a problem configured in predict-
ing the positive class since it uses precision-recall curves 
[48].

Mboya et al. [12] and Sun et al. [23] used Positive Pre-
dictive Value (PPV) (precision) and Negative Predictive 
Value (NPV) metrics. The NPV metric is the inverse of 
precision, which aims to verify from negative values, 
which were classified as negative [49], its calculation is 
defined by Equation 7:

Metrics for imbalanced data sets
When working with imbalanced data sets, we need to 
use metrics that do not bias the evaluation due this 
imbalance as they can present overly optimistic results. 
According to Chicco et  al. [50], accuracy and AUC 
ROC are metrics sensitive to the imbalance of classes, 
while precision, sensitivity, specificity, and F1-score are 
metrics that do not analyze all the confusion matrix 
values, which can lead to unfair observations of the 
results.

Figure 9 shows the metrics used by works that trained 
their models with imbalanced data sets. All seven works 
that used imbalanced data set used the AUC ROC met-
ric; three used accuracy [14, 21, 24], which is one of the 
most sensible metric when working with imbalanced 
classes. The AUPRC metric, which according to Chicco 
et al. [50], is the more robust metrics to evaluate a model 
performance when handling imbalancing, was only used 
by Batista et al. [31].

(6)FPR = 1− specificity

(7)NPV =
TN

TN + FN

Table 3  Generic confusion matrix

Predicted Values Actual values

Positive Negative

Positive TP FP

Negative FN TN
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Statistical tests
The use of statistical tests when developing machine 
learning models was already mentioned in subsection 
, when describing techniques to deal with feature selec-
tion. Here, the use of statistical tests are focused on the 
definition of the best model based on the evaluation 
metrics.

Four works used statistical testing to evaluate and 
choose their best models. Podda et al. [25], Mboya et al. 
[12], and Hsu et al. [24] used the DeLong test to evalu-
ate their models. DeLong test verifies if there is a signifi-
cant difference between the AUC ROC results of the two 
models [51].

Shukla et  al. [10] used the pairwise t-test, that is to 
compare two population means where there are two 
samples in which observations from one sample can be 
paired with observations from the other [52].

Discussion
The use of predictive models to estimate stillbirth risk 
may benefit women during prenatal testing. Trudell et al. 
[53] described the risk of stillbirth starting at 32 weeks of 
gestational age. It has been seen that non-stress testing 
done during prenatal care can prevent 6 to 8 stillbirths 
per 10,000 pregnancies. Thus, showing the importance of 
predictive models for predicting and avoiding stillbirths 
during gestation.

Complementary to the prediction, the definition of 
most relevant predictors is also a relevant contribu-
tion. For instance, in Western Ethiopia [54], a study 

highlighted some predictors of neonatal mortality based 
on local data. Conditions such as age less than 20 years, 
primiparous, complications during pregnancy and child-
birth, prenatal visits, small size neonates, home birth and 
gestational age less than 37 weeks are predictors of neo-
natal mortality. Predictive data was important to knowl-
edge the reasons about the local neonatal mortality rate 
increased during recent years. Circumstances such as low 
coverage of health services in the region, low access and 
use of obstetric services and early pregnancy contribute 
to increased mortality rates.

The prediction of neonates who are at risk of death 
can help health professionals to provide early treatment, 
increasing the chances of survival and minimizing the 
morbidity rate [22]. Recent studies showed that model 
predictions based on multiple factors such as gestational 
and infant are more accurate in estimating than those 
based only in insulated factor, such as gestational age. 
Prenatal and postnatal interventions can reduce neonatal 
mortality and morbidity, and multifactorial based models 
would optimize such care in practical use [55, 56]. It is 
essential to have enough data to analyze several factors 
and then produce more assertive predictive models that 
can be applied in the health system.

In this SLR, we found data sets with different sizes (var-
ying between 293 to over 31 million records), number of 
attributes (from 26 to 128) and with missing values and 
imbalanced classes. According to an UNESCO report 
[1],  “poor data availability and quality require innova-
tive methodological work to understand the global picture 

Table 4  Metrics by selected works

Work Metrics

Valter et al. [29] Accuracy, AUC ROC

Hajipour et al. [32] Accuracy, Precision, Specificity, Sensibility, F1-score, AUC ROC

Saravanou et al. [30] Precision, Sensibility, AUC ROC

Baker et al. [20] Accuracy, Specificity, Sensibility, AUC ROC, AUPRC

Cerqueira et al. [21] Accuracy, Specificity, Sensibility, AUC ROC

Shukla et al. [10] AUC ROC

Malacova et al. [14] Accuracy, Precision, Specificity, Sensibility, AUC ROC

Sheikhtaheri et al. [22] Accuracy, Precision, Specificity, Sensibility, F1-score, AUC ROC

Podda et al. [25] AUC ROC

Batista et al. [31] Precision, Specificity, Sensibility, F1-score, AUC ROC, AUPRC

Jaskari et al. [26] Accuracy, Precision, Specificity, Sensibility, F1-score, AUC ROC

Mboya et al. [12] Accuracy, Specificity,Sensibility, AUC ROC, PPV, NPV, p-value

AlShwaish et al. [33] Accuracy, Precision, Sensibility, F1-score, AUC ROC

Sun et al. [23] F1-score, AUC ROC, AUPRC, PPV, NPV

Koivu et al. [15] AUC ROC, TPR at 10% FPR

Lee et al. [27] Accuracy, Specificity, Sensibility, AUC ROC

Cooper et al. [28] AUC ROC, MSE

Hsu et al. [24] Accuracy, F1-score, AUC ROC
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of stillbirths”. And it is true not only for stillbirths but 
also for perinatal, neonatal and infant mortality. Some 
authors have put efforts to minimize the issues related to 
the quality of their data sets and traditional techniques, 
such as the average value was used to fill missing data; 
ROS and SMOTE were used to balancing classes. How-
ever, there are many other techniques that can be applied 
in order to improve the quality of the data before the 
model training. For instance, for high-dimensional data, 
one can apply different types of dimensionality reduction 
in order to reduce redundancy and noise. According to 
Huang et  al. [57], these techniques can also reduce the 
complexity of learning models and improve their classifi-
cation performance.

The proposal of deep learning models to classify mor-
tality is still in early stages, having only four works pub-
lished at the time of writing this systematic review. This 
is not so surprising, since machine learning models are 
more efficient to handle tabular data (that is the com-
mon data type used for mortality classification), while 
deep learning are good models to recognize objects in 
an image based on the spacial relationship of the pixels. 
Based on this fact, it is possible to improve the perfor-
mance of deep learning models when using tabular data 
by transcribing the tabular data into images. Zhu et  al. 
[58] state that the data set features can be arranged into a 
2D space, using techniques such as feature similarity and 

feature distance [58, 59]. With this, deep learning models 
would learn tabular data using their strengths.

It is important to highlight that health issues found in 
high income countries (HICs) are very different from 
those in low and middle incomes countries (LMICs). 
Computational models are presented as a low-cost 
(implementation and maintenance) but high accuracy 
solution, especially for LMICs, since such solutions can 
be available in an online fashion.

The findings of this SLR are similar to ones found in 
SLRs about other domains, including the work done by 
[60], which investigated the use of AI models for clinical 
diagnosis of arboviral diseases, and [61], which sought 
models of machine learning in geriatric clinical care for 
chronic diseases. These conclusions mostly concern the 
models’ shortcomings and strengths, as well as the pre-
processing of the data.

Additionally, maternal mortality is a research area that 
we would like to highlight for further investigation and as 
complement of this one. According to Geller et  al. [62], 
maternal mortality “is used globally to monitor maternal 
health, the general quality of reproductive health care, 
and the progress countries have made toward interna-
tional development goals”. In a quickly investigation, we 
found only few recent (and incipient) works that focus on 
maternal mortality [63, 64], showing that there are many 
research opportunities to contribute in this area.

Fig. 9  The most common metrics used to evaluate model performance when working with imbalanced data set
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This SLR is also essential for the development of new 
researches. We have analyzed and discussed several 
aspects of machine and deep learning development, so 
readers can use this work as a good kick off to choose the 
best strategies for solving their problems and designing 
their methodology in a more robust way, facilitating sci-
entific reproducibility.

Conclusions and next steps
Mortality during pregnancy or during the first few weeks 
of life may reveal how well pregnant women and their 
newborns are cared for by health institutions. Due to its 
feasible operational cost, utilizing technology to assist 
medical professionals during and after pregnancy has 
shown to be a powerful ally for enhancing both public 
health and the quality of prenatal care.

On the other hand, the computational models created 
based on data from a specific location are particularly 
generalist only for that region, making them difficult to 
apply to another location without modifications. In other 
words, countries with limited resources may struggle 
with a lack of data or with data of low quality, which has 
a direct impact on the performance of the computational 
models.

In this work, we found 18 articles that classified 
unfavorable pregnancy outcomes-such as stillbirth, 
perinatal, neonatal, and/or infant mortality-using 
machine learning and/or deep learning. We discovered 
that the classification of neonatal death was the most 
researched, while the parameters birth weight, gesta-
tional age, child’s gender, and mother’s age were most 
frequently employed in studies. The random forest 
machine learning model was the most commonly sug-
gested model, while the AUC ROC assessment metric 
was most frequently utilized to rate the models.

With this work, we were able to identify several 
research gaps and areas for further investigation, 
such as maternal mortality and morbidities, but more 
importantly, we offered several potential approaches 
for individuals wishing to pursue these goals and use 
these kinds of data.
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