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Abstract 

Background:  Clinically cardiotocography is a technique which is used to monitor and evaluate the level of fetal dis-
tress. Even though, CTG is the most widely used device to monitor determine the fetus health, existence of high false 
positive result from the visual interpretation has a significant contribution to unnecessary surgical delivery or delayed 
intervention.

Objective:  In the current study an innovative computer aided fetal distress diagnosing model is developed by using 
time frequency representation of FHR signal using generalized Morse wavelet and the concept of transfer learning of 
pre-trained ResNet 50 deep neural network model.

Method:  From the CTG data that is obtained from the only open access CTU-UHB data base only FHR signal is 
extracted and preprocessed to remove noises and spikes. After preprocessing the time frequency information of FHR 
signal is extracted by using generalized Morse wavelet and fed to a pre-trained ResNet 50 model which is fine tuned 
and configured according to the dataset.

Main outcome measures:  Sensitivity (Se), specificity (Sp) and accuracy (Acc) of the model adopted from binary 
confusion matrix is used as outcome measures.

Result:  After successfully training the model, a comprehensive experimentation of testing is conducted for FHR data 
for which a recording is made during early stage of labor and last stage of labor. Thus, a promising classification result 
which is accuracy of 98.7%, sensitivity of 97.0% and specificity 100% are achieved for FHR signal of 1st stage of labor. 
For FHR recorded in last stage of labor, accuracy of 96.1%, sensitivity of 94.1% and specificity 97.7% are achieved.

Conclusion:  The developed model can be used as a decision-making aid system for obstetrician and gynecologist.
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Background
Fetal distress is a condition that results insufficiency 
of oxygen reaching to tissue and rise of the fetus body 
fluid acidity condition [1]. If the situation is not inter-
vened immediately it can cause a series damage to brain 
of the fetus [2] or prenatal death [3].Cardiotocography 
is the most common noninvasive device used to moni-
tor and evaluate the condition of fetus during labor 
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and pregnancy. Clinically CTG signal is interpreted by 
experts visually using guidelines [4].

Despite the fact that clinical guidelines are available 
for interpretation of CTG, there exist a significant inter-
observer variability among experts in visual interpreta-
tion [5, 6]. In order to interpret CTG accurately experts 
need to have experiences, unless very crucial patterns 
may be missed or interpreted wrongly. Misinterpretation 
of CTG signal may lead to unnecessary surgical delivery 
[7].

To overcome the problems in visual interpretation sev-
eral studies have done to develop computer aided diag-
nosing models using varies method. Among them rule 
based system is the one which mainly focus on identi-
fying morphological parameters defined in the clinical 
guidelines [8–10]. The major shortcoming associated 
with the most rule based systems is that they focus on 
identifying the morphological features rather than clas-
sifying the signal in to normal and abnormal. Moreover, 
the rule-based system necessitates extensive domain 
knowledge as well as a significant amount of manual 
work, making it time-consuming.

Development of automated model for CTG signal 
analysis extended from identifying the guideline features 
to approach of extracting of varies domain feature and 
selecting the most important features for classification 
[11–13]. And this method of automated classification is 
called conventional machine learning approach. Comert 
et  al. [14] used time–frequency image of FHR signal to 
develop novel prognostic model using machine learning 
for assessment of fetal distress. Another study was con-
ducted by Zafer et al. [15] on evaluation of fetal distress 
diagnosis for FHR recorded in first and second stage of 
labor using conventional machine learning approach.

Generally, in conventional machine learning approach, 
hand crafted feature extraction strategy applied to extract 
the most important features that conveys information 
about fetal distress is still challenging. Typically, more 
features even that are irrelevant to the task at hand may 
be extracted or small features may be selected and this 
lead to loss of valuable features. To overcome this prob-
lem CAD based CTG signal classification are inspired 
by art of deep learning which differs from traditional 
machine learning in a way that it does away with the need 
for handcrafted features by learning valuable features 
directly from data, eliminating the need for manual fea-
ture extraction and selection approaches. Most of deep 
learning model requires 2D image data as an input how-
ever, the raw CTG signal is 1D time series signal and vari-
ous techniques were applied in related works to convert 
the 1D CTG signal to 2D.

Bursa et  al. [16], developed convolutional neural net-
work model which aimed to classify CTG signal. They 

used a continuous wavelet transform family named com-
plex Morlet for generation of time frequency image of 
FHR signal to feed the CNN model. The model is tested 
on FHR data that is recorded during stage I labor and a 
classification accuracy of 94.1% were achieved by this 
model. A transfer learning strategy, a deep convolutional 
neural network was developed using AlexNet model by 
Comert et al. [17]. They used STFT to generate time–fre-
quency image of FHR signal to feed the AlexNet model 
and achieved classification accuracy of 94.32%. Another 
deep learning model was developed by Zhao et  al. [18]. 
They used CWT family named db and sym to generate 
input images for the deep learning model. An optimized 
ResNet 50 convolutional neural network was imple-
mented for assessment of maternal and embryo risk 
during pregnancy [19]. They used various time domain 
features extracted using conventional machine learning 
approach to feed the deep learning model. After extrac-
tion of feature optimized ResNet was used for classifica-
tion and the achieved accuracy of 94.63%.

As stated on the aforementioned related work, time–
frequency representation of FHR signal using varies tech-
nique were implemented to generate an input image for 
deep learning model and promising classification accu-
racy were achieved. In some literatures [20–22], scanned 
image of CTG signal were also used to generate 2D image 
as input for deep learning models. Detection of prevent-
able fetal distress using deep learning approach from 
scanned image of CTG signal was performed in [20]. A 
private data was used in their study and they achieved 
classification accuracy of 93.65%. Deep learning model 
named CTG-net was developed in [21] for classifica-
tion of scanned image CTG signal and they reported 
area under the receiver operating characteristic curve of 
0.73. Another study was conducted on fetal distress clas-
sification with deep convolutional network by Saini et al. 
[22]. They used scanned image of CTG signal to classify 
fetal distress in to three class named as normal, mild and 
severe.

Most of related work which were conducted based 
on deep learning approach shown very good potential 
in classification of fetal distress, however the accuracy 
achieved in [21] and [22] was very low. Even though high-
est accuracy was achieved in [17] and [18] application of 
the models and time–frequency representation of FHR 
for various stage of labor were not conducted and is ques-
tionable. Moreover, in the study of [20], pre-classification 
of the signal was done visually which is highly susceptible 
to high false positive. In [16] the model has not yet been 
fully validated and there is a problem on performance 
analysis of the models.

In this study, gaps of aforementioned works were 
addressed through taking positive motivational 
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methodologies and considering the critical factors that 
affects accurate detection of fetal distress from FHR sig-
nal of CTG.

The key contribution of the current study is as follows; 
preprocessing done in the first step on the raw FHR sig-
nal was to remove unwanted artifacts and missing data. 
Converting the 1D FHR signal to 2D image by applying 
effective method of time–frequency representation was 
done in the second step. Fine tuning of the ResNet 50 
deep learning model for training and classification was 
done in the third step. The last step was used to con-
duct comprehensive experiment on FHR signal that were 
recorded on early (first stage) and last (second) stage of 
labor. Since the quality and nature of FHR signal varies 
depending on the labor stage when it was recorded [23], a 
comprehensive experiment has been done for FHR signal 
recorded in varies stage of labor to confirm robustness of 
the model.

Methods
Data source
The CTU-UHB data which were obtained from the 
Physio Net is the only and the largest open access data-
base of its type. The data base consists of 552 recording 
which were obtained in the university’s obstetrics ward in 
Brno, Czech Republic. All recordings are 90 min in length 
and begin 90 min prior to delivery. The database consists 
of simultaneous record of UC and FHR which are sam-
pled at 4 Hz. The CTG signal recording lasts 60 min for 
1st stage of labor and 30 min for 2nd stage [24].

Figure  1 show the general schemes of the methodol-
ogy followed in this study and it includes: labeling of the 
CTG signal, preprocessing, time frequency representa-
tion, data preparation for training of mode, fine tuning 
a pertained Resnet50 model and evaluation of the model 
performance through validation and testing. There are 
several methods of data pre classification or data labe-
ling criteria for CTG signal analysis. Among them, labe-
ling based on experts visual annotation, APGAR score 
[8] and pH based annotation [15–18] are the most com-
mon methods. Since clinical expert’s visual annotation 
and APGAR score are subjective data labeling criteria, so 
both were disregarded and the objective data labeling cri-
teria that is pH value of neonatal umbilical artery blood 
measured shortly after the baby was born [25] is used. So, 
a pH less or equal to 7.15 was decided to be pathological 
and a pH greater than 7.15 is assigned for normal class 
after careful examination. Based on our data pre classi-
fication criteria, the database contained 439 normal and 
113 for distressed classes.

Preprocessing
In biomedical signal processing and analysis, preprocess-
ing is the first and very important step to be made before 
further analysis of the signal. Nature of features used in 
training and final classification of the model is reliant on 
the signal quality obtained after preprocessing [14].

In clinical practice CTG signal is acquired by exter-
nal sensors, thus FHR signal is subjected to artifacts 
and spikes that arise from maternal movement, sensor 
displacement which may cause the signal drop to zero 

Fig. 1  Schemes of overall methodology
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value [11] and other deliver related factors [18]. The 
noises that affects FHR signal ordinarily reveals itself 
as spiky, outliers or missing value (periods where FHR 
value drop to zero). Before further analysis of the CTG 
signal, noises are eliminated to obtain reasonably better 
quality signal for more accurate results. So, the main 
goal of this step is to reduce the aforementioned noises 
by applying a conventional preprocessing techniques 
applied in FHR signal analysis [13, 26] and the steps are 
shown in Fig. 2.

First the raw CTG signal containing FHR and UC sig-
nal are obtained, and then FHR signal is extracted and 
passed to the further step. Then the long gaps which is a 
missing value for more than 15 s are removed from the 
time series signal [20]. In addition, missing values at the 
beginning and at the end of recording are excluded to 
start from the stable point. The extreme value of FHR 
that are less than 50 bpm and greater than 200 bpm are 
called outliers (not physiologic) [17]. The outliers and 
small gaps are determined and linearly interpolated 
[13] using an algorithm provided by Matlab 2021a. It is 
a type of interpolation which uses linear polynomial to 
generate a new data point between two points by using 
curve fitting technique. For a two known data points by 
coordinates of (x0, y0) and (x1, y1) linear interpolation 
generates the new value of y using Eq. 1.

Sample points of FHR signal that is greater than by 
25 beat from the previous adjacent beat is not physi-
ologic and unreliable beat [27] and this unstable point 
reveals itself as spikes on a FHR signal, so it is removed 
using cubic spline interpolation [13]. It is a very power-
ful and widely used method that interpolates a function 
between a given set of points by means of piecewise 
smooth polynomials [28]. A cubic spline f(x) interpo-
lating on the partition x0 < x1 < ⋯ < xn-1 is a function for 
which f(xk) = yk is a piecewise polynomial function that 
consists of n −  1 cubic polynomials fk defined on the 
ranges [xk, xk+1]. An example of cubic spline interpola-
tion passing through 6 data point is shown in Fig. 3.

(1)y =
y0(x1 − x)+ y1(x − x0)

x1 − x0

Finally segment of the 1st 20 min (4800 sample) [12, 13, 
18] and last 15 min (3600 sample) [17, 29] were selected 
for further analysis considering the length of signal in 
first and second stage of labor. Considering x(i) as FHR 
signal having a sampling frequency of 4 Hz and a unit of 
beats per minute (bpm), where i = 1,2, …, N and N is the 
number of sample points, the following logic shown in 
Fig. 4 is performed in preprocessing stage using Matlab 
2021 a.

In stage of preprocessing, first the FHR signal is 
extracted as shown in Fig. 5b from the CTG signal that 
contains the FHR and uterine contraction signal as 
described Fig.  5a. Once the FHR signal is extracted it 
goes to further stage of preprocessing and finally seg-
mented based on stage of labor as early stage of labor and 
final stage of labor for experiment one and two as shown 
in Fig. 5c and d respectively.

Data augmentation
One of the most frequent problems in the field of deep 
learning is unbalanced classes. Data augmentation is 
one of the ways for dealing with this problem. Bearing 
in mind the amount of data available, under-sampling 
the largest class (Normal class) was ruled out and over-
sampling the minority distressed class was chosen for 
augmentation. There are some types of time series data 
augmentation inspired from 2D augmentation such as: 
Jittering(injecting noise), rotation, scaling, window slic-
ing [30]. Slicing augmentation is implemented in this 
work; it is the same as data augmentation used for image 
called cropping augmentation. The main idea underlying 
slicing is that the data is augmented by removing or add-
ing time steps from the pattern’s ends. Likewise, minor-
ity class of database is oversampled in the time series 
by slicing shifting backward for five minute two times. 
Therefore, slice of 20-min window slice for first stage and 
15-min window slice for second labor stage data were 
generated.

Fig. 2  Steps of preprocessing

Fig. 3  Cubic spline interpolation
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Time frequency representation of FHR signal using Morse 
wavelet
Various types of wavelet family are available for CWT, 
among them analytic wavelet (AW) has been widely 
employed for time frequency analysis and representa-
tion of physiological signal such as electroencepha-
logram (EEG) [31], electrocardiogram (ECG) [32], 
electromyogram (EMG) [33]. It’s a wavelet with a com-
plex value and a Fourier transform of zero at negative 
frequencies [34] and a generalized Morse wavelet is a 
latest and well known of its family. This family of wave-
let is an ideal choice for analysis of non-stationary sig-
nal with varying amplitude and frequencies over time. 
It calculates the amplitude, frequency, transient, short 
duration, localizing discontinuities, and combined 
time–frequency localization of time-varying amplitude, 
frequency, transient, and short duration [35].

From the family of analytic wavelet specifically gener-
alized Morse wavelet is called exactly analytic wavelet 
as it has no leakage for negative frequency unlike other 
analytic wavelets [36]. Negative frequency leakage in 
wavelets causes interference and degrades the trans-
form result [33, 35]. Furthermore the flexibility nature 
of generalized Morse parameters made it a super family 
to encompasses all other analytic wavelet class [36, 37].

Generalized Morse wavelet form has two parameter 
exhibiting additional degree of freedom in comparison 
with other AW. It is represented as ϕP,γ (t) and defined 
in frequency domain [36, 38] by Eq. 2

P2 is time bandwidth product, γ is symmetry param-
eter, is Euler’s number ≈ 2.71828 , U(ω) is unit step func-
tion and αP,γ is normalizing constant. Rather than the 
time bandwidth product, β is employed as a decay or 
compactness parameter in several Morse wavelet appli-
cations which is P2

= γ ∗β [35]. The equation of Morse 
wavelet using βandγ is written as Eq. (3).

By adjusting γ and β  parameters, the generalized 
Morse wavelet can take a broad range of mother wavelet 
that has not been even fully explored [35]. For instance 
setting γ = 1 and γ = 2 results to other family of analytic 
wavelet named Cauchy and derivative of Gaussian wave-
lets respectively [36].

The wavelet duration in time is proportional to the 
square root of the time bandwidth product P and deter-
mines number oscillation that can fit into the envelop 
[37], whereas the symmetry parameter  γ determines 
symmetry behavior of wavelet in time domain [33].

When γ is set to 3, the skewness of the Morse wave-
let via demodulation is 0 and this value results the 
wavelet to exhibits minimum Heisenberg area while 
remaining exactly analytic [35]. Wavelet with large 
Heisenberg area results to poor time frequency concen-
tration [37], so setting γ = 3 results the wavelet to the 

(2)ϕP.γ (ω) = U(ω)αP,γ ω
P2

γ e−ωγ

(3)ϕβ .γ (ω) = U(ω)αβ ,γ ω
βe−ωγ

Fig. 4  Algorithm applied in preprocessing of FHR signal
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most symmetric and the most Gaussian wavelets (‘Airy’ 
wavelet family) with minimum of Heisenberg area [33]. 
Hence the value of symmetry parameter  γ = 3 is used 
for time frequency representation of FHR in this work.

As discussed previously time-bandwidth product 
determines oscillations in the envelope [38]. so, for a 
fixed value of γ at 3 varying time-bandwidth product P2 
varies the oscillatory behavior of wavelet. Therefore, 
based on type of analysis and behavior of signal, one can 
adjust Morse parameters value and examine its effect on 
the mother wavelet and on frequency response of filter 
bank. Figure 6 shows the effect of time different value of 
time-bandwidth product value for fixed value of γ at 3.

As shown in Fig. 6 when the value of time-bandwidth 
product P2 increases the wavelet becomes more oscil-
latory in the envelop, this leads the wavelet to become 
narrower in frequency and spread out in time. The plot 
of frequency response clearly visualizes the effects in 

frequency domain, for the value of P2 = 4 the frequency 
response is widest compared with  P2 = 60 and 120. At 
P2 = 120 it’s very narrow.

The value of Morse wavelet parameter determines 
time frequency tradeoff in representing the FHR signal. 
For lower P2 value the wavelet transform results in good 
temporal resolution but poor spatial resolution, whereas 
for higher P2 the wavelet transform becomes good in spa-
tial resolution but poor resolution in temporal. For time 
frequency analysis the default value of time-bandwidth 
product which is 60 is recommended [32]. Considering 
the effect in time frequency trade off, the extreme val-
ues of P2 is ruled out for this study, as the aim is to local-
ize visible and hidden characteristic of FHR in time and 
frequency jointly. So, time band width product value of 
55 and 60 with symmetry parameter γ = 3, are carefully 
selected for time frequency representation of FHR signal 
in this work. A Matlab ‘cwtfilterbank’ is utilized for time 

Fig. 5  Preprocessing stages of CTG signal
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frequency conversion of FHR signal. The parameters in 
the filter bank are adjusted considering the FHR signals 
and wavelet parameters, thus sampling frequency 4  Hz, 
signal length (4800 and 3600) gamma parameter 3 and 
time bandwidth product value 60, 55 and voice for octave 
value of 12 are used.

Adoption of pre‑trained ResNet 50 model for transfer 
learning
Transfer learning is a term that refers to passing weight 
values of a trained neural network to another new neu-
ral network, so that building and training a network 
from scratch will be avoided [39]. Transfer learning 
makes updating and retraining a network considerably 
faster and easier than training a network from scratch. 
It permits the use of popular models that have already 
been trained on huge datasets to train models with less 
labeled data and some of the well-known CNN mod-
els used for transfer learning are; AlexNet, GoogLeNet, 

Vgg, OverFeat, ResNet, Xception [40]. Different aspects 
of pre-trained networks are important to consider 
when selecting a network to use for a specific purpose. 
Network accuracy, speed, and size are the most critical 
aspects. However, choosing a network is usually a com-
promise between these factors. So, taking major consid-
eration such as limited infrastructures like memory space 
and GPU and accuracy of the model in account ResNet 
50 is selected for this study.

ResNet is a sort of neural network first introduced by K 
He et al. in 2015 [41]. It is an architecture designed to be 
more in-depth structured than all previous architectures 
and enables for the successful training of incredibly deep 
neural networks without being hampered by vanishing 
gradients [41]. ResNet counters the problem of vanish-
ing gradients by introducing identity shortcut connec-
tion indicated by X in Fig. 7 or skip connection indicated 
curved arrow in Fig. 7.The identity connections helps the 
residual block to reuses the input features of the upper 

Fig. 6  Effect of generalized Morse parameter on time frequency trade off
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layer and add it with output of current layer before feed-
ing the next layer as illustrated in Fig. 7.

ResNet is one of the most powerful deep neural net-
works, which achieved exceptional generalization capa-
bilities on ILSVRC 2015 classification competition. 
ResNet also took first place in the ILSVRC and COCO 
2015 contests for ImageNet detection, ImageNet locali-
zation, COCO detection, and COCO segmentation [42]. 
ResNet50’s design is divided into four stages, as shown 
in Fig. 8 the network uses 7 × 7 and 3 × 3 kernel sizes for 
initial convolution and max-pooling respectively on input 
image of size 224 × 224 × 3. Following that, Stage 1 of the 
network begins, which consists of three residual blocks, 
each block has three layers, and kernel sizes utilized to 
execute the convolution operation in all three layers of 
the stage 1 block are 64, 64, and 128 [42].

Data split scheme
The dataset split was done for training and testing by 
applying a well-known rule of data splitting which is 80% 
and 20% training and testing sets respectively. Among 
the 20%, 10% was used for validation, and 10% for test. A 
training set is used to train the network while a validation 

set is used to monitor the model performance and fine 
tune hyper-parameters during the training process. 
Finally, a test set is used once in order to evaluate the per-
formance of the final model.

Result
Training result
After augmentation final dataset contained 1556 time 
frequency images of which 878 is for normal class and 
678 for pathologic or distressed class. As per the data 
split ratio used, the number of data used for training 
the system is 790 for normal and 610 for distressed. The 
remaining 10% which is 156 of which 68 for pathological 
and 88 for normal were taken as testing set. During train-
ing 10% of training data from each class was randomly 
selected based on validation frequency set which is 15 
iterations. Once data split and preparation were com-
plete the ResNet50 model is trained separately for first 
and second experiments which are the first 20  min and 
the last first 15 min of the CTG recording. The ResNet-50 
model performance is evaluated to select the best fine 
tuning parameters to do the classification task. Hence, 
the model was trained using the training dataset and vali-
dated with the validation dataset.

The learning curve is derived from the training data-
set and depicts the model’s learning ability. The valida-
tion learning curve, on the other hand, is derived using a 
validation dataset to determine how effectively the model 
generalizes. Figure 9 demonstrates the curve plots of the 
training accuracy (blue curve), validation accuracy (black 
dot with blue curve), training loss (brown curve) and val-
idation loss (black dot with brown curve) of models.

Fig. 7  Residual learning building block

Fig. 8  Architecture of ResNet 50
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During training, the lowest validation loss achieved 
were 0.1014 for Experiment 1 and 0.1054 for experi-
ment 2. And the validation accuracy of 98.76% and 
97.61% were achieved for experiment 1 and experiment 
2 respectively as summarized in Fig. 10.

Testing result
The performance of the model was evaluated for differ-
ent performance metrics such as classification accuracy, 
sensitivity and specificity. In classification the model is 
expected to categorize given input data into normal and 

Fig. 9  Training and validation curve of ResNet for 1st stage (a) and 2nd stage (b)
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distressed class. In order to do this 10% from each class 
that was already preserved for testing is used, among the 
testing set 68 data’s were assigned for distressed and 88 
data’s for normal classes.

According to the confusion matrix for experiment 1 in 
Table 1a two of the ‘Distressed’ class are misclassified as 
‘Normal’ class and all ‘Normal’ class are classified cor-
rectly. For second experiment in Table 1b, four of the dis-
tressed classes are misclassified as normal and two of the 
normal classes are misclassified as distressed class. From 
the confusion matrix result in Table 1 TP, TN, FP and FN 
values are easily known and the performance evaluation 
metrics are calculated, thus accuracy of 98.7%, sensitivity 
of 97.0% and specificity 100% are achieved for FHR signal 
of 1st stage of labor and accuracy of 96.1%, sensitivity of 
94.1% and specificity 97.7% are achieved for FHR signal 
of 2nd last stage of recording.

Discussion
Among the noninvasive devices used to monitor fetal 
heart activity, cardiotocography is the widely used tech-
nique for monitoring FHR and diagnose fetal distress. 
It is one of the most frequent ways for assessing fetal 
well-being during pregnancy and birth, and it aids in 
the detection of potential fetal risks such as hypoxia and 
distress. According to assessment conducted on inter 
observer agreement, visual interpretation of CTG signal 
suffers from observer variability that results to low inter-
observer agreements. The variability in visual interpreta-
tion, emphasizes that automating fetal distress diagnosis 
is very important for reducing diagnosis errors that are 
brought through the current traditional manual diagno-
sis technique. To achieve this FHR signal is preprocessed 
and converted to time–frequency representation using 
generalized Morse wavelet. Then a pre-trained ResNet 50 
model was fine-tuned on FHR data of first 20 min and the 
last 15 min.

In preprocessing large gaps which are missing for 
15  s were completely removed from the signal. Cubic 

spline and linear interpolation was used in preprocess-
ing to remove noises, outliers and missing values and 
unreliable beats. After preprocessing, the FHR signals 
were represented using generalized Morse wavelet 
with gamma parameter γ = 3, which is a value for the 
most symmetric and the most Gaussian wavelets (‘Airy’ 
wavelet family) [40], with minimum of Heisenberg 
area. In addition, the effect of time bandwidth product 
P parameter on frequency response of filter bank and 
on FHR time frequency representation were examined 

0.9876
0.9761

0.1014
0.1054

0
0.2
0.4
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0.8
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Experiment 1 Experiment 2

Valida�on accuracy

Fig. 10  summery of training performance

Table 1  Confusion matrix for experiment 1 (a) and 2 (b)
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for γ value fixed at 4. As a result of raising the time 
bandwidth product P, the wavelet filter bank frequency 
response was narrowed in frequency while the breadth 
of the middle component of the filter was increased in 
time as described in Fig.  6, due to these effects on fil-
ter bank the higher P value results to high frequency 
resolution with poor time resolution, whereas lower-
ing P value results to high time resolution with poor 
frequency resolution. Thus considering the frequency 
range of FHR and effects on time frequency representa-
tion, P value of 55 and 60 was used to generate an input 
time frequency image for the pre trained Models.

After fine tuning the ResNet50 model its performance 
is examined during training. During training the perfor-
mance evaluation of the model is done using learning 
curve by examining two different metrics which are the 
accuracy and loss metrics. For both training and valida-
tion datasets, a good result is attained when the accuracy 
curve grows and the loss curve lowers as the number of 
epochs increases. As a result, both metrics plots were 
created for each experiment and by reviewing the learn-
ing curves shown in Fig. 9a and b the performance of the 
model was evaluated.

When examining the performance for both experi-
ments, The ResNet 50 model fine-tuned with Adam 
optimizer, learning rate 0.001, validation frequency 20 
iteration and mini batch size 30 achieved higher valida-
tion accuracy at 13thepoch which is 98.76% and 97.61 
for experiment 1 and 2 respectively. Finally, average test 
accuracy of the model for classification was calculated. 
Hence, accuracy of 98.7%, sensitivity of 97.0% and speci-
ficity 100% are achieved for FHR signal of experiment 
one. For second experiment an accuracy of 96.1%, sensi-
tivity of 94.1% and specificity 97.7% are achieved.

The testing result achieved with the ResNet 50 model 
is comparable with the most related literatures [16, 22], 
studied on the same CTU-UHB data base and experi-
mented on FHR recorded on early and last stage of labor 
as described in Table 2. Comparing with [16], FHR and 
UC time frequency information of first labor stage has 
been used using Complex Morlete with varies detail 
parameter to increase the dataset. y. In [17], STFT was 
used for time frequency representation of second stage 
FHR data and four time–frequency image generated for 
one FHR signal based on frequency range of FHR and 
this helped to increase the size of database. They used a 
pre-trained AlexNet model for classification. The main 
difference of their study with current study is using STFT 
for time frequency representation and using pH value less 
7.05 for discrimination of FHR data normal and hypoxic. 
They reported average Acc, Se, and Sp of 93.32%, 56.15%, 
and 96.51%, respectively. Even though a promising result 
was achieved for second stage of labor, the model is com-
plex to implement as the time frequency representation 
is done based on the four different frequency ranges 
which is associated with a varies physiological events. 
Moreover, the pH value less 7.05 which is assigned for 
the pathological class is representative of severe hypoxic 
fetus, thus the model may classify mild hypoxic fetus in 
to normal. In [17, 18] CWT two mother wavelet (db and 
sym) with order of two and scale of 4, 5 and 6 was used 
for time frequency representation of FHR data of first 
labor stage and they designed a CNN from scratch on 
Matlab, thus reported accuracy, sensitivity and specificity 
of 98.34%, 94.87% and 97.82% respectively. Since a single 
wavelet scale is used in the study, the time frequency rep-
resentation fails the multiresolution analysis of CWT and 
captures limited information within the specified scale 

Table 2  Summary of the most related works and current work

Paper Database Source Labeling criteria Stage Method Performance

Bursa et al. [16] CTU-UHB pH 1st (60 min) CWT + 2D CNN Acc: 94.1%

Comert et al. [17] CTU-UHB pH 2nd (15 min) STFT + 2D CNN (AlexNet) Acc: 93.32%, Sen: 56.15% Sp: 
96.51%

Zhao et al. [18] CTU-UHB pH 1st (20 min) CWT + 2D CNN Acc: 98.34%, Sen: 94.87% Sp: 
97.82%

Parvathavarthine et al. [19] CTU-UHB pH 2nd (30 min) Optimized Res Net 50 Acc: 94.63%

Frasch et al. [20] Private Visual N/A Customized 2D CNN Acc: 93.6%

Ogasawara et al. [21] CTU-UHB Ph&apgar 2nd (30 min) 2D CTG-net AUC: 0.73

Saini et al. [22] CTU-UHB pH 1st (60 min) FHR + UC + 2D CNN Acc: 70%, 71.4% and 70%

Current study CTU-UHB pH 1st (20 min) 
and 2nd 
(15 min)

Morse wave-
let + CNN(ResNet50)

Acc: 98.7%,
Sen.: 97.0%
Sp: 100%

Acc: 96.1%,
Sen.: 94.1%
Sp: 97.7%
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and this may lead to low the performance of the model if 
implemented in second labor stage FHR data.

Moreover, in some literatures the CNN model is fed 
with scanned image of CTG signal. Accordingly in [19] 
and [20] classification accuracy of 94.63% and 93.6% were 
reported respectively. In [21] CTG net CNN model was 
developed reported AUC of 0.78. In [22] scanned image 
of CTG signal with a morphological feature was used and 
accuracy of 70%, 71.4% and 70% for normal, mild hypoxia 
and severe hypoxia respectively were reported.

Comparing with aforesaid literatures which are imple-
mented on deep learning model with time frequency of 
representation for FHR such as Complex Morlete [13], 
STFT [16], db and sym wavelet [17], our model achieved 
better classification task for first and second labor stage 
FHR data.

To generalize, desirable behavior of generalized Morse 
wavelet which are: being exactly analytic wavelet which 
has no leakage for negative frequency [65], the most 
Gaussian wavelets (‘Airy’ wavelet family) with minimum 
of Heisenberg area [33], application for analysis of time 
varying amplitude, frequency, transient, short duration, 
localizing discontinuities and joint time–frequency rep-
resentation [35] and the ResNet 50 architecture key fea-
tures such as; using batch normalization and bottleneck 
residual block design to increase the performance of the 
network, using identity connection to protect the net-
work from vanishing gradient problem [42] supposed to 
improved performance of our experiment.

Conclusion
This study proposed an automatic system for fetal dis-
tress detection from time frequency information of CTG 
signal using generalized Morse wavelet. A pre-trained 
ResNet 50 model was used to classify fetal condition 
as normal and distressed for first stage and last stage of 
labor FHR data. The study showed that time frequency 
representation of FHR signal using generalized Morse 
wavelet has a significant impact on capturing important 
features of FHR signal, thus improved the classification 
performance of identifying fetal distress in various stage 
of labor. Generally, classification accuracy of 98.7%, sen-
sitivity 97.0% and specificity 100% have been obtained for 
data of first stage of labor and accuracy of 96.1%, sensi-
tivity 94.1% and specificity 97.7% have been obtained for 
FHR data of second stage of labor using CTU-UHB data-
set. Finally, to ease the use of the system a simple Graphi-
cal User Interface is developed. This system can play a 
significant role in supporting obstetrician and gynecolo-
gists during the diagnosis procedures.

In this study class imbalance between normal and dis-
tressed class was the main challenge. However, data aug-
mentation technique was implemented on distressed 

time series FHR signal to deal class imbalance issue. But, 
to develop more robust and reliable model it’s recom-
mended to collect more data rather than augmenting the 
minority class. Moreover, the study is limited to classify 
fetal distress in to normal and distressed, but it is rec-
ommended to classify the distressed class to severe and 
mild class. The aforementioned recommendations can be 
taken into account for further study which are not inves-
tigated and addressed in this work.
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