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Abstract 

Background:  The standard configuration’s set of twelve electrocardiogram (ECG) leads is optimal for the medical 
diagnosis of diverse cardiac conditions. However, it requires ten electrodes on the patient’s limbs and chest, which 
is uncomfortable and cumbersome. Interlead conversion methods can reconstruct missing leads and enable more 
comfortable acquisitions, including in wearable devices, while still allowing for adequate diagnoses. Currently, meth-
odologies for interlead ECG conversion either require multiple reference (input) leads and/or require input signals to 
be temporally aligned considering the ECG landmarks.

Methods:  Unlike the methods in the literature, this paper studies the possibility of converting ECG signals into all 
twelve standard configuration leads using signal segments from only one reference lead, without temporal alignment 
(blindly-segmented). The proposed methodology is based on a deep learning encoder-decoder U-Net architecture, 
which is compared with adaptations based on convolutional autoencoders and label refinement networks. Moreover, 
the method is explored for conversion with one single shared encoder or multiple individual encoders for each lead.

Results:  Despite the more challenging settings, the proposed methodology was able to attain state-of-the-art level 
performance in multiple target leads, and both lead I and lead II seem especially suitable to convert certain sets of 
leads. In cross-database tests, the methodology offered promising results despite acquisition setup differences. Fur-
thermore, results show that the presence of medical conditions does not have a considerable effect on the method’s 
performance.

Conclusions:  This study shows the feasibility of converting ECG signals using single-lead blindly-segmented inputs. 
Although the results are promising, further efforts should be devoted towards the improvement of the methodolo-
gies, especially the robustness to diverse acquisition setups, in order to be applicable to cardiac health monitoring in 
wearable devices and less obtrusive clinical scenarios.
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Introduction
The electrocardiogram (ECG) is the measurement of 
electrical potentials that make the heart contract and 
relax as intended. It is composed of a cyclic repetition 
of five characteristic and easily recognisable waveforms 
P, Q, R, S, and T (see Fig.  1). The morphologies of the 

ECG signal and these waveforms depend on the location 
of the electrodes used for acquisition: different electrode 
placement results in different perspectives over the heart 
[1]. For medical purposes, the standard configuration 
acquires the ECG over twelve leads for more informa-
tion, but it requires ten electrodes placed on the patient’s 
arms, legs, and chest. Using fewer electrodes allows for 
more comfortable and inexpensive acquisitions, at the 
expense of certain leads that could be ideal for a more 
accurate diagnosis of certain conditions.
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To get the best of both worlds, researchers have pro-
posed methods for the automatic interlead conversion of 
ECG signals [2–6]. These transform short ECG segments 
to mimic other perspectives, using acquired leads to 
reconstruct any leads that were not recorded. However, 
these methods still present limited applicability, since 
they typically require multiple leads as input. Even the 
most advanced methods [4, 5], that only use one input 
lead, still require the inputs to be single heartbeat seg-
ments aligned in time, which makes them dependent on 
separate processes and, overall, less flexible and robust. 
Moreover, despite the advances in ECG synthesis from 
reduced lead sets, converted signals may still suffer from 
slight amplitude changes, small distortions, or loss of 
finer details that could be essential for certain tasks [7]. 
Additional file 1: Fig S1

This paper presents a study on the feasibility of ECG 
interlead conversion using short segments from just 
one limb lead without any kind of temporal alignment 
(blindly-segmented). With such input, the proposed 
methodology is trained to reconstruct other leads as 
faithfully as possible. This aims to open up new possi-
bilities for more comfortable ECG acquisition in clinical 
scenarios or wearable devices without giving up the ben-
efits of multi-lead recordings for medical diagnosis (see 
Fig. 2).

The proposed methodology, based on deep learning 
encoder-decoder structures, is explored for interlead 
conversion using either lead II or lead I (limb leads) sig-
nals as reference, and using a single shared encoder or an 
individual encoder for each target lead. Beyond the train-
ing and testing on the widely used PTB database, the con-
version models are evaluated on cross-database scenarios 
with the INCART and PTB-XL databases. Additionally, 

the clinical annotations of the PTB-XL database are also 
used for a differential performance evaluation in the 
presence of medical conditions, and an evaluation of the 
performance of a state-of-the-art diagnosis model with 
original vs. reconstructed signals. The code used for this 
work is available online1.

Related work
At the onset of research on interlead conversion, meth-
odologies commonly required several leads as reference 
for robust lead reconstruction. Zhu et al. [8] performed a 
preliminary study on the conversion of ambulatory ECG 
recordings into standard 12-lead ECG signals using lead-
field theory and the least-squares method. Nelwan et al. 
[9] learned generic and patient-specific linear regression 
coefficient templates to reconstruct up to four missing 
leads with high correlation results.

Later, Yoshida  et al. [10] used 12 lead acquisitions to 
synthesise additional leads (right ventricular leads V3R, 
V4R, and V5R and posterior chest leads V7, V8, and V9) 
which provide important information for the diagnosis of 
acute myocardial infarction. Their algorithm was based 
on the transfer coefficient estimated from the learning 
data. Additional file 2: Fig S2

Silva  et al. [2] developed three methods for obtaining 
the Frank leads using the 12 standard leads as reference: 
the Kors Quasi-Orthogonal method, the Kors Linear 
Regression method, and the Dower Inverse Matrix. The 
conversion was successful for signals from healthy sub-
jects but presented limitations on signals from subjects 
with pathologies. The recent work by Smith  et al. [6] 
was one of the first to use machine learning techniques 
for interlead conversion. They used a focused time-delay 
neural network (FTDNN), which is well suited for time 
series prediction. However, their methodology required 
seven input leads (all limb leads and V1).Additional file 3: 
Fig S3

Atoui  et al. [11] used ensembles of fully-connected 
neural networks to learn to synthesise V1, V3, V4, V5, 
and V6 heartbeats from three-lead inputs (I, II, and V2). 
Schreck et al. [12] performed the first study on the syn-
thesis of the entire set of 12 standard leads and scalar 
3-lead derived vectorcardiogram from just three meas-
ured leads. Their proposed methodology used nonlinear 
optimisation to construct a universal patient transfor-
mation matrix. Hansen et al. [13] applied linear generic 
and subject-specific transforms to convert recordings 
from adhesive patch-type ECG monitors to the stand-
ard 12-lead ECG signals. In [14, 15], researchers also 

Fig. 1  Illustration of a sample ECG heartbeat with its characteristic 
waveforms

Fig. 2  Simple schema of the proposed method, which receives 
single-lead ECG signals and delivers reconstructed 12-lead signals to 
be used for diagnosis or other purposes

1  ECG conversion code available at: https://​github.​com/​jtrpi​nto/​ecg-​conve​
rsion.

https://github.com/jtrpinto/ecg-conversion
https://github.com/jtrpinto/ecg-conversion
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explored personalised statistically determined linear 
transforms and went on to achieve improved results.
Additional file 4: Fig S4

Lee  et al. [16]  proposed methods based on linear 
regression and artificial neural networks to recon-
struct the 12 standard leads from subsets of 35 channels 
acquired using one single large patch covering the sub-
ject’s chest. Although accurate, the method is arguably 
incompatible with scenarios focused on ease of use and 
patient/user comfort. Similarly, Grande-Fidalgo et al. [17] 
used linear regression and fully-connected networks to 
reconstruct the entire set of twelve standard leads from a 
subset of just three input leads. Sohn et al. [3] used long 
short-term memory (LSTM) networks to accomplish the 
reconstruction of the twelve ECG standard leads from 
a three-lead patch-type device. Their results show their 
method was able to correctly retain pathological abnor-
malities from medical conditions on the reconstructed 
signals.

The work of Lee et al. [4] was one of the few that stud-
ied the synthesis of standard leads using only one ref-
erence lead. In their study, chest leads (V1 to V6) were 
synthesised from lead II using a generative adversarial 
network (GAN). However, input segments had to be sin-
gle heartbeats, aligned according to the R-peaks, which 
decreases the difficulty but also the applicability of the 
method. Matyschik  et al. [5] developed patient-specific 
models to more accurately reconstruct eleven missing 
ECG signals from a single available lead of the standard 
12-lead system. However, the reference lead was either 
V1, V2, or V3 which, being chest leads, do not enable the 
usage in less obtrusive setups which would preferentially 
use limb leads.

In this work, we explore the more challenging scenario 
of reconstructing the entire set of twelve standard leads 
using only one reference lead. Moreover, the reference 
signals are blindly-segmented (without any kind of tem-
poral alignment) and pertain to one of the limb leads to 
allow for applications on the least obtrusive setups. Our 
main goal is to assess whether it is possible to reconstruct 
the electrocardiogram signal in such challenging scenar-
ios and discuss the next steps towards the use of interlead 
conversion in less obtrusive clinical setups and wearable 
devices.Additional file 5: Fig S5

Methodology
General overview
The proposed methodology for interlead ECG conver-
sion follows the encoder-decoder structure typically used 
for deep image segmentation. The encoder receives an 
input signal and processes it to create a compressed rep-
resentation that retains relevant information for the task 
at hand. The decoder receives this representation and 

processes it so that the output matches the ground-truth 
as closely as possible. Here, the input to the encoder is 
a short ECG segment of one lead (X) and the ground-
truth is the corresponding segment in a different lead (Y). 
Thus, the encoder is in charge of selecting the informa-
tion from X that is needed for Y, and the decoder will use 
that information to reconstruct the corresponding lead Y 
signal.Additional file 6: Fig S6

Model architectures
The general encoder-decoder structure allows for diverse 
specific model architectures. This work focuses on the 
U-Net model, a fully convolutional architecture that has 
found many applications related to semantic segmen-
tation and can also be adapted for the task of ECG lead 
conversion. Additional file 7: Fig S7

U‑Net
The U-Net was initially proposed by Ronneberger  et  al. 
[18] as a tool for biomedical image segmentation. In this 
work, the implemented architecture (see Fig. 3) receives 
an input segment of lead X, which initially goes through a 
chain of three sequential blocks, each with half the signal 
resolution of the previous block. Each block includes two 
convolutional layers (each followed by batch normalisa-
tion and ReLU activation) and ends with a max-pooling 
layer.

Between the encoder and the decoder, two convo-
lutional layers compose the latent space or bottleneck 
block, which corresponds to the maximum point of infor-
mation compression. The decoder mirrors the encoder in 
its structure, with three similar blocks composed of an 
upsampling layer and two transposed convolutional lay-
ers. The last transposed convolutional layer outputs a 
single-channel signal whose size corresponds to the input 
segment. The activation function of this last layer is the 
hyperbolic tangent for an output signal with amplitudes 
in [−1, 1].

One aspect of the U-Net which is often cited as the key 
to its widespread success is the skip-connection. U-Nets 
typically include skip-connections between correspond-
ing blocks on the encoder and the decoder. This means 
the feature maps from the encoder blocks are directly 
routed to the corresponding decoder blocks, allowing 
the model to propagate context information from multi-
ple resolutions between the encoder and the decoder for 
higher flexibility. Additional file 8: Fig S8

Convolutional autoencoder (AE)
Beyond the aforementioned U-Net architecture, adapted 
for unidimensional signal inputs, we also explore a 
convolutional autoencoder (AE, see Fig.  4). Its archi-
tecture is very similar to the U-Net, albeit without 
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skip-connections. As a result, the structure is simplified, 
when compared to the U-Net, and the latent represen-
tation sent from the encoder to the decoder is smaller. 
Experiments with the AE architecture aim to assess if the 
skip-connections are essential for the task at hand or if 
the simplified structure could avoid overfitting and bring 
performance benefits.

Label refinement network (LRN)
The third architecture explored in this work was based 
on Label Refinement Network (LRN, see Fig.  5) was 
originally proposed by Islam  et  al. [19] for semantic 
image segmentation. Its architecture is identical to the 

aforementioned U-Net. The singularity of the LRN lies 
in the supervision strategy: while the U-Net only uses 
the output of the last decoder block in the reconstruc-
tion loss, the LRN computes the loss at the outputs of 
every decoder block. This results in supervision at sev-
eral resolution levels, leading the decoder to offer a 
coarse reconstruction right after the first block, which 
should be gradually refined by the subsequent blocks 
for improved results at higher resolutions. Experiments 
with the LRN architecture aim to assess if the multi-
level resolution could bring improved performance 
to the task of signal lead conversion as they have for 
semantic segmentation.

Fig. 3  Overview schema of the main U-Net architecture used in this work for lead conversion

Fig. 4  Overview schema of the convolutional autoencoder (AE) architecture
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Shared vs. individual encoders
The conversion of one lead into multiple missing leads 
requires multiple decoders - each one will fulfil the task 
of reconstructing its respective lead based on the com-
pressed latent representation. In the case of the encoder, 
however, it is possible to have a single one whose output 
will be shared by all decoders or have multiple encoders, 
each one dedicated to one individual decoder.

In this work, we explore both possibilities for 12-lead 
reconstruction - using one shared encoder connected to 
all 11 decoders, for all 11 output leads except the one cor-
responding to the input, or using one individual encoder 
for each of the 11 decoders. Using individual encoders 
grants more flexibility to each lead conversion process, as 
each encoder will be able to learn a unique way to obtain 
compressed representations and each encoder-decoder 
pair will work independently from all others. On the 
other hand, using one shared encoder results in a much 
lighter and faster algorithm and the added simplicity may 
contribute towards avoiding overfitting.

Experimental setup
Data
The experiments conducted in this work used mainly 
the data provided in the PTB Diagnostic ECG Database 
[20], available on Physionet [21]. The PTB database 

includes data from 16 channels, including all 12 stand-
ard leads, sampled at 1 kHz. It contains a total of 549 
records from 290 individuals, with one to five records 
per subject. Recordings were cropped into segments of 
5 s (5000 samples). A second-order Butterworth band-
pass filter with cut-off frequencies fc = [1, 40] Hz was 
applied to each segment to remove noise while retain-
ing the most useful ECG information. The amplitudes 
of the n values of each signal x were then min-max nor-
malised to the interval [−1, 1] following the equation:

The data from PTB was divided into train and test sets, 
with approximately 63% , 7% and 30% of the segments, 
respectively, for a total of 7086, 787, and 3509 ECG seg-
ments for each set. For a more thorough and challenging 
evaluation, subjects are divided between the train/valida-
tion and test sets: the latter had recordings from subjects 
1 to 50 while the former had recordings from subjects 51 
to 290.

The INCART database (officially the St. Petersburg 
INCART 12-lead Arrhythmia Database), also avail-
able on Physionet, was used to test the performance of 
trained models on cross-database scenarios. This data-
base contains 75 Holter recordings from 32 subjects 
undergoing tests for coronary artery diseases. Each 

(1)xn = 2×
xn − xmin

xmax − xmin
− 1.

Fig. 5  Overview schema of the architecture based on label refinement networks (LRN)
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record is 30 minutes long and contains twelve standard 
leads sampled at 257 Hz. Recordings from this database 
were resampled to 1 kHz and processed as described 
above for PTB.

The PTB-XL database [22, 23], created by the same 
team as the PTB, includes 21837 clinical ECG record-
ings from a total of 18885 patients. Each recording is 10 
seconds long, includes all twelve standard ECG leads, 
and is originally sampled at 500 Hz. The waveforms were 
annotated by up to two cardiologists, who assigned anno-
tations to each record. The 71 possible annotation state-
ments have been clustered into five superclasses: NORM 
(normal ECG), MI (myocardial infarction), STTC (ST/T 
change), CD (conduction disturbance), and HYP (hyper-
trophy). This dataset was originally created for the train-
ing and evaluation of automatic ECG interpretation 
algorithms but also shows great promise for the devel-
opment of lead conversion algorithms. In this work, we 
take advantage of expert clinical annotations to study 
the effect of medical conditions on the quality of the lead 
conversion results. From the total of 21837 recordings, 
we selected the 16272 that did not have conflicting super-
class annotations. From each recording, the first 5 sec-
onds were cropped, resampled to 1 kHz, and processed 
as described above for PTB.

Model training and evaluation
The models were trained using the l1-loss between the 
model outputs and the corresponding ground-truth sig-
nals as the objective function. The l1 was chosen empiri-
cally as it allowed the model to learn most adequately 
both the overall morphology of the signals and their finer 
details. The Adam optimiser was used with an initial 

learning rate of 1× 10−3 , over a maximum of 500 epochs 
with batch size 32 (shared encoder) or 16 (individual 
encoder) and early stopping patience of 50 epochs.

To compare lead conversions with the correspond-
ing measured ground-truth signals, this work used the 
following metrics: the average and median Pearson cor-
relation coefficient (r, used in the majority of the related 
literature), the average root mean square error (RMSE), 
and the average Structural Similarity Index Measure 
(SSIM).

Results
Architecture comparison
To compare the selected architectures, the first experi-
ment entailed the one-to-one lead conversion from II to I, 
two of the most used ECG leads for medical purposes (see 
Table  1). According to the results, the U-Net performs 
better than both alternatives AE and LRN. Although the 
AE achieves the same median r as the U-Net, the average 
r is lower, meaning that the least successful results are 
generally worse with the AE than the U-Net. Following 
the results of this comparison, subsequent experiments 
focus solely on the U-Net architecture.

One‑to‑all leads conversion
Not all leads can be converted equally: the correlation 
between leads depends on their perspectives of the heart. 
Table  2 presents an overview of the average correlation 
between lead II and the remaining eleven standard leads, 
computed using the PTB, INCART, and PTB-XL test seg-
ments. Specifically for the PTB data, one can observe that 
some leads such as aVF or aVR are highly (positively or 
negatively) correlated with lead II. On the other hand, 
aVL is almost orthogonal. Hence, one should expect aVL 
to be much harder to accurately convert from lead II than 
aVF or aVR, since the former shares much less informa-
tion with lead II than the latter.

This is verified in the results for multi-lead conversion 
on the PTB database (see Table 3). Conversion from lead 
II to aVF, aVR, and V6 consistently offer good results, 
while the conversions to aVL, lead I, or V4 were overall 
the least successful. This behaviour is also visible in the 

Table 1  Comparison of encoder-decoder architectures on one-
to-one lead conversion

Model r (avg.) r (med.)

U-Net 0.69 0.78

Autoencoder 0.67 0.78

LRN 0.65 0.75

Table 2  Average correlation between lead II signals and the remaining leads on the PTB, INCART, and PTB-XL databases

I III aVR aVL aVF V1 V2 V3 V4 V5 V6

PTB 0.45 0.36 −0.71 0.01 0.77 −0.34 −0.20 0.00 0.28 0.72 0.81

INCART​ 0.46 0.80 −0.86 −0.49 0.95 −0.45 −0.19 0.25 0.65 0.82 0.77

PTB-XL 0.70 0.31 0.25 −0.82 0.83 −0.44 −0.04 0.37 0.68 0.81 0.84
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example of Fig.  62 where the model is unable to cap-
ture the finer details of the signals in lead aVL and leads 
V1-V4. The opposite happens in lead III, aVF, V6, and 
especially aVR, where the model was consistently able to 
capture the morphological details of the signals.

As for lead I, Table 4 presents the average correlation 
between this lead and the remaining eleven standard 
leads on the PTB, INCART, and PTB-XL test segments. 
As with lead II, lead I is more correlated (positively or 
negatively) with certain leads, such as aVR, aVL, or V6, 
while it is almost orthogonal with aVF or V3. As such, 
one can observe, in Table  5, that the proposed meth-
odology obtains better performance with aVR and aVL 
while struggling to convert from lead I to lead aVF. The 
same can be observed in Fig.  7: for aVR and aVL, the 
model is able to correctly capture the target morphology, 
while the reconstructions of aVF and V3-V6 are largely 
unsuccessful.

From the example result in Fig.  7, one can also iden-
tify a shortcoming of the proposed methodology: the 
occasional offsets between the baseline of the measured 
and converted signals. We suspect this is due to the min-
max normalisation of the signals, drawing them into the 
[−1, 1] amplitude range. Alternatives to this normalisa-
tion, such as standard normalisation, should be further 
investigated.

Using either lead as a reference, there is apparently no 
considerable or consistent difference between using one 

single shared encoder or using an individual encoder for 
each target lead. As for processing time, the model with 
individual encoders took an average of 15.28 ms per sig-
nal in training mode and 5.62 ms in inference mode. The 
model with a shared encoder was faster, as expected, 
requiring an average of 9.70 ms per signal on training 
mode and 4.16 ms on inference mode3.

Comparison with the state‑of‑the‑art
For a comparison with the state-of-the-art, we imple-
mented the method recently proposed by Grande-
Fidalgo et al. [17] as a baseline. This method is based on 
a simple fully-connected model that receives each signal 
point’s amplitude in three reference leads as inputs and 
returns the same point’s amplitude in all twelve leads. 
Here, we adapt the methodology so it receives signal 
point amplitudes from one single lead (leads I or II), to 
exactly match the evaluation conditions of the proposed 
method.

Unlike what has been reported in [17], the baseline 
was not successful in learning to retrieve the entire 
set of leads from just one reference lead. In fact, across 
all leads, the average test r of this method ranged from 
−0.005 to 0.002, considerably worse than the proposed 
methodology.

Cross‑database evaluation
The cross-database tests aimed to assess the behaviour 
of the proposed methodology on more diverse scenarios. 
Here, the models used were the same as in the previous 
experiments (trained with PTB data), and the evaluation 
was conducted using data from the INCART and PTB-
XL databases.

For both INCART and PTB-XL, some differences in 
interlead correlations can be observed when compared to 

Table 3  Test results of the U-Net used for multi-lead conversion from lead II, with shared or individual encoders

Shared encoder Individual Encoders

Lead r (avg.) r (med.) RMSE SSIM r (avg.) r (med.) RMSE SSIM

I 0.67 0.73 0.28 0.28 0.66 0.71 0.29 0.26

III 0.56 0.65 0.29 0.63 0.56 0.70 0.29 0.64

aVR 0.89 0.95 0.12 0.92 0.90 0.95 0.12 0.92

aVL 0.47 0.58 0.36 0.15 0.47 0.61 0.36 0.16

aVF 0.81 0.88 0.20 0.64 0.83 0.90 0.19 0.64

V1 0.77 0.84 0.20 0.87 0.80 0.86 0.18 0.88

V2 0.66 0.72 0.26 0.80 0.67 0.75 0.24 0.81

V3 0.56 0.62 0.33 0.65 0.59 0.66 0.31 0.66

V4 0.50 0.57 0.36 0.43 0.50 0.58 0.36 0.44

V5 0.70 0.77 0.27 0.36 0.74 0.80 0.26 0.40

V6 0.79 0.87 0.21 0.49 0.80 0.87 0.21 0.49

2  Examples were selected among all test samples to correspond to the 
median overall r result for each scenario. Hence, they represent an over-
all median result, and the methodology should be expected to offer better 
results in half of the occasions.

3  Processing times were computed on an NVidia GTX 1080 GPU.
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Fig. 6  Example result of lead II to all conversion on the PTB test dataset (each row depicts one converted lead, with the shared encoder on the left 
column and individual encoders in the right column; the horizontal axis represents time, while the vertical axis corresponds to the normalised signal 
amplitude)
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PTB (see Table 2 and Table 4). This can be explained due 
to the different acquisition setups, especially the posi-
tioning of the electrodes, which potentially causes each 
lead to offer a different perspective.

For INCART (see Table 6 and Table 7), the overall qual-
ity of the results is inferior to that with PTB. Despite 
these metrics, it is noticeable in the reconstruction plots 
(available in the Additional file  material) that both ref-
erence leads can offer good conversion results in some 
leads, especially with lead II. Using this lead as reference, 
the proposed methodology is relatively good at convert-
ing most leads except I, V2, and V3.

For PTB-XL (see Table 8 and Table 9), results are, over-
all, the worst, although some leads (namely V4, V5, and 
V6), due to higher correlation with the reference leads, 
are better reconstructed than with the PTB database. 
Visually, it is possible to observe that, despite occasional 
baseline offset and prevalent noise, both reference leads 
enable the approximate reconstruction of most of the set 
of twelve standard leads.

Influence of medical conditions
As aforementioned, medical conditions may affect differ-
ently the various leads of an ECG signal. While this is the 
main motivation behind the quest to reconstruct missing 
leads it may also be one of the main hurdles. If the medi-
cal condition is somehow not evident in the input lead, 

the algorithm could be led to reconstruct the remaining 
leads incorrectly without the proper information on the 
respective medical condition.

As such, we conducted a differential performance eval-
uation according to the existence and type of diagnosed 
medical conditions on the signals. To do this, we use the 
expert clinical annotations on the PTB-XL database and 
separate the results by the superclass labelling of each 
test sample. The average r results for each converted lead 
and each superclass are presented in Table 10 (using lead 
II as reference) and Table 11 (using lead I as reference).

Overall, no dominant difference could be observed 
between the results with normal signals and the results 
with signals with medical conditions. Similarly, no spe-
cific medical condition superclass presents considerably 
different performance results.

Diagnosis using reconstructed signals
To further evaluate the quality of the reconstructed lead 
signals, we conduct an experiment on medical diagno-
sis using original signals vs. reconstructed signals. The 
convolutional neural network proposed by Nguyen  et 
al. [24] is adapted for the classification of PTB-XL’s five 
superclasses when given five-second ECG segments. The 
proposed architecture is faithfully followed in this work, 
with the exception of the use of five neurons on the last 
fully-connected layer.

Table 4  Average correlation between lead I signals and the remaining leads on the PTB, INCART, and PTB-XL databases

II III aVR aVL aVF V1 V2 V3 V4 V5 V6

PTB 0.45 −0.49 −0.82 0.82 −0.05 −0.47 −0.21 0.03 0.30 0.64 0.68

INCART​ 0.46 0.02 −0.62 0.32 0.26 −0.36 0.01 0.11 0.35 0.51 0.44

PTB-XL 0.70 −0.24 0.77 −0.86 0.32 −0.54 −0.06 0.33 0.63 0.80 0.83

Table 5  Test results of the U-Net used for multi-lead conversion from lead I, with shared or individual encoders

Lead Shared encoder Individual encoders

r (avg.) r (med.) RMSE SSIM r (avg.) r (med.) RMSE SSIM

II 0.49 0.54 0.37 0.17 0.50 0.55 0.36 0.19

III 0.44 0.49 0.35 0.53 0.46 0.52 0.35 0.55

aVR 0.89 0.92 0.14 0.92 0.90 0.93 0.13 0.93

aVL 0.76 0.84 0.25 0.45 0.77 0.85 0.26 0.46

aVF 0.26 0.29 0.43 0.28 0.28 0.32 0.42 0.27

V1 0.81 0.88 0.18 0.88 0.79 0.88 0.19 0.88

V2 0.73 0.80 0.23 0.81 0.70 0.77 0.25 0.80

V3 0.67 0.73 0.28 0.70 0.67 0.74 0.29 0.68

V4 0.59 0.65 0.33 0.48 0.62 0.71 0.32 0.48

V5 0.62 0.73 0.30 0.31 0.64 0.73 0.30 0.28

V6 0.66 0.75 0.26 0.39 0.67 0.77 0.26 0.39
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Fig. 7  Example result of lead I to all conversion on the PTB test dataset (each row depicts one converted lead, with the shared encoder on the left 
column and individual encoders in the right column; the horizontal axis represents time, while the vertical axis corresponds to the normalised signal 
amplitude)
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Table 6  Cross-database test results for INCART conversion from lead II

Lead Shared encoder Individual encoders

r (avg.) r (med.) RMSE SSIM r (avg.) r (med.) RMSE SSIM

I 0.46 0.51 0.34 0.18 0.44 0.50 0.35 0.16

III 0.57 0.63 0.28 0.49 0.57 0.63 0.29 0.45

aVR 0.91 0.95 0.11 0.92 0.92 0.95 0.11 0.92

aVL 0.13 0.11 0.41 0.33 0.10 0.09 0.44 0.27

aVF 0.88 0.93 0.15 0.68 0.92 0.95 0.13 0.71

V1 0.63 0.79 0.23 0.82 0.65 0.82 0.23 0.83

V2 0.53 0.64 0.26 0.73 0.55 0.69 0.27 0.74

V3 0.42 0.51 0.33 0.56 0.42 0.53 0.34 0.55

V4 0.52 0.59 0.35 0.28 0.52 0.60 0.35 0.30

V5 0.73 0.80 0.25 0.31 0.74 0.80 0.25 0.29

V6 0.73 0.83 0.23 0.42 0.72 0.81 0.24 0.39

Table 7  Cross-database test results for INCART conversion from lead I

Lead Shared encoder Individual encoders

r (avg.) r (med.) RMSE SSIM r (avg.) r (med.) RMSE SSIM

II 0.35 0.37 0.37 0.18 0.36 0.38 0.37 0.19

III 0.17 0.19 0.41 0.27 0.17 0.19 0.43 0.28

aVR 0.65 0.74 0.23 0.81 0.67 0.78 0.22 0.83

aVL 0.40 0.49 0.32 0.52 0.36 0.46 0.35 0.47

aVF 0.17 0.15 0.41 0.23 0.17 0.14 0.41 0.22

V1 0.55 0.62 0.25 0.78 0.57 0.64 0.24 0.79

V2 0.50 0.57 0.27 0.73 0.50 0.56 0.28 0.73

V3 0.35 0.35 0.37 0.46 0.36 0.37 0.37 0.44

V4 0.27 0.26 0.43 0.16 0.34 0.36 0.41 0.19

V5 0.46 0.51 0.36 0.11 0.45 0.53 0.35 0.11

V6 0.44 0.49 0.34 0.22 0.45 0.52 0.34 0.21

Table 8  Cross-database test results for PTB-XL conversion from lead II

Lead Shared encoder Individual encoders

r (avg.) r (med.) RMSE SSIM r (avg.) r (med.) RMSE SSIM

I 0.74 0.80 0.25 0.31 0.72 0.79 0.26 0.29

III 0.44 0.50 0.32 0.50 0.45 0.52 0.32 0.50

aVR −0.38 −0.53 0.72 0.09 −0.39 −0.55 0.72 0.09

aVL −0.33 −0.44 0.64 0.23 −0.33 −0.45 0.67 0.17

aVF 0.83 0.90 0.19 0.61 0.84 0.92 0.19 0.62

V1 0.79 0.87 0.17 0.91 0.81 0.89 0.16 0.91

V2 0.71 0.79 0.22 0.84 0.72 0.82 0.21 0.85

V3 0.61 0.68 0.30 0.66 0.62 0.70 0.30 0.66

V4 0.64 0.71 0.31 0.31 0.66 0.74 0.32 0.32

V5 0.79 0.86 0.22 0.37 0.80 0.87 0.23 0.39

V6 0.85 0.91 0.18 0.58 0.85 0.91 0.18 0.58
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The method is trained/validated on the first eighty per 
cent of Lead I segments from the PTB-XL dataset. Then, 
the superclass diagnosis performance is evaluated on the 
remaining twenty per cent Lead I signals. Afterwards, the 
corresponding Lead II signals are used to obtain recon-
structed Lead I signals, following the aforementioned 
one-to-all U-Net architectures with either a shared 
encoder or individual encoders. These reconstructed 
Lead I signals are then classified by the trained diagnosis 
model.

The diagnosis model obtained accuracies of 54.13% 
when using original signals, 45.71% when using recon-
structed signals with a shared encoder, and 42.03% when 
using signals reconstructed with individual encoders. 
Balanced accuracy results were 46.58% , 37.56% , and 
37.00% , respectively, which denotes some bias towards 
the majority class (NORM), despite the use of class 
weights during training.

Table 9  Cross-database test results for PTB-XL conversion from lead I

Lead Shared encoder Individual encoders

r (avg.) r (med.) RMSE SSIM r (avg.) r (med.) RMSE SSIM

II 0.60 0.66 0.33 0.23 0.62 0.70 0.31 0.26

III 0.31 0.34 0.38 0.43 0.33 0.38 0.37 0.45

aVR −0.61 −0.76 0.74 0.09 −0.62 −0.78 0.74 0.09

aVL −0.63 −0.75 0.75 0.11 −0.66 −0.79 0.76 0.08

aVF 0.29 0.31 0.41 0.23 0.32 0.36 0.40 0.24

V1 0.79 0.86 0.16 0.91 0.81 0.88 0.15 0.91

V2 0.71 0.78 0.22 0.84 0.70 0.77 0.23 0.83

V3 0.65 0.72 0.29 0.64 0.67 0.76 0.28 0.66

V4 0.62 0.72 0.32 0.30 0.69 0.80 0.30 0.32

V5 0.76 0.85 0.24 0.35 0.76 0.86 0.25 0.32

V6 0.80 0.87 0.20 0.53 0.81 0.89 0.21 0.51

Table 10  Average correlation results for PTB-XL conversion from lead II, using the U-Net with a shared encoder, according to medical 
condition class

Class Converted leads

I III aVR aVL aVF V1 V2 V3 V4 V5 V6

NORM 0.79 0.42 −0.39 −0.32 0.86 0.83 0.76 0.64 0.70 0.85 0.90

MI 0.65 0.47 −0.37 −0.38 0.76 0.75 0.65 0.56 0.54 0.68 0.77

STTC​ 0.71 0.41 −0.41 −0.37 0.80 0.79 0.69 0.58 0.59 0.78 0.84

CD 0.65 0.60 −0.31 −0.28 0.84 0.59 0.54 0.58 0.58 0.63 0.71

HYP 0.75 0.42 −0.40 −0.24 0.80 0.85 0.70 0.56 0.61 0.81 0.87

Table 11  Average correlation results for PTB-XL conversion from lead I, using the U-Net with a shared encoder, according to medical 
condition class

Class Converted leads

II III aVR aVL aVF V1 V2 V3 V4 V5 V6

NORM 0.73 −0.23 −0.35 −0.66 0.23 0.79 0.73 0.68 0.69 0.84 0.85

MI 0.50 −0.15 −0.26 −0.57 0.036 0.67 0.58 0.47 0.38 0.56 0.61

STTC​ 0.57 −0.20 −0.36 −0.64 0.00 0.74 0.64 0.55 0.48 0.71 0.76

CD 0.40 −0.31 −0.11 −0.48 −0.06 0.35 0.38 0.42 0.39 0.52 0.54

HYP 0.65 −0.29 −0.37 −0.60 0.07 0.78 0.65 0.58 0.59 0.78 0.82
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Discussion
Architecture comparison
Regarding the explored architectures, the results seem 
to indicate that the skip-connections of the U-Net give 
it the capability to send more information (and at more 
resolution levels) from the encoder to the decoders, 
granting it more flexibility and ultimately better perfor-
mance than the AE. The multi-resolution supervision 
of the LRN, expected to improve overall performance, 
appears to excessively draw the model’s attention away 
from the details, which resulted in worse performance.

One‑to‑all leads conversion
While lead II ECG signals are generally better for medi-
cal diagnosis in clinical scenarios, lead I is becoming 
increasingly important. The widespread implementa-
tion of ECG acquisition equipment in smartwatches, 
fitness bands, and other gadgets for daily use allows for 
the collection of lead I signals. Combining these grow-
ing applications with robust conversion algorithms 
would enable the recovery of missing leads on weara-
bles and empower the next generation of robust con-
tinuous health monitoring.

Considering the overall results presented earlier in this 
paper, no lead is perfect for converting all twelve stand-
ard leads. Hence, lead II should be chosen as reference 
input when aVF or V5-V6 are the most important leads 
for the application at hand. Lead I serves better as a refer-
ence when aVR, aVL, or V1-V2 are more important. Oth-
erwise, other leads (such as lead III) should probably be 
explored. Nevertheless, the results show it is possible to 
nicely reconstruct several leads using only one input lead 
without temporal alignment.

At last, regarding the use of one shared encoder vs. 
individual encoders, results suggest that the additional 
flexibility of having multiple encoders is only beneficial 
up to a point, and the higher complexity ends up opening 
the door to overfitting and loss of robustness. As such, 
for this application, one should expect a shared encoder 
to be the best option, considering its higher simplicity, 
faster inference, and similar performance.

Comparison with the state‑of‑the‑art
When compared with the state-of-the-art baseline 
proposed by Grande-Fidalgo  et al. [17], the proposed 
method attained considerably improved results in lead 
reconstruction from single-lead blindly-segmented sig-
nals. One can assume that, although the baseline’s sim-
plistic model presents advantages in terms of lightweight 
operation and robustness to overfitting, single-lead 

information is not enough for it to achieve reliable inter-
lead conversion.

The fact the baseline method reconstructs signals 
point-by-point, unable to analyse broader local context 
information, makes it hard to reconstruct the signal with-
out already having data from more than one channel. On 
the other hand, using convolutional layers allows the pro-
posed method to use broader local information as con-
text to adequately learn to reconstruct signals using only 
one lead as reference.

Cross‑database evaluation
The cross-database evaluations consisted of the use of 
models trained on PTB data to reconstruct signals from 
different databases, namely INCART and PTB-XL. 
Throughout these experiments, considerably lower-qual-
ity reconstructions were obtained. This is as expected 
since PTB data was seen by the models during train-
ing and both the INCART and PTB-XL databases are 
arguably more challenging regarding signal noise and 
variability.

For either database, differences in acquisition settings 
and electrode placement result in inferior performance. 
The ideal solution is to always make sure the acquisition 
details of training and inference data match, to ensure 
optimal performance upon deployment. Nevertheless, 
the robustness in cross-database scenarios is a relevant 
issue that merits further research.

Influence of medical conditions
Experiments were conducted on the reconstruction of 
signals with certain medical conditions. The results pre-
sented earlier show there was no considerable difference 
in reconstruction performance when using healthy sig-
nals vs. signals with medical conditions.

This is likely due to the presence of medical conditions 
on the PTB signals originally used for training the model. 
Thus, although the behaviour of the proposed methodol-
ogy should be expected to vary slightly in the presence 
of medical conditions, it should not have a considerable 
impact on its baseline performance.

Diagnosis using reconstructed signals
The last experiment consisted of using the deep learn-
ing model proposed by Nguyen et al. [24] for superclass 
diagnosis with original and reconstructed signals. The 
obtained results illustrate the limitations of the current 
methodology, as the reconstruction error propagates 
forward into the performance of diagnosis methods that 
may rely on the converted signals.

One should note that, according to the results pre-
sented earlier in this paper, Lead II to Lead I conversion is 
arguably not the most reliable, and reference lead choice 
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should take into account the results presented in this 
work. Nevertheless, future efforts should be devoted to 
ensuring that, in spite of any reconstruction error, all use-
ful signal information should be correctly reconstructed 
to not affect subsequent diagnosis performance.

Conclusion
This work implemented and compared the performance 
of three deep learning architectures for interlead con-
version of ECG signals. Unlike the literature, this work 
focused on the more challenging scenario of single-lead 
blindly-segmented inputs from limb leads. The proposed 
model was explored on 12-lead acquisitions from three 
different databases. Ablation studies were conducted on 
the architectures used for conversion and on the use of 
a shared encoder vs. individual encoders. Moreover, the 
model was evaluated on both single-database and cross-
database scenarios, including an experiment on the effect 
of medical conditions on signal reconstruction and the 
study of diagnosis performance with original vs. con-
verted signals.

Despite the considerably more challenging scenario, 
the proposed methodology based on a U-Net was capa-
ble of obtaining relatively good results. Each reference 
lead enabled the high-quality reconstruction of several 
of the twelve standard ECG leads, in some cases reach-
ing state-of-the-art level performance. Both lead I and II 
appear to be especially suitable for certain sets of leads 
and could be used on specific target applications that 
focus on those.

In the cross-database scenario, despite the acquisition 
setup differences, results were promising especially with 
the INCART database. Finally, the analysis of the influ-
ence of medical conditions has shown no considerable 
effect of pathologies on the performance of the proposed 
methodology. However, a state-of-the-art methodology 
for automatic diagnosis revealed lower accuracy when 
using reconstructed signals, a problem that should be 
addressed in future research.

Although the results are promising, further efforts 
should be devoted to improving the methodologies for 
interlead conversion using single-lead blindly-segmented 
inputs. Namely, the pre-processing and normalisation of 
the signals, as well as the robustness to diverse acquisi-
tion setups, should be the target of further research. 
Additionally, task-oriented objective functions should be 
explored to ensure useful signal information is kept and 
avoid performance losses in subsequent diagnoses.

With some consolidation, the proposed methodology 
could be the key to better cardiac health monitoring in 
wearable devices and less obtrusive clinical scenarios. 
Taking the example of emergency rooms, if we can 
retrieve all twelve leads (or the most important among 

these) from Lead I signals, then patients will only need 
two electrodes placed on the wrists to have their ECG 
collected, instead of the full set of 10 electrodes on 
wrists, ankles, and chest. This is a meaningful step 
towards higher comfort and usability for both patients 
in clinical settings and users in other scenarios involv-
ing the monitoring of ECG signals. Additionally, albeit 
outside the scope of this work, the proposed method-
ology for interlead conversion could also be applica-
ble to other multi-channel signals where the different 
channels correspond to different perspectives over the 
same physiological phenomenon.
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