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Abstract 

Background:  The pivot and cluster strategy (PCS) is a diagnostic reasoning strategy that automatically elicits disease 
clusters similar to a differential diagnosis in a batch. Although physicians know empirically which disease clusters are 
similar, there has been no quantitative evaluation. This study aimed to determine whether inter-disease distances 
between word embedding vectors using the PCS are a valid quantitative representation of similar disease groups in a 
limited domain.

Methods:  Abstracts were extracted from the Ichushi Web database and subjected to morphological analysis and 
training using Word2Vec, FastText, and GloVe. Consequently, word embedding vectors were obtained. For words 
including “infarction,” we calculated the cophenetic correlation coefficient (CCC) as an internal validity measure and 
the adjusted rand index (ARI), normalized mutual information (NMI), and adjusted mutual information (AMI) with 
ICD-10 codes as the external validity measures. This was performed for each combination of metric and hierarchical 
clustering method.

Results:  Seventy-one words included “infarction,” of which 38 diseases matched the ICD-10 standard with the 
appearance of 21 unique ICD-10 codes. When using Word2Vec, the CCC was most significant at 0.8690 (metric and 
method: euclidean and centroid), whereas the AMI was maximal at 0.4109 (metric and method: cosine and cor-
relation, and average and weighted). The NMI and ARI were maximal at 0.8463 and 0.3593, respectively (metric and 
method: cosine and complete). FastText and GloVe generally resulted in the same trend as Word2Vec, and the metric 
and method that maximized CCC differed from the ones that maximized the external validity measures.

Conclusions:  The metric and method that maximized the internal validity measure differed from those that maxi-
mized the external validity measures; both produced different results. The cosine distance should be used when 
considering ICD-10, and the Euclidean distance when considering the frequency of word occurrence. The distributed 
representation, when trained by Word2Vec on the “infarction” domain from a Japanese academic corpus, provides an 
objective inter-disease distance used in PCS.
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Background
A common clinical reasoning strategy is to recall a dis-
ease and check whether the patient history obtained is 
consistent with the disease [1]. Physicians take the first 
step, i.e., disease recall, in terms of prior probabilities that 
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vary according to age and sex and the function and loca-
tion of the medical facility. Based on these prior probabil-
ities, they often recall one or two diagnoses and consider 
them based on a patient’s symptoms and characteristic 
findings in clinical practice. Sometimes, a list of differen-
tial diagnoses is required as competing hypotheses for a 
given diagnosis. Differential diagnosis lists are generated 
by specific rules, such as diseases with other patholo-
gies occurring in the same organ, diseases occurring in 
anatomically adjacent organs, and diseases with similar 
pathologies but occurring in multiple organs. However, 
when physicians generate disease recall and differential 
diagnosis lists, there is always a chance for diagnostic 
errors due to heuristic bias.

The pivot and cluster strategy (PCS) can be used to 
avoid such bias [2]. In PCS, clinicians simultaneously 
recall a differential diagnosis list that approximates one 
of the recalled diagnoses based on intuition. The pro-
cess involved in PCS is as follows [2, 3]: First, a clinician 
designates the initial diagnosis (pivot) as the most prob-
able hypothesis through an intuitive or analytical process 
based on history and physical examination as well as their 
knowledge and experience. Second, the clinician forms a 
disease cluster around the pivot to obtain a collection of 
differential diagnoses. Any disease can be a pivot. The list 
of differential diagnoses can be shortened or expanded 
according to the overlaps and differences between pivots 
and their clusters.

Pivot designation is intuitive and can lead to diagnostic 
errors due to heuristic cognitive bias. Pivot designation is 
influenced by the frequency of disease, which depends on 
the function and location of the medical institution, and 
the physician’s specialty and case experience [4]. How-
ever, Shimizu et  al. argued that in PCS, the automatic 
and simultaneous recall of clusters close to the pivot’s 
clinical presentation removes bias and improves diagnos-
tic accuracy by preventing early closure [2]. They stated 
that PCS is also useful when teaching novice students. In 
PCS, the teacher, an experienced clinician, assigns a vir-
tual distance from the pivot to the differential diagnosis 
and translates the list of differential diagnoses into a two-
dimensional visual representation. This helps the learner 
represent the degree of concurrence with the patient’s 
clinical symptoms.

Shimizu et  al. stated that, in PCS, pre-prepared 
clusters can automatically and quickly be recalled in 
batches. Nevertheless, a question arises: “what do 
they mean by ‘pre-prepared clusters’ in actual clini-
cal practice?” We contend that pre-prepared clusters 
may be based on intuition stemming from the accu-
mulated experience of each clinician or on textbook 
knowledge. In general, disease clusters based on simi-
lar pathophysiologies are likely to have similar medical 

characteristics. Despite physicians being empirically 
aware of “similarities” among disease groups, there 
has been no quantitative presentation of these disease 
groups. Exhaustive clusters are required because user-
friendly, limited clusters based on physicians’ experi-
ence can be a source of cognitive bias. However, it is 
difficult to prepare uniform clusters for all pivots, and 
even if one could, it would be impractical to use them 
for a physician’s reasoning. Conversely, the differential 
diagnosis generator is a computer-generated list of dif-
ferential diagnoses, which reportedly allows clinicians 
to reconsider their diagnoses [5]. If we can quantita-
tively represent clusters, the accuracy of the differential 
diagnosis generator is expected to improve significantly.

We collected documents related to “infarction” from 
the corpus of Ichushi Web, a database of medical articles, 
used Word2Vec to learn word associations from the col-
lected articles, and found that the pathophysiological and 
anatomical features of “infarction” are retained in the dis-
tributed representation [6]. In our previous article (under 
peer review), we suggested that “brain infarction” and 
“myocardial infarction” have different vectors and that 
some vectors share greater similarity if they are diseases 
of the same organ. Word2Vec is an unsupervised learn-
ing system that uses neural networks and a tool to com-
pute distributed representations of words [7]. Word2Vec 
is effective in capturing semantic relatedness and simi-
larity relations among medical terms [8]. FastText is a 
library created by Facebook’s AI Research Laboratory for 
learning word embeddings and exploiting subword infor-
mation to construct word embeddings [9]. GloVe is an 
unsupervised learning algorithm with aggregated global 
word–word co-occurrence statistics for obtaining vector 
representations of words [10].

The present study examined the validity of the similar-
ity (inter-diseases distance) calculated using our learned 
word embedding vectors as candidates for clusters in 
PCS. To evaluate the validity, we verified the agreement 
rate with the International Statistical Classification of 
Diseases and Related Health Problems (ICD), an external 
classification list provided by the World Health Organi-
zation. The 10th edition (ICD-10) is available in Japanese. 
It contains codes for diseases, their signs, and symptoms. 
Its hierarchical structure is divided into 22 chapters, and 
the circulatory system diseases (I00-99) include many 
strokes and myocardial infarctions. It is highly reliable 
because it is based on human judgment informed by 
pathology and anatomical relationships.

Is clustering by word embedding vectors similar to 
ICD-10 clustering? If demonstrated, this hypothesis 
would provide reasonable grounds for a quantitative and 
objective presentation of clusters by word embedding 
vectors in medical corpora.
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Objectives
This study aimed to determine whether the inter-disease 
distances between word embedding vectors using the 
PCS are a valid quantitative representation of similar dis-
ease groups in a limited domain. First, we attempted to 
obtain a distributed representation of words using Japa-
nese medical journal abstracts and Word2Vec. Next, we 
examined the validity of the representation in terms of 
internal and external validity corresponding to ICD-10 in 
the clustering of word vectors.

Methods
Subjects
We extracted abstract texts from the medical journal data-
base of the NPO Japan Medical Abstracts Society, Ichushi 
(requires registration) by searching for the word “infarc-
tion,” and we set the search criteria to show case report arti-
cles that contain an abstract [6]. We limited our search to 
the infarction domain because it involves the same patho-
logical changes in multiple organs. Many researchers have 
used abstracts from Ichushi Web as subjects for their lit-
erature review [11–13]. We inserted spaces between words 
and performed morphological analysis on the abstract texts 
to produce word sequences converted into a standard form.

In Japanese, unlike English, there are no spaces between 
words. Therefore, to separate words, it is necessary to 
insert a space while checking against a dictionary. MeCab 
[14] was used for inserting spaces and for morphological 
analysis, and mecab-ipadic-NEologd [15] and ComeJisyo 
[16] were used as the dictionaries. ComeJisyo is a diction-
ary for MeCab that leaves a space between the words that 
represent terms used in medical facilities. After morpho-
logical analysis, we exclusively extracted terms consisting 
of nouns, adjectives, adverbs, and verbs. Numeric expres-
sions are typically not crucial in Japanese natural lan-
guage processing. We excluded a number of nouns from 
the sequences, e.g., numerals indicating a subject’s height 
and weight, and the dosage of medication.

Model learning
We trained the word sequences using the Gensim Word-
2Vec package [17]. Word2Vec is available in two different 
forms: skip-gram and continuous bag of words (CBOW). 
In previous reports, Word2Vec, specifically the skip-
gram architecture, achieved the highest score on three of 
four rated tasks: analogy-based operations, odd one simi-
larity, and human validation [18]. Skip-grams also per-
formed better in biomedical studies [19–22].

The skip-gram model is a simple neural network with 
one hidden layer and an output layer with a softmax activa-
tion function. This model can accurately predict the words 
before and after an input word. Given some text, a target 

word is selected within a window. The training data for the 
neural network consists of pairwise combinations of the 
target word and all the other words in the window. The 
output layer yields a vector of the same size as the input, 
and each element in the vector consists of a probability 
indicating the similarity between the target word and other 
words in the vocabulary.

FastText is also a skip-gram model based on subwords 
that can handle out-of-vocabulary words. GloVe is a 
method that learns by combining word embeddings from 
the local window intra-word context with a document-
wide global co-occurrence matrix. To confirm the differ-
ences between the learning models, we trained FastText 
and GloVe on the same corpus. The word embedding vec-
tors learned by each algorithm were analyzed using the 
Gensim package.

This study used a skip-gram algorithm based on previ-
ous Word2Vec and FastText studies, with a vector of 200 
dimensions. We set the window size as 5, minimum count 
as 5, and number of iterations as 100. Words containing 
“infarction” were extracted from the vocabulary used for 
training. We retained only the words found in ICD-10 that 
matched perfectly and used the set of words as the stand-
ard name list.

Clustering and evaluating with internal validity measures
Each word in the standard name list had a vector of 200 
dimensions. We used the hierarchical clustering in ICD-
10 based on each vector component. As the figures in later 
sections show, (the terms in parentheses follow a lower-
case naming convention) we used distance definitions 
(metric), including Euclidean (euclidean), city-block (city-
block), standard Euclidean (seuclidean), cosine, correlation, 
Chebyshev (chebyshev), Canberra (canberra), and Brady 
Curtis (braycurtis) distances. We used update methods 
(method), including single linkage (single), complete link-
age (complete), group average (average), weighted average 
(weighted), median, Ward’s (ward), and centroid. With this 
combination of metrics and methods, we first calculated 
the cophenetic correlation coefficient (CCC), which is an 
internal validity measure of clustering. We then created a 
dendrogram using the combination with the highest CCC 
value when using Word2Vec.

(1)

cophenet(Z, Y ) =
i<j Yij − y Zij − z

i<j Yij − y
2

i<j Zij − z
2

Y : pairwisedis tan ces,

Z : dis tan cesinthedendrogram,

yandz : meansofYandZ,
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Evaluation with external validity scale
We evaluated the model with an external validity scale. 
External validity measures performance by matching the 
clustering structure to a priori information, i.e., true class 
labels [23, 24]. Each word in the standard name list was 
assigned its corresponding ICD-10 code. We counted 
the number of unique ICD-10 codes and calculated the 
adjusted rand index (ARI) [25, 26], normalized mutual 
information (NMI) [27], and adjusted mutual informa-
tion (AMI) [28] as external validity measures when clus-
tering the standard name list to that unique number. 
These are the most commonly used evaluation measures 
to assess the similarity between two sets [29]. The range 
of ARI is [− 1, 1], that of NMI is [0, 1], and that of AMI is 
[0, 1]; a larger value indicates a closer match between the 
two groups. AMI is appropriate when the clusters are of 
unequal sizes and contain smaller clusters than ARI [30]. 
We calculated the distances and external validity meas-
ures for each combination, and the update methods were 
the same as those mentioned in Sect.  “Clustering and 
evaluating with internal validity measures”.

Analytics
The analysis was performed on a terminal using Ubuntu 
20·04·2 LTS, with an Intel Core i9-9960X CPU, 64 GB of 
primary memory, and two NVIDIA TITAN RTX GPUs 
with a total RAM of 48  GB that were linked using an 
NVLink bridge. The machine learning framework con-
sisted of Python (3·6·9), Gensim (3·8·3), and scikit-learn 
(0·24 2), which is a module for machine learning in 
Python. We used FastText (0·9·2) and GloVe (1·2).

Results
Since October 26, 2019, 15,513 abstracts have been 
extracted (Ichushi ID: 1,983,011,395 to 2,019,316,513). 
The insertion of spaces (as explained in Sect. “Subjects”) 
and morphological analysis led to 1,505,041 words and 
46,602 unique words in the unlearned word sequences. 
The word sets containing “infarction” had 20,918 words, 

YijandZij : i − thandj − thcomponentsofYandZ of which 71 were unique. The word sequences used for 
training word embedding vectors had 1,445,433 words, 
with 15,163 being unique. The word sets containing 
“infarction” and used for training word embedding vec-
tors had 20,877 words, of which 54 were unique.

We can quickly implement PCS with distributed rep-
resentation by running the “gensim.models.Word2Vec.
similar_by_vector” method. This method can output 
any number of highly similar vectors to the input word 
embedding vector. The similarity is calculated using the 
cosine distance. Table  1 presents examples of clusters 
with myocardial infarction, cerebral infarction, liver cir-
rhosis, and dementia as Pivot. The corpus used in our 
study is based on the infarction disease domain, and 
the results are affected by co-occurrences within this 
domain. It is therefore difficult to include diseases distant 
from infarct diseases in the results.

Table 2 summarizes the set of words containing “infarc-
tion” extracted exclusively from words that fully matched 
ICD-10 (the standard name list), the total number of 
words, and ICD-10 codes. The total number of words 
was 15,163, and there were 38 unique words. Twenty-
one ICD-10 codes appeared; 16 of the 54 did not match 
an ICD-10 code. The words containing “infarction” that 
did not match ICD-10 were “infarction,” “hemorrhagic 
infarction,” “inferior infarction,” “post-myocardial infarc-
tion,” “postinfarction,” “inferior myocardial infarction,” 
“anterior infarction,” “anterior myocardial infarction,” 
“right ventricular infarction,” “infarctive,” “reinfarction,” 
“anterior septal myocardial infarction,” “pulmonary 
infarction disease,” “impending myocardial infarction,” 
“multi-infarct dementia,” “perioperative myocardial 
infarction,” “thrombotic infarction,” “impending infarc-
tion,” and “posterior myocardial infarction”.

Figure 1a shows the CCCs obtained using the embed-
ding vectors of Word2Vec for each definition of the 
metric and update methods for the evaluation using the 
internal validity measure. When the metric was euclidean 
and the method was centroid, the CCC was maximal at 
0.8690. Figure  1b and c show the CCCs obtained using 
the embedding vectors of FastText and GloVe, respec-
tively. When the metric was euclidean and the method 

Table 1  Examples of pivot and cluster strategy in word embeddings obtained using Word2Vec

Pivot Myocardial infarction Cerebral infarction Liver cirrhosis Dementia

Clusters (similarity) Acute myocardial infarction 
(0.7064)

Lacunar infarction (0.5465) Hepatocellular carcinoma 
(0.4837)

Alzheimer’s dementia (0.4670)

Acute inferior myocardial 
infarction (0.5480)

Cerebellar infarction (0.5333) Hepatitis C (0.4303) Parkinson’s syndrome (0.4639)

Angina pectoris (0.5076) Cerebral hemorrhage (0.4552) Gastric cancer (0.3898) Vascular dementia (0.4551)

Ischemic heart disease (0.4883) Transient ischemic attack 
(0.4155)

Esophageal varix (0.3750) Depression (0.4056)
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used was average, the CCC was maximal at 0.8901 
using FastText. When the metric was cityblock and the 
method used was average, the CCC was maximal at 
0.9682 using GloVe. Although the maximum metric and 
method differed, the generally high values for the euclid-
ean, sqeuclidean, and cityblock metrics and the average 
and centroid methods were similar for all the learning 
algorithms.

The evaluation using the external validity scale is shown 
in Fig. 2. For Word2Vec, the AMI was maximal at 0.4109 
with the cosine or correlation metric and the average or 
weighted method, and the NMI and ARI were maximal 
at 0.8463 and 0.3593, respectively, with the cosine metric 

and the complete method. For FastText, the AMI, NMI, 
and ARI were maximal at 0.3525, 0.8514, 0.2515, respec-
tively, with the cosine or correlation metric and when the 
ward method was used. For GloVe, the AMI was maxi-
mal at 0.4005 with the braycurtis metric and the cen-
troid method, the NMI was maximal at 0.8435 with the 
cosine or correlation metric and when the ward method 
was used, and the ARI was maximal at 0.2757 with the 
braycurtis metric and the average or weighted method. 
Although the maximum metric and method differed, the 
generally high values for the cosine, correlation, and bray-
curtis metrics were similar for all the learning algorithms. 
Note that combinations with high ratings on the internal 

Table 2  Standard name list: set of words containing “infarction” that precisely match ICD-10

Word Number ICD-10 code Word Number ICD-10 code

Cerebral infarction 6834 I639 Pontine infarction 82 I635

Acute myocardial infarction 2301 I219 Medullary infarction 66 I635

Myocardial infarction 1754 I219 Acute anterior myocardial infarction 59 I210

Multiple cerebral infarction 524 I638 Asymptomatic cerebral infarction 43 I638

Pulmonary infarction 467 I269 Acute anterior septal myocardial infarction 31 I210

Old myocardial infarction 397 I252 Omental infarction 27 K550

Renal infarction 333 N280 Embolic infarction 22 I749

Lacunar infarction 327 I638 Placental infarction 20 O438

Splenic infarction 263 D735 Post-acute myocardial infarction ventricular 
septal perforation

19 I232

Cerebellar infarction 285 I635 Old inferior myocardial infarction 11 I252

Sequelae of cerebral infarction 255 I693 Perforating branch infarction 12 I635

spinal cord infarction 238 G951 Recurrent cerebral infarction 11 I639

Post-cerebral infarction 202 I693 Cerebral venous infarction 10 I636

Brainstem infarction 199 I635 Adrenal Infarction 9 E274

Old cerebral infarction 153 I693 Old anterior septal myocardial infarction 7 I252

Atherosclerotic cerebral infarction 120 I633 Acute lateral myocardial infarction 7 I212

Acute inferior myocardial infarction 119 I211 Cortical branch infarction 7 I635

Hepatic infarction 113 K763 Kidney infarction 7 N280

Hemorrhagic cerebral infarction 103 I638 Watershed infarction 6 I638

Total: 38 words 15,163 21 codes

Fig. 1  Internal validity measures with cophenetic correlation coefficients (CCCs) for the embedding vectors of a Word2Vec, b FastText, and c GloVe
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Fig. 2  External validity scales for ICD-10 for embedding vectors from a Word2Vec, b FastText, and c GloVe

Table 3  Summary of the metrics and methods that make each indicator larger with each algorithm

Metric Method

Highest average value Highest average value

Maximize 1st 2nd 3rd Maximize 1st 2nd 3rd

CCC​ Word2Vec Euclidean Euclidean Sqeuclidean Cityblock Centroid Average Weighted Single

FastText Euclidean Euclidean Cityblock Sqeuclidean Average Average Weighted Single

Glove Cityblock Cityblock Sqeuclidean Euclidean Average Average Weighted Centroid

AMI Word2Vec Correlation/cosine Cosine Correlation Braycurtis Average/weighted Ward Complete Weighted

FastText Correlation/cosine Correlation/cosine Braycurtis Ward Complete Ward Weighted

Glove Braycurtis Correlation/cosine Braycurtis Centroid Average Weighted Ward

NMI Word2Vec Cosine Cosine Correlation Braycurtis Complete Ward Complete Weighted

FastText Correlation/cosine Cosine Correlation Braycurtis Ward Complete Ward Weighted

Glove Correlation/cosine Braycurtis Correlation/cosine Ward Ward Complete Average

ARI Word2Vec Cosine Cosine Correlation Braycurtis Complete Ward Complete Weighted

FastText correlation/cosine Braycurtis Correlation/cosine Ward Ward Complete Weighted

Glove Braycurtis Braycurtis Correlation/cosine Average/weighted Average Weighted Ward
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validity scale did not necessarily have high ratings on the 
external validity scale. Table  3 summarizes the metrics 
and methods that resulted in larger indicators.

The dendrograms in Figs.  3 and 4, discussed in detail 
below, illustrate the combination of metrics and meth-
ods that performed best on the internal and validity scale 
evaluations for Word2Vec. In Fig.  4, we arbitrarily set 
thresholds and colors to make the figure easier to view.

Discussion
We extracted abstracts related to “infarction” from a 
database of Japanese medical documents and used them 
as a corpus to obtain word variance representations using 
Word2Vec, FastText, and GloVe. The variance represen-
tation thus obtained allowed us to measure inter-disease 

distances, which indicate the degrees of similarity among 
diseases. Our examination of multiple metrics and meth-
ods revealed that the combination of the euclidean met-
ric and the centroid method was optimal for assessing 
internal validity, while the combination of cosine distance 
and the complete linkage method was optimal for assess-
ing external validity with ICD-10 for NMI and AMI when 
using Word2Vec. The inter-disease distances between 
word embedding vectors are, therefore, expected to be 
a valid quantitative representation of similar disease 
groups.

Word2Vec, FastText, and GloVe use deep learning 
based on the co-occurrence of words within a context to 
obtain a word embedding vector. Thus, words that appear 
in similar contexts have high similarity. In academic 

Fig. 3  Dendrogram with euclidean and centroid that maximizes the internal validity measure. The vertical axis represents distance
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abstracts, the description of infraction in an organ also 
includes clinical symptoms and characteristic informa-
tion derived from that organ. Differences in the charac-
teristic information co-occurring in different organs may 
be a factor in the distance between diseases.

In the medical field, there have been few challenges 
to classification tasks with embedded representa-
tions. In a study that used a distributed representation 
obtained from medical records as visit embedding, the 
k-means method was used to classify the character-
istics of patients by specialty [31]. A German Word-
2Vec model trained on a corpus of 352 MB of medical 
reports attained an accuracy of 90% in assigning medi-
cal reports written by physicians to ICD-10 [32]. The 
study identified rare diseases, unusual designations, 
and ICD code degeneracy as sources of assignment or 
“missing” errors. ICD-10 has a hierarchical structure 
with more than 68,000 codes. However, not all codes 
have the same level of granularity. Furthermore, ICD 

codes that are ontologically distant are less likely to be 
grouped [29]. Although we have bound our embedding 
vectors to ICD-10 based on the corpus of academic lit-
erature, the maximum value of NMI is 0.85 but only 
0.41 and 0.36 for AMI and ARI when using Word2Vec; 
therefore, our embedding vectors cannot be interpreted 
as a mapping to the continuous space of ICD-10.

Note that the metric and method that maximized the 
internal validity measure and those that maximized the 
external validity measure produced different results. 
The euclidean maximized the internal validity measure 
but did not maximize the external validity rating. The 
dendrogram with the parameter that maximizes inter-
nal validity (Fig. 3) gives the impression that, unlike the 
ICD-10 classification, the less clinically relevant dis-
eases are adjacent. Conversely, the dendrogram with 
parameters that maximize the NMI and ARI with ICD-
10 (Fig. 4) gives the impression of a classification based 
on anatomical and temporal differences such as “old” 

Fig. 4  Six colored dendrogram when cosine and complete maximize the NMI and ARI. The vertical axis denotes distance, with 0.73 as the threshold
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and “sequelae.” In other words, the latter could be clas-
sified as “ICD-10-like.”

The Euclidean distance is calculated between two 
points as follows:

Conversely, the cosine distance is calculated from the 
angles between the vectors as

When performing calculations with cosine distance, 
the length information of the vectors is lost because it is 
divided by the L2 norm. In other words, when the angle 
between two vectors θ is 0°, the cosine distance is 0 (simi-
larity is 1) even if the L2 norm is different; therefore, dis-
eases at different distances from the origin (L2 norm) in a 
higher-dimensional space are expressed as being similar. 
The L2 norm of xi is calculated using the formula

When clustering by cosine distance, all disease embed-
ding vectors are normalized and plotted on the n-dimen-
sional hypersphere, losing the L2 norm. Pivot and cluster 
were converted into a two-dimensional representation 
and shared with others, but this could also be represented 
on the hypersphere. A cluster is a group of diseases that 
make an angle of θ < θ0 with the pivot, and the inter-dis-
ease distance can be defined as the distance between two 
points on the hypersphere.

Conversely, the L2 norm is not negligible. Vectors 
represent words that are consistently used in similar 
contexts with larger L2 norms than words of the same 
frequency used in different contexts [33]. Applied to dis-
eases and symptoms, medical words that denote various 
causes are highly abstract and are used in various con-
texts (e.g., “infarction” and “headache”) have a smaller 
L2 norm. By contrast, medical words that are less diverse 
in terms of the cause, are more specific, and are used in 
limited contexts (e.g., “omental infarction” and “placental 
infarction”) have a higher L2 norm. In fact, the L2 norms 

(2)

dij =

[

∑K

k=1

(

xik − xjk
)2

]1/2

, xi = [xi1, xi2, . . . , xiK ]
T

dij : distancebetweenxiandxj , x ∈ R
K
,

xiK : k − thcomponentof xi, xi : i − thcomponentof x

(3)dij = 1−
xi · xj

xixj
, xi = [xi1, xi2, . . . , xiK ]

T

(4)L2i = �xi� =

[

∑K

k=1
(xik)

2

]1/2

L2i : L2norm of the i − th component of x

of the embedded vectors in this study are “infarction”: 
3.107, “headache”: 3.955, “omental infarction”: 7.703, and 
“placental infarction”: 7.583. The L2 norm of the stand-
ard disease list is shown in Fig. 5. The frequency of occur-
rence and the L2 norm tend to be inversely proportional.

The similarity with the dendrogram shown in Fig. 3 is 
also clear. Because the L2 norm is a Euclidean distance, 
this dendrogram reflects the frequency of occurrence and 
context of words in the corpus. Thus, using an unnormal-
ized vector for classification may be preferable for con-
sidering word frequency and polysemy and to apply PCS 
in actual clinical practice.

The word frequencies should be limited to and inter-
preted within the corpus used in this study. However, 
using a broad corpus of academic medical literature may, 
in principle, be consistent with disease frequencies in the 
real world. Prior probabilities are essential information in 
clinical reasoning. By using Bayes’ theorem to modify the 
posterior probability of a diagnosis when new informa-
tion becomes available, the prior probability represents 
its starting probability. In many cases, the prior probabil-
ity depends on the function and location of the medical 
facility. By leaving the L2 norm to obtain clusters, a dif-
ferential diagnoses list that considers prior probabilities 
in the corpus or facility may be obtained. By using dif-
ferent clusters for different stages of clinical reasoning 
(varying the distance and updating method), such com-
putation may provide a more efficient differential diagno-
ses list that is more in line with the physician’s thought 
process.

Although this study was limited to the infarction 
domain, depending on the dictionary used in the mor-
phological analysis, we simultaneously obtained the 
embedded vectors of medical words other than infarction 
disease. In other words, we efficiently computed vectors 
that represent symptoms, such as hemiplegia and head-
ache, and histories such as smoking and hypertension. 
In the future, we will examine validity scales for domains 
other than infarction and calculate inter-symptom dis-
tances or symptom-disease distances to visualize many 
keywords used in clinical reasoning.

Bidirectional encoder representations from transform-
ers (BERT) is a pre-training transformer-based machine 
learning technique developed by Google [34]. BERT has 
exhibited good performance on several natural language 
understanding tasks. The corpus used in this study was 
too small to create a pre-training BERT model and was 
not in a form suitable for fine tuning. Consequently, we 
could not use BERT. The use of BERT will be considered 
in future studies using large corpora.
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Limitations
There are several limitations to this study. First, we can-
not assert that the corpus size used for the study was suf-
ficiently large. Previous studies using academic literature 
corpora have acquired over 18 million abstracts to obtain 
a vocabulary of approximately 7.8 million words [35]. 
Ichushi Web is the most extensive Japanese-language aca-
demic corpus currently available, and this study used all 
the searchable medical journals available therein. There-
fore, other resources should be considered to increase the 
corpus size.

Second, morphological analysis presents a problem. 
Many medical terms consist of multiple words, which is 
also true in Japanese; for example, “acute inferior myo-
cardial infarction” contains four words in English and 
eight Chinese characters but is a single medical term in 
both languages. Word2Vec and GloVe are vulnerable 

when they encounter unknown words, and if a term is 
not entered as a multi-word term in the dictionary, it is 
divided similarly to the longest words. For example, if the 
medical term “acute right renal infarction” is present in 
the corpus but not in the dictionary, it will be divided into 
“acute,” “right,” and “renal infarction.” For morphological 
analysis, this study used the ComeJisyo medical diction-
ary, which, since November 2018, has 75,861 registered 
words. We can use the pre-trained model in Japanese with 
Word2Vec and FastText, but not with GloVe. However, 
some pre-training models for Japanese do not specify a 
dictionary for word segmentation. Nevertheless, depend-
ing on the domain and task, the dictionary registration of 
multi-word terms is inadequate, as found in this study. For 
the PCS task in the medical domain, definitively stating 
whether using a pre-trained model with a general domain 

Fig. 5  L2 norm and word counts of embedding vectors
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corpus or a model learned with the medical domain is 
better is beyond the scope of this study.

Third, these technologies present a problem. Because 
they use random numbers during training, minute dif-
ferences may occur each time the training is conducted, 
and the reproducibility of the study cannot be adequately 
guaranteed. In addition, because we did not mention the 
differences in research results that are due to differences 
in parameters, it cannot be asserted that the parameter 
settings used in this study are optimal.

Fourth, the ICD-10 classification prepared as an exter-
nal validity measure is sometimes inappropriate for 
creating a clinical differential diagnosis list/cluster. Con-
versely, the true pre-prepared clusters mentioned in 
the previous study are not always found in textbooks or 
international classifications. If a list of physicians’ defini-
tive differential diagnoses exists, it may be worth examin-
ing external validity scales on that list.

Conclusions
The word embedded vectors produced by Word2Vec, 
FastText, and GloVe, trained on the infarction domain 
from a Japanese academic medical corpus, allowed us 
to represent the objective similarity between diseases 
(inter-disease distance) that can be used in PCS. Inter-
nal validity tended to be maximized when the metric was 
euclidean. There was no commonality among the three 
algorithms regarding the metric and method that could 
maximize AMI, NMI, and ARI. When using Word2Vec, 
the indices as the external validity scale with ICD-10 
tended to be maximized when the metric was cosine. 
When the frequency of word occurrence is considered, 
the representation of the inter-disease distance by Euclid-
ean distance, which does not ignore the L2 norm of the 
embedding vector, may be a quantitative index in imple-
menting PCS. When clinical differences similar to ICD-
10 are considered, the inter-disease distance expression 
may be that of using the cosine distance.
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