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Machine learning model identifies 
aggressive acute pancreatitis within 48 h 
of admission: a large retrospective study
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Abstract 

Background:  Acute pancreatitis (AP) with critical illness is linked to increased morbidity and mortality. Current risk 
scores to identify high-risk AP patients have certain limitations.

Objective:  To develop and validate a machine learning tool within 48 h after admission for predicting which patients 
with AP will develop critical illness based on ubiquitously available clinical, laboratory, and radiologic variables.

Methods:  5460 AP patients were enrolled. Clinical, laboratory, and imaging variables were collected within 48 h after 
hospital admission. Least Absolute Shrinkage Selection Operator with bootstrap method was employed to select the 
most informative variables. Five different machine learning models were constructed to predictive likelihood of critical 
illness, and the optimal model (APCU) was selected. External cohort was used to validate APCU. APCU and other risk 
scores were compared using multivariate analysis. Models were evaluated by area under the curve (AUC). The deci-
sion curve analysis was employed to evaluate the standardized net benefit.

Results:  Xgboost was constructed and selected as APCU, involving age, comorbid disease, mental status, pulmonary 
infiltrates, procalcitonin (PCT), neutrophil percentage (Neu%), ALT/AST, ratio of albumin and globulin, cholinesterase, 
Urea, Glu, AST and serum total cholesterol. The APCU performed excellently in discriminating AP risk in internal cohort 
(AUC = 0.95) and external cohort (AUC = 0.873). The APCU was significant for biliogenic AP (OR = 4.25 [2.08–8.72], 
P < 0.001), alcoholic AP (OR = 3.60 [1.67–7.72], P = 0.001), hyperlipidemic AP (OR = 2.63 [1.28–5.37], P = 0.008) and 
tumor AP (OR = 4.57 [2.14–9.72], P < 0.001). APCU yielded the highest clinical net benefit, comparatively.

Conclusion:  Machine learning tool based on ubiquitously available clinical variables accurately predicts the develop-
ment of AP, optimizing the management of AP.
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Introduction
Acute pancreatitis (AP) is an inflammatory disease of the 
pancreas, which is the leading cause of admission to hos-
pital for gastrointestinal disorders in the USA and many 
other countries. Approximately 15–25% AP patients 
develop moderately severe or severe AP (SAP), and nearly 
25% AP patients had to be admitted to an intensive care 
unit (ICU) with severe complications [1]. Between 1988 
and 2003, mortality from AP decreased from 12 to 2%, 
according to a large epidemiologic study from the United 
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States [2]. However, mortality rates remain much higher 
among critical patients. A recent Japanese study showed 
that the mortality rate for SAP is about 16.7% [3]. Mor-
tality of SAP can be decreased with early identifying and 
individualized precision treatment. Previous studies have 
shown that precision treatment within 48 h of admission 
can substantially decrease the mortality rate of SAP [4]. 
As a consequence, to identify these patients at admission 
and at 48 h post-admission and offer targeted therapeutic 
approaches, we develop a new and more accurate scoring 
system.

Multiple predictive models have been developed to 
predict the severity of AP based on clinical, laboratory, 
and radiological risk factors, various severity grading sys-
tems, and serum markers. However, the low specificity 
(i.e., high false positive rate) of these predictive models, 
which is complex and cumbersome to complete, com-
bined with the low prevalence of severe AP, led to a low 
positive predictive value. Especially, many scoring sys-
tems (e.g., RANSON, Glasgow) take 48  h to complete, 
can be used only once, which results in certain limita-
tions [5]. Recently, it is confirmed that BISAP score is an 
accurate means for risk stratification in patients with AP, 
but its prognostic accuracy is similar to that of the other 
scoring system [6]. Which means the current predictors 
have reached a saturation point from the recent and pre-
vious data on severity prediction of AP [7]. Meanwhile, 
none of the scoring systems combined imaging findings 
with clinical indicators, which could be the reason there 
was no improvement in the accuracy. Our scoring system 
innovatively includes both clinical indicators and radio-
logic markers that are easy to repeatedly access at admis-
sion and at 48 h post-admission.

It has been shown that machine learning (ML) models 
could improve risk prediction in various diseases [8–14], 
and drug-drug interactions [15, 16]. Results indicate that 
ML models have advantages compared to conventional 
logistic or linear regression by considering high-order, 
non-linear interactions, yielding more stable predictions. 
Similarly, this model can also be used for predicting the 
clinic course of AP. Previous studies used ML models 
to promote the accuracy of predicting AP by combin-
ing APACHE II score and C-reactive protein (CRP) 
[17]. However, there is’t one ML model which combines 
imaging findings and clinical indicators to predict can 
be reported. Moreover, these risk scores only focus one 
import clinic outcome, such as organ failure, sepsis, in-
hospital morality and so on, as endpoints, cannot screen 
the high-risk AP patients to the largest maximum.

Therefore, we aimed to develop and validate a machine 
learning model (APCU) that incorporated both the radi-
ological signature and clinical risk factors to improve the 
accuracy of predicting the development of AP in the first 

48 h post-admission, and the high mortality in critical ill 
patients could be reduced.

Patients and methods
Patients
Data on consecutive patients who had AP were retro-
spectively collected from the Renmin Hospital of Wuhan 
University (RM) between January 6, 2016, and October 
22, 2020, and from the Central Hospital of Wuhan, Tongji 
Medical College, Huazhong University of Science and 
Technology (TJ) between 2018 and 2019. The study was 
approved by the Institutional Ethics Committee of the 
Renmin Hospital of Wuhan University (2021-RM-02106) 
and the Central Hospital of Wuhan (2021ks06109). 
Informed consent was waived from all patients for their 
data to be used for research. The methods and reporting 
of results adhering to Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines: Explanation and Elabo-
ration guidelines [18, 19]. Inclusion criteria: (1) Patients 
admitted to the hospital with a diagnosis of AP by using 
international consensus [2]; (2) Patients who admitted 
for the first occurrence of AP; (3) Patients with com-
plete clinical, radiological and laboratory findings within 
48 h after admission; (4) Patients with complete clinical 
course record. Exclusion criteria: (1) Chronic pancreati-
tis patients with recurrent acute attacks; (2) Patients who 
have lost follow-up; (3) incomplete clinical data within 
the first 48 h after admission; (4) pancreatitis cancer; (5) 
AP caused by endoscopic surgery, developed organ fail-
ure, infected pancreatic necrosis or both before hospital 
admission. Organ failure is defined as a score of two or 
more for any one of three organ systems (respiratory, car-
diovascular, or renal) using the modified Marshall scor-
ing system [20]. Patients were stratified into high-risk or 
low-risk groups based on the likelihood who will suffer 
from critical illness or not. The workflow of patient selec-
tion is illustrated in Fig. 1.

Endpoints
We defined the admission of ICU as the endpoint of the 
follow-up. Patient admission to the ICU was at the dis-
cretion of the medical or surgical team based on physi-
ologic variables, laboratory criteria according to the 
guidelines for ICU admission, discharge, and triage 
issued by the American College of Critical Care Medi-
cine [21] and the Revised Atlanta Classification of Acute 
Pancreatitis [22]. The ICU admission criteria included: 
(1) moderate AP patients with transient organ failure 
or local or systemic complications; (2) systemic com-
plications without persistent organ failure (< 48  h); (3) 
pancreatic and peripancreatic abscesses; (4) digestive 
tract fistula; (5) systemic infection; (6) intra-abdominal 
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hypertension; (7) abdominal compartment syndrome; (8)
pancreatic encephalopathy; (9)sepsis; (10)moderate SAP; 
(11) SAP or critical AP patients, including persistent one 
or multiple organ failure, infected pancreatic necrosis, or 
both.

Potential predictive variables
Clinical variables associated with intensive care unit 
risk were assessed a priori based on clinical importance, 
scientific knowledge, and predictors identified in previ-
ously literatures [23–26]. Variables with more than 20% 
missing values were excluded in our study. A total of 
59 variables were collected as potential predictive fac-
tors, including sex, age, temperature, heart rate, systolic 
blood pressure, diastolic blood pressure, mental status, 
BMI, pathogenesis, alcohol, comorbid diseases, pleural 
effusions, pulmonary infiltration, Epidermal Growth 
Factor Receptor (eGFR), Urea/Serum Creatinine (Ur/
Cr), Total Protein (TP), Total Bilirubin (TBIL), Serum 

Total Cholesterol (TC), Direct Bilirubin (DBIL), Anion 
Gap (AG), Aspartate Amino Transferase (AST), Tri-
glyceride (TG), Globulin (GLB), Prealbumin (PA), Glu-
cose (Glu), Uric Acid (UA), Urea, Serum Sodium (Na), 
Serum Magnesium (Mg), Serum Chlorine (Cl), Serum 
Phosphate (IP), Alkaline Phosphatase (ALP), Serum 
Potassium (K), Serum Creatinine (Cr), Serum Calcium 
(Ca), Total Carbon Dioxide (TCO2), Cholinesterase 
(CHE), Alanine Aminotransferase (ALT), Albumin 
(ALB), ratio of albumin and globulin (A/G), γ-glutamyl 
transpeptidase (GGT), ALT/AST, Neutrophil (Neu), 
Percentage of Neutrophilic Granulocyte (Neu%), Mean 
Platelet Volume (MPV), Platelet (PLT), Platelet Volume 
(PLV), Hemoglobin (Hb), Lymphocyte (LYM), Per-
centage of Lymphocyte (LYM%), Procalcitonin (PCT), 
Mean Corpuscular Volume (MCV), Hematocrit (HCT), 
Red Blood Cell (RBC), Percentage of Monocytes 
(Mono%), White Blood Cell (WBC), CRP, Serum Lipase 
(LIPA) and Serum Amylase (AMY). The laboratory 

Fig. 1  The pipeline of patient selection
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indicators, abbreviations, and normal ranges are sum-
marized in Additional file 1: Table S2. And all data used 
for analysis were the first examination results within 
the first 48  h after admission. Imputation for missing 
variables was taken into consideration if the missing 
values were less than 20%. And the missing data were 
imputed using R package ‘DMwR’.

Feature selection
The least absolute shrinkage and selection operator 
(LASSO) on the logistic regression model with boot-
strap method was employed to select the most impor-
tant variables for constructing prediction models [27], 
compared with minimum redundancy maximum rel-
evance (MRMR) and Boruta feature selection methods. 
L1-penalized absolute shrinkage with 20-fold cross vali-
dation was conducted for LASSO variable selection pro-
cess. The most predictive variables with the minimum 
λ were reported using R package ‘glmnet’. Notable, λ is 
the optional user-supplied lambda sequence and glmnet 
chooses its own sequence, aiming to get better conver-
gence. AP risk score was constructed using the coeffi-
cients of statistically significant variables weighted by 
the multivariable logistic regression model in the train-
ing cohort. Backward stepwise selection with Akaike’s 
information criterion was applied to select statistically 
significant factors for the multivariable logistic regres-
sion model; the P value threshold was 0.05 (P < 0.05) for 
including the significant variables from the analysis.

Models construction
The whole cohort was split into 70% training and 30% 
validation sets. This was to optimize the tradeoff between 
the robustness of the training sample and the number of 
events in the test set. Training cohort was used to build 
prediction models with fivefold cross-validation, whereas 
the validation cohort was used to validate the models 
performance. In the training cohort, five machine learn-
ing models, including support vector machines with lin-
ear kernel (SVM-linear), support vector machines with 
sigmoid kernel (SVM-sigmoid), support vector machines 
with radial basis kernel (SVM-radial), logistic regres-
sion and xgboost [28], were constructed, using variables 
identified by LASSO regression analysis. We follow the 
TRIPOD guidelines [18, 19] to construct the predic-
tion models using identified variables by LASSO. The R 
packages ‘e1071’, ‘glmnet’ and ‘xgboost’ were employed 
to build SVM-linear, SVM-sigmoid, SVM-radial, logistic 
regression and xgboost models, respectively. The Hos-
mer–Lemeshow test was used to test the goodness of fit 
for the constructive models.

Xgboost algorithm
eXtreme Gradient Boosting (Xgboost) is a machine 
learning technique with gradient boosting method that 
combines the regression tree [28]. Xgboost has been 
widely recognized in the machine learning literature [29–
31], data mining challenges and disease outcome pre-
diction. By adjusting the hyper-parameters, the xgboost 
could assemble weak prediction models to an optimal 
and accurate classifier, with the most predictive features. 
Additionally, the xgboost could handle missing clinical 
values effectively, which is common in live clinical work 
[14].

Models assessment
The models performances were evaluated by the predic-
tive accuracy (ACC) for individual outcomes (discrimi-
nating ability), sensitivity (SEN), specificity (SPC), and 
the area under the curve (AUC). The Youden index (i.e., 
sensitivity + specificity − 1) was used to identify the opti-
mal cutoff value in the training cohort and validation 
cohort, as the equal importance of sensitivity and speci-
ficity for AP. The patients will be stratified into high-risk 
group and low-risk group based on the best cut-off value. 
We also used the AUC, sensitivity and specificity to com-
pare the accuracy of different types of models and risk 
scores (i.e., RANSON, SIRS). DeLong test was used to 
compare AUCs of different models.

The decision curve analysis was employed to evaluate 
the standardized net benefit of the probability threshold 
used to categorize observations as ’high risk. The deci-
sion curve analysis incorporates consequences and there-
fore informs the decision of whether to use a model at all, 
or which of several models is optimal [32]. In the decision 
curve, the x-axis represents the threshold probability, 
and the y-axis measures the net benefit. The net benefit 
was calculated by summing the benefits (true-positive 
results) and subtracting the harms (false-positive results), 
weighted by the relative harm of a false-positive and 
false-negative result. The R package ‘rmda’ was employed 
to conduct the decision curve analysis.

Statistical analysis
Continuous variables are reported as mean (SD) or 
medians with interquartile ranges (IQRs) for skewed 
distributed variables and compared using an unpaired, 
2-tailed t-test or Mann–Whitney U test. Categorical 
variables were reported as whole numbers and propor-
tions (n [%]) and compared using the χ2 test or Fisher 
exact test. Shapiro–Wilk normality test was performed 
to compute the data normality. Imputation for miss-
ing variables was taken into consideration if the miss-
ing values were less than 20%. The k-nearest neighbors 
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were used to fill in the unknown (NA) values. For NA 
value, it will impute for k most similar cases and use 
the values of these cases to fill in the unknowns. The 
NA values were filled using R package ‘DMwR’. Con-
tinuous predictors (i.e., age [33], obesity [26]) were 
categorized according to the previous researches 
before analyzing, APACHE II [33], RASON [34], SIRS 
[35] and NEWS [36] were used as categorical variable. 
Different types of risk scores were compared using 
multivariate analysis and visualized with a forestplot, 
using R package ‘forestplot’.

In all data analyses, P < 0.05 was considered statisti-
cally significant. Odds ratios (ORs) were reported with 
their 95% confidence intervals (95% CIs) to evaluate 
the effect size of important clinical factors. All anal-
yses were performed using R software (version 4.0.4, 
http://​www.r-​proje​ct.​org).

Results
Study population
A total of 5280 patients with AP were enrolled in the 
internal cohort (Dinternal). For Dinternal, 156 (59.1%) were 
men; more than 50% of the patients were less than 
50  years old. Nearly 20% patients had pulmonary infil-
trates (16.3%) within 48  h after hospital admission. 
About 30% patients had comorbid disease. At the end 
of follow-up endpoint, approximately 15% patients had 
ICU involvement. Characteristics of the training and test 
sets were presented in Table 1. No statistically significant 
were observed between training and test sets (P > 0.05).

Discriminative features
LASSO feature selection was used to select the most 
predictive features, compared with MRMR and Boruta, 
as best predictive performances (Additional file  1: 
Table  S3). Fifty-nine potential variables measured 
within 48  h post-hospitalization (Additional file  1: 
Table  S4) were entered into the LASSO regression. 13 

Table 1  Demographics and clinical characteristics of Dinternal

Abbreviation and normal range: more details could found in Additional file 1: Table S2

Variables Total (n = 5280) Test (n = 1584) Training (n = 3696) P

Age, n (%)

 < 50 2880 (54.6) 931 (58.8) 1949 (52.7) 0.655

 < 75 1940 (36.7) 535 (33.8) 1406 (38.0)

 ≥ 75 460 (8.7) 118 (7.5) 341 (9.3)

Mental status, n (%)

 Awake 4120 (78.0) 1129 (71.3) 2991 (80.9) 0.276

 Somnolence 460 (8.7) 198 (12.5) 262 (7.1)

 Stupor 480 (9.1) 158 (10.0) 322 (8.7)

 Coma 220 (4.2) 99 (6.2) 121 (3.3)

Comorbid diseases, n (%)

 Yes 1563 (29.6) 396 (25.0) 1167 (31.5) 0.286

 No 3717 (70.4) 1188 (75.0) 2532 (68.5)

Pulmonary infiltration, n (%)

 Yes 861 (16.3) 336 (21.2) 525 (14.2) 0.255

 No 4419 (83.7) 1248 (78.8) 3171 (85.8)

TC, median [IQR] 4.20 [3.4, 5.2] 4.14 [3.5, 5.0] 4.25 [3.4, 5.2] 0.810

AST, median [IQR] 25.0 [18.0, 42.0] 24.00 [17.4, 50.0] 25.00 [18.0, 39.0] 0.791

Glu, median [IQR] 7.60 [5.3, 10.1] 8.54 [5.5, 11.6] 7.12 [5.3, 9.9] 0.105

Urea, median [IQR] 5.08 [3.7, 6.8] 4.79 [3.6, 6.8] 5.26 [3.9, 6.7] 0.404

CHE, mean (SD) 8503.59 (3060.8) 8061.50 (3288.8) 8695.81 (2935.5) 0.123

A/G, mean (SD) 1.66 (0.3) 1.61 (0.3) 1.68 (0.3) 0.140

ALT/AST, median [IQR] 0.86 [0.5, 1.2] 0.83 [0.5, 1.2] 0.86 [0.6, 1.2] 0.317

Neu%, median [IQR] 82.25 [72.9, 88.3] 82.9 [73.6, 88.4] 82.25 [72.0, 88.2] 0.547

PCT, median [IQR] 0.34 [0.1, 1.0] 0.44 [0.2, 1.2] 0.30 [0.1, 0.8] 0.034

ICU, n (%)

 Yes 4499 (85.2) 1299 (82.0) 3200 (86.6) 0.164

 No 781 (14.8) 285 (18.0) 496 (13.4)

http://www.r-project.org
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variables were selected as informative predictors signif-
icantly after LASSO regression selection, including age, 
comorbid disease, mental status, pulmonary infiltrates, 
procalcitonin, percentage of neutrophilic granulocytes, 
ALT/AST, ratio of albumin and globulin (A/G), cho-
linesterase, urea, glucose, aspartate amino transferase 
and serum total cholesterol (Fig. 2).

Internal validation
SVM-linear, SVM-sigmoid, SVM-radial, logistic regres-
sion, and xgboost models were constructed using the 
most informative features identified by LASSO regres-
sion selection. The Hosmer Lemeshow test yielded none-
statistically significance for SVM-linear (P = 0.296), 
SVM-sigmoid (P = 0.452), SVM-radial (P = 0.263), logis-
tic regression (P = 0.530) and xgboost models (P = 0.702), 
respectively. The xgboost model yielded the highest 
discriminative performance (ACC = 0.998, SEN = 1.0, 
SPC = 1.0, AUC = 1.0), compared with the other four 
models, in the training cohort. Model discrimination 
results for the prediction of ICU involvement are shown 
in Additional file  1: Table  S5. In the training cohort, all 
models provided an AUC of greater than 0.90, Fig.  3A. 
Meanwhile, in the test cohort, the xgboost model can 
also yielded the best discriminative result with AUC of 
0.952, accompanying ACC of 0.863, SEN of 0.889, SPC of 
0.792, as shown in Fig. 3B. Therefore, the xgboost model 
was locked down as the optimal model (APCU) to iden-
tity AP patients who are likely to endure critical illness 
involvement. Patient was stratified into high-risk or low-
risk group (threshold = 0.508) based on the best cut-off 
value determined by Youden index. Namely, a patient 
will be classified into high-risk group if the probability 
(APCU output) is more than the threshold.

Validation on subgroups of AP
The APCU signature was independently statistically sig-
nificant for biliogenic AP (OR = 4.25, P < 0.001), alcoholic 
AP (OR = 3.60, P = 0.001), hyperlipidemic AP (OR = 2.63, 
P = 0.008) and tumor AP (OR = 4.57, P < 0.001), Fig.  4. 

Fig. 2  Features selection by Lasso regression. The figure shows 
the relationship between the log (λ), the number of features in 
the model, and the mean square error (MSE). λ is the optional 
user-supplied lambda sequence. Dashed vertical lines were drawn 
at the optimal values by using the minimum criteria and the 1 
standard error of the minimum criteria (the 1-SE criteria). The left 
dashed line represents the model achieved the minimum MSE with 
corresponding log(λ) and number of features. The right dashed line 
represents log(λ) of 1 standard error from MSE with corresponding 
number of features

Fig. 3  Five different models’ performances (ROC curves) in the training (left) and test (right) cohorts
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While the SIRS, APACHE II and NEWS were statisti-
cally significant for biliogenic AP (OR = 1.06, P = 0.006), 
hyperlipidemic AP (OR = 1.85, P = 0.006) and tumor AP 
(OR = 1.62, P = 0.007), respectively. SIRS has marginal 
statistically significance for alcoholic AP (OR = 0.25, 
P = 0.075). Together, APCU had highly significantly dis-
criminating ability of ICU involvement in the subgroup 
of AP, while not for SIRS, APACHE II, or NEWS risk 
scores.

External validation
For the external validation cohort (Dexternal), a total of 180 
AP patients with a mean age of 52  years were enrolled 
in the independent validation cohort. 32 (17.8%) were 
eventually developed critical illness (Additional file  1: 
Table S6). APCU yield an AUC of 0.873, along with the 
SEN of 0.974 and SPC of 0.750 in the external validation 
cohort (Additional file 1: Fig. S1).

Clinical utilization
The decision curve analysis for the APCU, SIRS, 
APACHE, NEWS, and RANSON are presented in Fig. 5. 

The decision curve showed that if the threshold prob-
ability of a patient or doctor is 10%, using the APCU to 
predict ICU admission adds more than 20% net benefit 
than either the treat-all-patients scheme or the treat-
none scheme. Namely, if we choose APCU to predict 
ICU admission with a 20% probability of diagnosis and 
treatment, then for every 100 patients using APCU, 23 
patients will benefit from using APCU. Comparatively, 
for every 100 patients using NEWS, 16 patients would 
benefit from this computer-aided decision, and person-
alized treatment. When using the APCU to make the 
decision of whether to undergo personalized treatment, 
an added clinical net benefit will be achieved than the 
treat-all scheme or the treat-none scheme. Notable, the 
APCU model yields the highest clinical net benefit than 
the other 4 models, comparatively.

Discussion
In this double-center, retrospective cohort study, we 
developed and externally validated a novel machine 
learning tool (APCU) based on clinical, laboratory, and 
radiologic factors to predict ICU admission in patients 

Fig. 4  Comparasions of APCU with other risk scores for subgroups of AP



Page 8 of 10Yuan et al. BMC Medical Informatics and Decision Making          (2022) 22:312 

with AP. Our results showed that the APCU developed 
in this study stratified AP patients into high-risk and 
low-risk groups, showing significantly more discrimina-
tive ability than other risk scores (Ranson, APACHE II, 
SIRS, NEWS) in predicting ICU admission in AP patients 
and subgroups of AP patients within 48  h after hospi-
tal admission (Fig.  4). To our knowledge, this study is 
the first attempt to use machine learning algorithm to 
predict ICU admission in AP patients within 48 h post-
hospitalization based on ubiquitously available clinical, 
laboratory, and radiologic findings.

In recent decades, mortality from AP has decreased 
dramatically. However, mortality rates remain much 
higher in subgroups of patients with severe disease. By 
using the APCU, we could identify patients who will 
undergo intensive surveillance accurately (AUC > 0.90, 
Fig. 3) and inexpensively. The ability to predict the like-
lihood of critical illness can help identify patients at 
increased risk for morbidity and mortality, thereby assist-
ing in appropriate early triage to ICU and selection of 
patients for specific interventions, as well as reducing the 
health burden for AP patients.

Early identification of high-risk AP with adverse out-
come has been investigated by many researchers for 
many years. For example, Wu et.al used classification and 
regression tree (CART) analysis to early predict the in-
hospital morality of AP patients with 24 h post-admission 
[37]. Ranson et  al., the first specific risk score system 

for acute biliary pancreatitis, contains 11 significant 
prognostic factors for predict severity of AP [38]. Rahul 
et  al. used machine learning (xgboost) to early predict 
to identify those AP patients who would develop SAP 
[14], aiming to improve risk stratification of AP patients 
in clinical settings. Our study is different from the pre-
vious researches. We did not set one import clinic out-
come as endpoint (i.e., organ failure, sepsis, morality). 
We distinctly and broadly set ICU admission as the main 
endpoint, aiming to screen the high-risk AP to the largest 
maximum. To this end, the APCU was constructed using 
the clinical, laboratory, and radiologic factors. And the 
AP patients could get the largest net benefit, compara-
tively (Fig. 5).

Thirteen clinical factors, including age, comorbid dis-
ease, mental status, pulmonary infiltrates, PCT, Neu%, 
ALT/AST, A/G, CHE, Urea, Glu, AST and TC, were 
employed to construct the predictive model. Recent lit-
eratures have found several of these factors were linked 
to the development of AP. Frey et al. [39] found that older 
age is a predictor of a worse prognosis. Kylanpaa et  al. 
[25] declared that procalcitonin is the most rapid general 
acute-phase reactant at the early stage of AP. Talamini 
et  al. [24] suggest that a pleural effusion and/or pulmo-
nary infiltrate may be associated with necrosis and organ 
failure in AP patients. Indeed, radiological findings with 
bilateral pulmonary infiltrates and physiological changes 
are the most common manifest clinically as acute lung 
injury (ALI) for AP. Initially, exudative phase with dif-
fuse alveolar damage, microvascular injury, type I pneu-
mocyte necrosis, and influx of inflammatory cells and 
fluid to the pulmonary interstitium has been witnessed. 
This make the pulmonary infiltrates as the significant 
biomarker for the AP, identified as aggressive patients. 
Our study thereby further complemented these recent 
findings.

APCU predictions were conducted at the 48  h post-
hospitalization. APCU scores were computed using 
patient radiologic findings, clinical and laboratory 
results. And the patients were identified as aggressive AP 
patients were preferentially transferred to ICU. In terms 
of clinical application, the APCU could be integrated into 
clinical utilization in several ways. First, it could assist 
with early triage procedures appropriately and timely. 
When patients are admitted to hospital, the APUC could 
infer a predictive score based on the basic history, labora-
tory, and radiologic findings, which are widely routinely 
available. This machine learning predictive information 
could help to prioritize high-risk patients and access to 
clinical and supportive care, thereby contributing to the 
optimization of public medical resources.

Another potential application of APCU could help 
assist physicians with the triage of patients with 

Fig. 5  Decision curve analysis for the APCU, APACHE, SIRS, NEWS, 
and RANSON. The x-axis represented the high-risk threshold, and 
the y-axis calculated the net benefit (getting benefit from using 
different prediction models). The pink, green, blue, red, and brown 
lines represent RANSON, APCU, APACHE, SIRS and NEWS, respectively. 
The gray line represents the assumption that all patients have ICU 
involvement. Thin black line represents the assumption that no 
patients have ICU involvement
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complicated or rare conditions, especially in areas with 
scarce medical resources. International Association 
of Pancreatology (IAP)/American Pancreatic Associa-
tion (APA) [40], American College of Gastroenterology 
(ACG) [41], and American Gastroenterological Asso-
ciation guidelines [42] have widely adopted for compre-
hensive initial assessment, triage and management of 
AP. Clinicians interpret the clinical history to diagnose, 
triage and management patients with AP. In this way, a 
physician could use the machine learning model to help 
expand his or her differential diagnosis and significantly 
influence clinician behavior, positively, contributing to 
broadly improve the management of AP. In addition, a 
clinical usage formula was provided for easy clinical use 
and promotion.

Our study has some limitations. Limited sample 
size was enrolled for constructing the machine learn-
ing model and a relatively small sample for internal and 
independent validation, which potentially limits the 
generalizability of the model. Next, all enrolled patients 
were recruited from the limited institutions. Additional 
independent validation studies are required before this 
machine learning model could be implemented in clinical 
workflows.

Conclusions
Conclusively, this study describes a machine learning 
framework based on widely routinely available clinical 
indicators to accurately and earlier predict a patient’s 
prognosis. The APCU may be useful for optimizing the 
management of AP. Moreover, this framework could 
become a triage system for physicians and assist in cases 
of diagnostic uncertainty or complexity, benefiting the 
allocation of healthcare resources.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​022-​02066-3.

Additional file 1. Data repeatability. Figure S1. APCU performance in the 
external cohort. Table S1. Parameters setting and description of APCU. 
Table S2. Laboratory indicators abbreviation and normal range. Table S3. 
Evaluation of different combinations for feature selection algorithms 
and classifiers validation on training set. Table S4. Potential predictive 
variables includes demographics, vitals, radiologic findings and labora-
tory indicators. Table S5. Model discriminative performances in training 
and test cohort. Table S6. Demographics and clinical characteristics of 
external validation cohort.

Acknowledgements
We thank LXF and LY for their expert technical assistance with radiological 
findings. Special thanks to SW and CJ for their experienced assistance with 
statistical analysis.

Author contributions
Conceptualization: JX and LS; Methodology: LY; Software: LY; Validation: SW, 
SW and PH; Formal analysis: MJ; Investigation: MJ; Resources: LY; Data curation: 

LY, SW and SW; Writing—original draft preparation: all authors; Writing—
review and editing: MJ; Visualization: JX and LS; Supervision: JX and LS; Project 
administration: JX and LS; Funding acquisition: LY and MJ; All authors have 
read and agreed to the published version of the manuscript.

Funding
This work was funded by the National Natural Science Foundation of China 
(81901817, U1809205, 62171230, 92159301,61771249, 91959207, 81871352), 
Innovation Seed Funding of Wuhan University (TFZZ2018020) and Hubei 
Provincial Key Laboratory Project (2021KYC0036).

Availability of data and materials
The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki 
and approved by the Institutional Ethics Committee of the Renmin Hospital 
of Wuhan University (2021-RM-02106) and the Central Hospital of Wuhan 
(2021ks06109). Informed consent was waived by the Institutional Review 
Board of Renmin Hospital of Wuhan University.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Automation, Nanjing University of Information Science and Tech-
nology, Nanjing, China. 2 Department of Information Center, Wuhan University 
Renmin Hospital, Wuhan, Hubei, China. 3 Department of Gastroenterology, 
Wuhan University Renmin Hospital, Wuhan, Hubei, China. 4 Department 
of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, 
Huazhong University of Science and Technology, Wuhan, Hubei, China. 
5 Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University 
of Information Science and Technology, NanJing, China. 

Received: 28 June 2022   Accepted: 23 November 2022

References
	1.	 Pavlidis P, Crichton S, Lemmich Smith J, Morrison D, Atkinson S, Wyncoll 

D, Ostermann M. Improved outcome of severe acute pancreatitis in the 
intensive care unit. Crit Care Res Pract. 2013;2013:897107.

	2.	 Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 
2015;386:85–96.

	3.	 Yasuda H, Horibe M, Sanui M, Sasaki M, Suzuki N, Sawano H, Goto T, Ikeura 
T, Takeda T, Oda T, et al. Etiology and mortality in severe acute pancreati-
tis: a multicenter study in Japan. Pancreatology. 2020;20:307–17.

	4.	 Petrov MS, Pylypchuk RD, Uchugina AF. A systematic review on the timing 
of artificial nutrition in acute pancreatitis. Br J Nutr. 2009;101:787–93.

	5.	 Corfield AP, Cooper MJ, Williamson RC, Mayer AD, McMahon MJ, Dickson 
AP, Shearer MG, Imrie CW. Prediction of severity in acute pancreatitis: pro-
spective comparison of three prognostic indices. Lancet. 1985;2:403–7.

	6.	 Papachristou GI, Muddana V, Yadav D, O’Connell M, Sanders MK, Slivka 
A, Whitcomb DC. Comparison of BISAP, Ranson’s, APACHE-II, and CTSI 
scores in predicting organ failure, complications, and mortality in acute 
pancreatitis. Am J Gastroenterol. 2010;105:435–41 (quiz 442).

	7.	 Walker WA. Current opinion in gastroenterology. Curr Opin Gastroenterol. 
2012;28:547–50.

	8.	 Ntaios G, Faouzi M, Ferrari J, Lang W, Vemmos K, Michel P. An integer-
based score to predict functional outcome in acute ischemic stroke: the 
ASTRAL score. Neurology. 2012;78:1916–22.

	9.	 Ji MY, Yuan L, Lu SM, Gao MT, Zeng Z, Zhan N, Ding YJ, Liu ZR, Huang 
PX, Lu C, Dong WG. Glandular orientation and shape determined by 

https://doi.org/10.1186/s12911-022-02066-3
https://doi.org/10.1186/s12911-022-02066-3


Page 10 of 10Yuan et al. BMC Medical Informatics and Decision Making          (2022) 22:312 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

computational pathology could identify aggressive tumor for early colon 
carcinoma: a triple-center study. J Transl Med. 2020;18:1–12.

	10.	 Pearce CB, Gunn SR, Ahmed A, Johnson CD. Machine learning can 
improve prediction of severity in acute pancreatitis using admis-
sion values of APACHE II score and C-reactive protein. Pancreatology. 
2006;6:123–31.

	11.	 Qiu Q, Nian YJ, Guo Y, Tang L, Lu N, Wen LZ, Wang B, Chen DF, Liu KJ. 
Development and validation of three machine-learning models for 
predicting multiple organ failure in moderately severe and severe acute 
pancreatitis. BMC Gastroenterol. 2019;19:1–9.

	12.	 Barat M, Chassagnon G, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassi-
notto C, Soyer P. Artificial intelligence: a critical review of current applica-
tions in pancreatic imaging. Jpn J Radiol. 2021;39:524–6. 

	13.	 Gorris M, Hoogenboom SA, Wallace MB, van Hooft JE. Artificial intel-
ligence for the management of pancreatic diseases. Dig Endosc. 
2021;33:231–41.

	14.	 Thapa R, Iqbal Z, Garikipati A, Siefkas A, Hoffman J, Mao QQ, Das R. Early 
prediction of severe acute pancreatitis using machine learning. Pancrea-
tology. 2022;22:43–50.

	15.	 Hung TNK, Le NQK, Le NH, Van Tuan L, Nguyen TP, Thi C, Kang JH. An AI-
based prediction model for drug-drug interactions in osteoporosis and 
paget’s diseases from SMILES. Mol Inform. 2022;41:e2100264.

	16.	 Vo TH, Nguyen NTK, Kha QH, Le NQK. On the road to explainable AI in 
drug-drug interactions prediction: a systematic review. Comput Struct 
Biotechnol J. 2022;20:2112–23.

	17.	 Al’Aref SJ, Singh G, van Rosendael AR, Kolli KK, Ma X, Maliakal G, Pandey 
M, Lee BC, Wang J, Xu Z, et al. Determinants of in-hospital mortality after 
percutaneous coronary intervention: a machine learning approach. J Am 
Heart Assoc. 2019;8:e011160.

	18.	 Collins GS, Reitsma JB, Altman DG, Moons KGM, Grp T. Transparent 
reporting of a multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD): the TRIPOD statement. Eur Urol. 2015;67:1142–51.

	19.	 Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg 
EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): 
explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

	20.	 Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. 
Multiple organ dysfunction score: a reliable descriptor of a complex clini-
cal outcome. Crit Care Med. 1995;23:1638–52.

	21.	 Guidelines for intensive care unit admission, discharge, and triage. Task 
Force of the American College of Critical Care Medicine, Society of Critical 
Care Medicine. Crit Care Med. 1999; 27:633–8.

	22.	 Qing W, Du TG. Clinical use of revised atlanta classification of acute pan-
creatitis in 2012. J Gastroenterol Hepatol. 2013;28:880–880.

	23.	 Muddana V, Whitcomb DC, Khalid A, Slivka A, Papachristou GI. Elevated 
serum creatinine as a marker of pancreatic necrosis in acute pancreatitis. 
Off J Am Coll Gastroenterol. 2009;104:164–70.

	24.	 Talamini G, Uomo G, Pezzilli R, Rabitti PG, Billi P, Bassi C, Cavallini G, Peder-
zoli P. Serum creatinine and chest radiographs in the early assessment of 
acute pancreatitis. Am J Surg. 1999;177:7–14.

	25.	 Kylanpaa-Back ML, Takala A, Kemppainen E, Puolakkainen P, Haapiainen 
R, Repo H. Procalcitonin strip test in the early detection of severe acute 
pancreatitis. Br J Surg. 2001;88:222–7.

	26.	 Martinez J, Johnson CD, Sanchez-Paya J, de Madaria E, Robles-Diaz G, 
Perez-Mateo M. Obesity is a definitive risk factor of severity and mortal-
ity in acute pancreatitis: an updated meta-analysis. Pancreatology. 
2006;6:206–9.

	27.	 Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani RJ. 
Strong rules for discarding predictors in lasso-type problems. J R Stat Soc 
Ser B Stat Methodol. 2012;74:245–66.

	28.	 Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: The 22nd 
ACM SIGKDD international conference. 2016.

	29.	 Li QQ, Yang H, Wang PP, Liu XC, Lv K, Ye MQ. XGBoost-based and tumor-
immune characterized gene signature for the prediction of metastatic 
status in breast cancer. J Transl Med. 2022;20:1–12.

	30.	 Lu D, Peng JX, Wang ZJ, Sun Y, Zhai JX, Wang ZZ, Chen ZM, Matsumoto Y, 
Wang L, Xin SX, Cai KC. Dielectric property measurements for the rapid 
differentiation of thoracic lymph nodes using XGBoost in patients with 
non-small cell lung cancer: a self-control clinical trial. Transl Lung Cancer 
Res. 2022;11:342–56.

	31.	 Hou NZ, Li MZ, He L, Xie B, Wang L, Zhang RM, Yu Y, Sun XD, Pan ZS, Wang 
K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a 
machine learning approach using XGboost. J Transl Med. 2020;18:1–14.

	32.	 Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluat-
ing prediction models. Med Decis Making. 2006;26:565–74.

	33.	 Banks PA, Freeman ML, Practice Parameters Committee of the American 
College of Gastroenterology. Practice guidelines in acute pancreatitis. Am 
J Gastroenterol. 2006;101:2379–400.

	34.	 Ranson JH, Rifkind KM, Roses DF, Fink SD, Eng K, Spencer FC. Prognostic 
signs and the role of operative management in acute pancreatitis. Surg 
Gynecol Obstet. 1974;139:69–81.

	35.	 Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, 
Sibbald WJ, Abrams JH, Bernard GR, et al. American-College of Chest Phy-
sicians/Society of Critical Care Medicine Consensus Conference: defini-
tions for sepsis and organ failure and guidelines for the use of innovative 
therapies in sepsis. Crit Care Med. 1992;20:864–74.

	36.	 McGinley A, Pearse RM. A national early warning score for acutely ill 
patients. BMJ. 2012;345:e5310.

	37.	 Wu BU, Johannes RS, Sun X, Tabak Y, Conwell DL, Banks PA. The early pre-
diction of mortality in acute pancreatitis: a large population-based study. 
Gut. 2008;57:1698–703.

	38.	 Ranson JH. The timing of biliary surgery in acute pancreatitis. Ann Surg. 
1979;189:654.

	39.	 Frey CF, Zhou H, Harvey DJ, White RH. The incidence and case-fatality 
rates of acute biliary alcoholic, and idiopathic pancreatitis in California, 
1994–2001. Pancreas. 2006;33:336–44.

	40.	 Besselink M, van Santvoort H, Freeman M, Gardner T, Mayerle J, Vege 
SS, Werner J, Banks P, Mckay C, Fernandez-Del Castillo C, et al. IAP/APA 
evidence-based guidelines for the management of acute pancreatitis. 
Pancreatology. 2013;13:E1–15.

	41.	 Tenner S, Baillie J, DeWitt J, Vege SS. American College of Gastroenterol-
ogy guideline: management of acute pancreatitis. American J Gastroen-
terol. 2013;108:1400–15.

	42.	 Crockett SD, Wani S, Gardner TB, Falck-Ytter Y, Barkun AN, Ins AGA. Ameri-
can Gastroenterological Association Institute guideline on initial manage-
ment of acute pancreatitis. Gastroenterology. 2018;154:1096–101.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Machine learning model identifies aggressive acute pancreatitis within 48 h of admission: a large retrospective study
	Abstract 
	Background: 
	Objective: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Patients and methods
	Patients
	Endpoints
	Potential predictive variables
	Feature selection
	Models construction
	Xgboost algorithm
	Models assessment
	Statistical analysis

	Results
	Study population
	Discriminative features
	Internal validation
	Validation on subgroups of AP
	External validation
	Clinical utilization

	Discussion
	Conclusions
	Acknowledgements
	References


