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Abstract 

Background: High dimensionality in electronic health records (EHR) causes a significant computational problem 
for any systematic search for predictive, diagnostic, or prognostic patterns. Feature selection (FS) methods have been 
indicated to be effective in feature reduction as well as in identifying risk factors related to prediction of clinical disor-
ders. This paper examines the prediction of patients with alcohol use disorder (AUD) using machine learning (ML) and 
attempts to identify risk factors related to the diagnosis of AUD.

Methods: A FS framework consisting of two operational levels, base selectors and ensemble selectors. The first level 
consists of five FS methods: three filter methods, one wrapper method, and one embedded method. Base selector 
outputs are aggregated to develop four ensemble FS methods. The outputs of FS method were then fed into three 
ML algorithms: support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) to compare and 
identify the best feature subset for the prediction of AUD from EHRs.

Results: In terms of feature reduction, the embedded FS method could significantly reduce the number of features 
from 361 to 131. In terms of classification performance, RF based on 272 features selected by our proposed ensemble 
method (Union FS) with the highest accuracy in predicting patients with AUD, 96%, outperformed all other models 
in terms of AUROC, AUPRC, Precision, Recall, and F1-Score. Considering the limitations of embedded and wrapper 
methods, the best overall performance was achieved by our proposed Union Filter FS, which reduced the number 
of features to 223 and improved Precision, Recall, and F1-Score in RF from 0.77, 0.65, and 0.71 to 0.87, 0.81, and 0.84, 
respectively. Our findings indicate that, besides gender, age, and length of stay at the hospital, diagnosis related to 
digestive organs, bones, muscles and connective tissue, and the nervous systems are important clinical factors related 
to the prediction of patients with AUD.

Conclusion: Our proposed FS method could improve the classification performance significantly. It could identify 
clinical factors related to prediction of AUD from EHRs, thereby effectively helping clinical staff to identify and treat 
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Introduction
The term "Alcohol Use Disorder" (AUD) is used to define 
an uncontrollable level of alcohol consumption. It is 
correlated with numerous diseases like liver cirrhosis, 
chronic pancreatitis, upper gastrointestinal cancer, car-
diomyopathy, polyneuropathy and dementia, and has a 
large presence within western countries, especially in 
Europe [1]. Mid-life AUD mortality rates have increased 
over the last decades [2]. In Denmark, five percent of all 
confirmed deaths may be traced to alcohol consumption, 
which is a typical scenario in many other Western coun-
tries as well [3, 4]. Many patients who suffer from AUD 
will never undergo specialist treatment for their addic-
tion [5]. Machine learning (ML) analysis of electronic 
health records (EHR) may be used to predict AUD in 
patients and to help solve this issue. Such an analysis will 
provide medical staff with observations, allow them to 
understand the desires of patients and encourage them to 
discuss how procedures should best be arranged with the 
particular patient.

One of the most common research areas in the field of 
clinical data mining is prediction of clinical conditions. 
It focuses on the role of utilizing ML techniques to clas-
sify patients’ historical EHRs into one or more predefined 
clinical groups [6]. It is also a task to identify the target 
values for a new observation based on a training dataset 
comprising past observations of known target values. 
For example, automatically classifying the condition of 
patients as “AUD-Positive” or “AUD-Negative” (as target 
values) based on their historical clinical records using ML 
techniques. However, one of the main problems of devel-
oping such a predictive model while dealing with EHR 
which is the large amount of information that hospitals 
collect from their patients and the specialized variant of 
natural language in which it is expressed. EHRs contain a 
vast amount of information, which increases the number 
of irrelevant and redundant features. This means that the 
computational cost of building a classifier using ML algo-
rithms will be substantial.

Feature selection (FS) is one of the steps in the meth-
odology of building a predictive model using ML tech-
niques. In general, FS is a step that removes irrelevant 
and redundant information to reduce dimensionality. In 
the FS approach, a small subset of features is selected by 
minimizing feature redundancy and maximizing feature 
relevance to the target values. In comparison to feature 
extration methods that original features are transformed 

in order to create a feature space of lower dimension than 
the original feature space [7], in FS, features are selected 
without transformation from the original feature space 
and can be used in clinical risk factor discovery. Trans-
formed features have no physical meaning that can be 
used for deep analysis of the features and clinical factors. 
Thus, besides the general advantages of FS in reducing 
problem dimensionality and thereby improving the accu-
racy of classifiers, FS methods have better readability, 
interpretability, and explainability in a practical applica-
tion such as identification of risk factors for clinical con-
ditions [8, 9] (i.e., AUD).

Few studies have aimed to develop ML models to iden-
tify patients with AUD and very few studies reported the 
features, which can be used for identification of patients 
with AUD. In our previous work [10], we mentioned 
that variables like family history (FH), psychological 
and genetic factors are the widely used features in this 
domain. Demographic features including age, sex, family 
status, education level, income, occupation, etc. are also 
widely used in the literature [11]. Features like motives 
for drinking, drinking behaviors, academic performance, 
personality, recent depression and anxiety symptoms, 
and negative life events are employed by Zuba, Gilbert 
[12] and Bi,Sun [13] for prediction of AUD among college 
students. Moreover, Kinreich, Meyers [14] considered FH 
and electroencephalogram signals in their studies pre-
dicting the risk of AUD.

Historical (retrospective) data usually cover significant 
periods of time before appearance of the clinical condi-
tion. EHRs contain promising information such as prior 
presenting symptoms, diagnoses, treatments, length of 
stays in hospital, etc. that allow researchers to pragmati-
cally study clinical conditions and disorders by identifica-
tion of clinical factors signaling both the actual condition 
and also early-onset symptoms and signs. However, com-
putational problems such high dimensionality in EHRs, 
the heterogeneous nature of EHR datasets and high 
correlation among features challenge the stability of FS 
methods [15] toward using ML techniques to identify 
risk factors and predict patients with AUD.

Although all the above-mentioned studies reported 
that they successfully achieved their goals, to the best of 
our knowledge no previous studies have tried to identify 
relevant clinical factors in prediction of patients with 
AUD based on the patients’ historical EHR. Such a study 
may help medical staff to have a better understanding of 

AUD patients and improving medical knowledge of the AUD condition. Moreover, the diversity of features among 
female and male patients as well as gender disparity were investigated using FS methods and ML techniques.

Keywords: Alcohol use disorder, Clinical factor identification, Gender disparity, Machine learning, Feature selection
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features with high prediction potential and clinical fac-
tors that influence the risk of developing AUD. This is 
the first study to identify clinical factors and important 
features relevant to prediction of AUD from historical 
EHRs.

To address the above-mentioned challenges, the study 
explores the performance of several filter, wrapper, 
embedded and ensemble FS trained on historical EHRs 
in an effort to identify clinical factors and important fea-
tures for the identification of patients with AUD. The 
proposed methodological framework will firstly allow 
us to understand which FS method can produce the 
best feature subset for the identification of patients with 
AUD by running ML algorithms on EHRs. Secondly, the 
selected features will empower medical staff to develop a 
deeper understanding of the most critical manifestations 
and clinical factors of AUD.

The remainder of this paper is organized as follow: Sec-
tion two discusses the proposed method including the 
characteristics of the historical EHR dataset and the pre-
processing techniques used to clean the dataset, descrip-
tion of the FS methods and the experimental setup that is 
used to evaluate the performance and stability of the FS 
models. Section three presents the experimental results 
and discussion, Section four discusses the pespectives, 
Section five present conclusion, and Section six discusses 
the limitations and future works.

Methods
As it is shown in Fig.  1, the overall methodology pro-
posed for this study encompasses three phases: Data 
Gathering, Feature Selection, and Pre-processing, Mod-
eling, and Evaluation. In this study, clinical researchers 
were engaged through all stages of the proposed meth-
odology. For example, besides storing datasets in a secure 
database, they declared the main idea of labeling patients’ 
EHRs based on the results of the Relay study. Moreover, 
medical reasoning about individual clinical factors, spe-
cifically the primary diagnosis, was discussed in detail 
with them over several iterations in the FS phase.

Data gathering
The study population consists of patients aged 
18–101  years hospitalized from January 2012 until June 
2016 at Odense University Hospital (OUH) in Denmark 
for at least 24 h. The data is collected from two sources, 
the Relay study [16–18] and the EHRs from OUH. The 
Relay study systematically gathered data from patients 
admitted to the Gastrointestinal, Neurological, and 
Orthopedic Departments at OUH over the duration from 
October 2013 to June 2016. By contributing to a survey 
based on the Danish edition of the Alcohol Use Disorder 
Identification Test (AUDIT), patients documented their 

food, smoking, alcohol, and exercise behaviors. The out-
comes of AUDIT vary from 0 to 40; AUDIT results are 
categorized in AUD positives for those that are above 8 
[19]. The findings were 457 AUD-Positive patients and 
2114 AUD-Negative patients. In the current study, these 
groups are used to construct the classification model, as 
target values of the training dataset. Figure  2 illustrates 
how our sample data were allocated according to gender, 
age group and AUD status.

The EHR dataset is the historical medical database 
of the Relay study participants. This dataset is a collec-
tion of reported hospital admissions and referrals to the 
OUH departments of Gastrointestinal, Neurological 
and Orthopedic. The dataset includes the patient’s per-
sonal id number (called CPR number in Denmark), age, 
gender, length of stay at the hospital, type of admission, 
interventions, ICD-10 diagnosis codes and health-related 
conditions from January 2012. This indicates that the 
data collection consists of the patient’s EHR data from 
18 months prior to admission to OUH up to their partici-
pation in the Relay interview. The CPR number allowed 
us to link each person’s EHR and Relay records. However, 
for data security reasons and to comply with GDPR, all 
CPR numbers have been anonymized and stored on a 
on secure virtual servers operated by Open Patient data 
Explorative Network1 (OPEN) in the Region of Southern 
Denmark. All clinical records were labeled based on the 
AUDIT test performance, which is either AUD-Positive 
(AUDIT score greater than 8) or AUD-Negative (AUDIT 
score equivalent to or less than 8).

The preparation of the final datasets was preformed 
based on the inclusion criteria as shown in Fig.  1. This 
indicates three inclusion criteria including:

1. Patients with available Interview date.
 The Interview date during the Relay Study was the 

variable which was supposed to be used for identify-
ing the historical records of patients, and it should 
precede the interview date. Any records having a null 
value in this variable were dropped from the datasets.

2. Clinical records with a valid ICD-10 code for Primary 
Diagnosis.

 The Primary Diagnosis is an ICD-10 code that 
describes the clinical staff ’s initial diagnosis of the 
patient who had been referred to the hospital. This 
is a key feature that was supposed to be used in this 
study. Thus, any missing Primary Diagnosis code in 
the patient’s records also resulted in an elimination of 
the record.

1 https:// open. rsyd. dk.

https://open.rsyd.dk
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Fig. 1 Working diagram of the proposed methods
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3. Clinical records preceding the interview time of 
patients at the Relay Study.
The EHRs contained the clinical records of all 
patients who attended the Relay Study, dated between 
January 2012 to July 2016. This, however, does not 
mean that all the records would indicate the historical 
EHRs of all the patients. (Imagine a patient attending 
the Relay study in January 2014). The clinical records 
indicating the patients’ data from January 2014 to July 
2016 cannot be considered as historical data, there-
fore, the interview date stated for the Relay Study, and 
the Visit Start from the EHRs were considered for the 
purpose of identifying the historical records of each 
patient, while the rest of them were eliminated.

Applying the inclusion criteria to the integrated 
datasets resulted in a selection of 14,709 clinical 
records of 2571 patients. Among all the patients, 
2114 were AUD-Positive while 457 patients were 
AUD-Positive The final dataset was referred to 
as the AUD-Dataset in the subsequent descrip-
tions. Therefore, Regarding AUD-Dataset noises, 
including missed value and weight discrepancies, 
we agreed to exclude patients that had missing 
values (e.g., the date of an interview) or noises 
from the data set. The list, definition and data 
type of variables in the AUD-Dataset are pre-
sented in Table 1.

Fig. 2 Overview of study population

Table 1 Description of variables

Variable Description Data type Feature range

AUD Status Either positive or negative. They are the target values as well. It is considered 
as class label

Binary –

AUD-Positive = 1

AUD-Negative = 0

Gender Male or female Categorical (f1, f2)

Age Age of patient at time of Relay study Numerical (f3)

Admission Type Admitted patients or outpatients Categorical (f4, f5)

Length of Stay The amount of time the patient spent at the hospital for each visit Numerical (f6)

ED If the patient visited the emergency department prior to admission Binary (f7, f8)

ICU If the patient was transferred to the ICU Binary (f9, f10)

Action Diagnosis Reason why patients visited the hospital, scored according to the Danish 
version of ICD10 codes

Categorical (f11, f12, … f361)
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Feature selection
In classification, the primary goal of FS is to select a 
group of strongly discriminant features. This indicates 
that FS attempts to select features capable of discrimi-
nating against samples belonging to various groups 
and tests the importance of characteristics depending 
on their potential for distinguishing between different 
classes. Considering the AUD-Dataset in the form of 
N =

{(

fi, yi
)}

 , where yi is the class label defined by the 
AUDIT test, fi ∈ R

d is a d-dimensional vector, which 
consisted by fi1, fi2, . . . , fi361  feature set. Our goal in 
this study is to select the most useful feature while fi is 
said to be relevant to a class yi, if fi and yi, are highly 
correlated.

Generally, FS for classification tasks may be divided 
into filter methods, wrapper methods, and embedded 
methods [20]. In filter methods, the selected features 
present general characteristics of the dataset as well as 
measures (such as, dependency, consistency, distance, 
information, and correlation) of the features in compari-
son to the target values, and they are independent of the 
classifier [21]. The benefit of the independency of the fil-
ter methods’ FS from the classifier is that the bias of the 
ML algorithm does not interact with the bias of the FS 
method [22]. On the other hand, in wrapper methods, 
the quality of selected features is dependent on the per-
formance of the ML classifier. Wrapper methods utilize 
a particular ML classifier for searching the subset of fea-
tures and then evaluate the selected features based on the 
accuracy of the classifier. This process continues until the 
best features are selected [23]. This significantly increases 
the computational cost of the operation for datasets with 
a high number of features.

In embedded methods, candidate features are first 
identified using a filter method, and then the best features 
are selected using a wrapper method depending on the 
accuracy of the ML model [24]. Therefore, the drawbacks 
of filter and wrapper methods are addressed by utilizing 
a hybrid method. Since each method has several advan-
tages and disadvantages, determining which method 
should be used to select the best features is difficult and 
dependent upon many factors, such as predictability, 
interpretability, and computational cost. Therefore, using 
a combination of filter, wrapper, and embedded methods, 
"ensemble FS", for selecting features normally produces 
the most efficient result [25]. The goal of this method is 
to produce different feature subsets from a training data-
set and choose the best features based on the aggregation 
function.

One of the key difficulties in adapting FS methods to 
EHRs is the selection of suitable strategies to overcome 
the high dimensionality problem. The aim is to minimize 
the number of features in the AUD-dataset, develop an 

accurate predictive model to identify patients with AUD, 
and identify clinical factors related to AUD from histori-
cal EHRs.

For this purpose, a multilevel FS framework is devel-
oped examining the performance of different FS methods 
in order to achieve the goals. The resulting framework 
is shown in Fig. 1 (Feature Selection) as well as Fig. 1 in 
Appendix I; it consists of two operational levels: base 
selector level and ensemble selector level.

Base selector
The first level (base selectors) consists of five individ-
ual FS methods that use one of three approaches: filter, 
wrapper, and embedded. Each of these base FS methods 
can select features based either on feature ranking or on 
selecting a subset of relevant features. Since the goal of 
this study is to identify the clinical factors in AUD as well 
as feature reduction for prediction of AUD, feature rank-
ing techniques are chosen. These select features from a 
list of all features, ordered according to their relevance to 
the event class.

Identifying the impact of each feature on the target val-
ues is one of the vital factors. This means that in one of 
the levels, features must be ranked independently of the 
feature space. This is the task that can be done by uni-
variate statistical methods in the filter FS layer. How-
ever, besides the limitations of filter methods, applying 
FS methods with similar primary ideas tend to produce 
similar results. Thus, a wrapper method based on feature 
subset searching techniques and an embedded method 
based on pruning techniques are included in our FS 
framework. This leads us to shaping the second level as 
homogeneous and heterogeneous aggregated ensemble 
selector, since in the first level there are same kinds (fil-
ters) and different kinds of FS methods.

Filter selectors Filter FS methods usually include two 
main steps: first, features are ranked or weighted based on 
some measures evaluated either as univariate or multivar-
iate; and second, the highest-ranked features are chosen 
as the main features for building the classification model. 
Features are ranked based on a binary weight in the inter-
val [0, 1] or [− 1, 1], to each feature in which the great-
est value is the most relevant feature. The most widely 
used FS methods in classification tasks [20] are Mutual 
information (MI) [26], Chi-squared (chi2) [27], and Fisher 
score (FIS) [28]. These three filter FS methods are selected 
at this stage because they use different metrics to select 
features, so the diversity of features will be ensured.

chi2 measures the dependency between a feature f and a 
class y and can be contrasted with one degree of freedom 
to judge extremeness compared to the normal distribu-
tion. If the chi2 score is high, it indicates that a feature 
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is likely to be correlated with a class, and therefore the 
feature is selected for training. The features are ranked 
according to:

where m is the number of data records, k number of 
classes, Aij the number of samples in the ith interval, ith 
class (observed frequency), and Eij is the expected fre-
quency of Aij, and it was calculated as:

where Ri is the number of samples in the ith interval, Ci 
the number of samples in the jth class, and N is the total 
number of samples.

After calculating the chi2 value of all features, they 
were sorted in descending order. Considering the 
degree freedom (DF) df = (k − 1) · (m− 1) , the most 
important features are selected. Since in the AUD-
Dataset most of the features are having two intervals, 
(k − 1) was used as the DF for the chi2, which is equal 
to 1 in this study. Moreover, the significant level for the 
chi2 is set to be 0.05, which if the value is higher than 
this, then the feature is significant, and it is selected.

FIS is a univariate ranking method that chooses fea-
tures that give identical values to samples of the same 
class and diverse values to samples of different classes. 
With this intuition, the score for the ith feature fi is cal-
culated by the FIS as:

where μij is the mean and ρij is the variant of the ith fea-
ture in the jth class, nj is the number of records in the jth 
class, and μi is the mean of the ith feature. We selected 
the top ranked features by computing a score for each 
feature independently and then selecting the top ranked 
features with the highest scores. Although this strategy 
fails to choose features with relatively low individual 
scores, it may select features with high scores when they 
are merged together as a whole. Moreover, since by this 
approach, we evaluated features individually, FIS could 
not handle redundancy among features [29].

Mutual Information (MI) measures the depend-
ency between variables, i.e., the amount of informa-
tion one feature can give about another feature [26]. 
This approach is information theory based method 
[30] which is essential from the point of view of FS as it 
offers a mechanism for quantifying the importance of a 
feature subset with respect to the class. In MI, a feature 

(1)Chi2 =

n
∑

i=1

k
∑

j=i

(

Aij − Eij
)2

Eij

(2)Eij =
Ri.Cj

N

(3)Fi =

∑K
k=1 nj

(

µij − µi

)2

∑K
k=1 njρ

2
ij

is relevant if it has a high MI gain index. It is used to 
measure the dependence between features and class 
labels. It calculates the information gain (IG) between 
the ith feature fi and the output vector representing the 
class label Y, as:

where E(fi) is the entropy of fi and E(fi|Y) is the join 
entropy of fi after observing Y. Entropy (E) is a meas-
ure of a random variable’s uncertainty. The chance of an 
event occurring is linked to the level of uncertainty. High 
entropy implies that each event has roughly the same 
chance of occurring, while low entropy implies that each 
event has a distinct chance of occurring. The E is formally 
calculated as:

Entropy is taken as the probable value of the negative of 
the logarithm of mass likelihood. Let f and Y be two ran-
dom discrete features, as in our case in the AUD-Dataset. 
The joint entropy of f and Y, with joint mass probability 
P(fi), yj, is the sum of the uncertainty contained by the 
two features. Formally, joint entropy is calculated as:

Therefore, the best features in the AUD-Dataset are 
selected based on Eq. 4, which can share the amount of 
information shared by f and y.

Considering the main goal of this study, which is to 
identify the clinical factors in AUD as well as feature 
reduction for prediction of AUD, and having in mind 
that the size of the AUD-Dataset, which is not a big 
dataset, splitting it into a training, test, and validation 
set would lead us to lose some of the most important 
and hidden features and clinical factors related to AUD. 
Therefore, we considered the folding technique in addi-
tion to union function to calculate the most important 
features and clinical factors related to AUD. In each 
fold of this techniques, one-fifth of the AUD-Dataset 
was held up, and the filter methods were applied to the 
remaining folds. Then, collect features from every step 
stored in a data set and union subsets over all features 
selected on each step of the folding process selected as 
the features. This process is applied to each individual 
filter FS method separately.  This technique allowed us 
to avoid losing hidden features that may not have a high 
rank but are important while also lowering the risk of 
bias when compared to applying the methods to only a 
small portion of the AUD-Dataset (using train, test, and 

(4)InformationGain
(

fi,Y
)

= E
(

fi
)

− E
(

fi|Y
)

(5)E
(

f
)

= −

n
∑

i=1

p
(

fi
)

log2 p
(

fi
)

(6)E
(

fi|Y
)

= −

n
∑

i=1

n
∑

j=1

p(fi, yj). log2
(

p
(

fi, yj
))
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validation split techniques) or applying the methods to 
the entire AUD-Dataset in a single round.

Wrapper selector Wrapper FS methods are usually 
based on a search engine for searching a subset of rele-
vant features, a classifier to estimate the performance of 
the selected subset of features, and finally, a return to the 
search engine component for the next iteration of the rel-
evant subset of features. This process will result in a set 
of features with the highest estimated value for training a 
classifier, and it is called “forward stepwise selection” [31].

The search in wrapper methods is a crucial step 
and requires a state space, an initial state, a termina-
tion condition, and a search engine [23]. The size of the 
search space depends on the number of features. In this 
study, the operation size of the search for 361 features is 
O(2361), which makes it impractical to search the whole 
space exhaustively. Therefore, we used a forward greedy 
search (FGS) [32] strategy, which in principle starts with 
an empty set of features and then at each iteration a new 
feature which is not included in the current iteration is 
added independently. At each iteration, the performance 
metric is stored, and the process is not stopped even if 
the insertion of the new feature leads to a worse evalua-
tion score. Thus, the overall number of steps is equal to 

the number of features. The FGS FS, as shown in Fig. 3, 
begins with an empty feature set and adds one feature 
that achieves the greatest performance at each iteration.

Since the main task of this process must be done by 
the search engine, the classifier acts as a black box. In 
this study, the RF classifier is used as an ensemble clas-
sifier to estimate the performance of the feature subsets. 
Moreover, since the main goal of the search is to find the 
set with the highest evaluation result, a five-fold cross-
validation function is used to evaluate the performance 
of the selected features. Finally, the evaluation scores 
through the different iterations are considered, and the 
overall best result gives the subset of features to be cho-
sen. Nonetheless, the primary problem of sequential for-
ward selection is that it is incapable of removing features 
that become irrelevant as additional features are added 
since a score is not defined for each individual feature.

Embedded selector Since wrapper methods utilize a clas-
sifier to evaluate the quality of a selected subset of features 
and since the classifier must be run several times to per-
form this task, it is a computationally expensive method. To 
overcome this problem, the search for an optimal subset of 
features should be programmed into the classifier to com-
bine the subset of features with the classifier learning. This 
is done by a pruning embedded method, which first utilizes 
all features to train a predictive ML model, and then tries to 
eliminate features below the coefficient’s threshold.

In this study, Recursive Feature Elimination [33] using 
an RF classifier (RFE-RF) is adopted from Chen, Meng [34] 
study to select the best subset of features. RFE-RF is an 
embedded FS method based on feature ranking and selec-
tion of candidate subsets of features. It recursively builds 
models by eliminating the features exhibiting dependency 
and collinearity and builds models with the remaining fea-
tures until all the features in the AUD-Dataset are used.

As it is shown in Fig. 4, first the RF classifier is trained 
on the training set and the importance of each feature is 
calculated according to its contribution to the classifi-
cation performance. After that, features are ranked and 
stored in descending order according to their impor-
tance, and the least important feature is eliminated from 
the list. Then, the remaining features are used to train a 
new classifier, and the performance of the feature subset 
for the newly built classifier is calculated. This iterative 
procedure is continued until the feature set is empty. In 
the end, there will be a list of classification performances 
corresponding to each subset of features. A five-fold 
cross-validation technique is used to estimate the perfor-
mance of each trained RF classifier, and a list is generated 
to store the validation score of each candidate feature 
subset. Finally, the feature subset with the highest accu-
racy is selected as the optimal feature subset.

Fig. 3 Forward greedy search (FGS) feature selection algorithm
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Ensemble selector
The second level consists of four ensemble FS, two homo-
geneous, which are the results of the aggregated features 
according to the same kind of selectors, and two hetero-
geneous, which are the results of the aggregated features 
according to different kinds of selectors.

Homogeneous selector There are a variety of approaches 
to designing an ensemble FS [35]; we focused on the aggre-
gation functions, including union and intersection. In a 
homogeneous ensemble, the same kinds of FS methods are 
aggregated based on union and intersection. This means 
that two different strategies, including union and inter-
section are considered for aggregation of selected features 
from MI, chi2, and FIS, as shown in Fig. 1 (Feature Selection) 
as well as Fig. 1 in Appendix I. In the first homogeneous 
aggregated approach which is the Union Filter FS (UFFS) 
method, all the selected features in Mutual information, 
chi2, and FIS are used in the union of selected feature sets 
by them. More formally, the UFFS selects features by:

(7)UFFS = F(MI) ∪ F(chi2) ∪ F(FIS)

where F(Mutua information), F(fisher score) , and F(Chi-square) are 
the set of features which selected by MI, FIS, and chi2, 
respectively.

The second homogeneous aggregated approach is the 
Intersection Filter FS (IFFS), which will produce fea-
ture sets based on overlapping features that appear in all 
selected feature sets from filter FS methods. It is formally 
defined as:

Heterogeneous selector By contrast, the heterogene-
ous ensemble is generated based on aggregation through 
different kinds of FS methods. Two-stage aggrega-
tion approaches, including union and intersection, are 
employed for heterogeneous ensemble FS, which pro-
duces the final subset of features, as shown in Fig. 1 (Fea-
ture Selection) as well as Fig.  1 in Appendix I. The first 
heterogeneous aggregated approach is the Union method 
(UFS), which is used to reduce the selected features via 
RFE-RF, FGS, and UFFS, which is defined as:

The second heterogeneous aggregated approach is the 
intersection method (IFS), which is used to reduce the 
number of features based on the features that appear in the 
overlap between RFE-RF, FGS, UFFS, and IFFS. Due to the 
disadvantage of FGS which the ranking of features is not 
specified, we were not able to rank the selected features by 
heterogenous selectors. The IFS is formally defined as:

As a result, there are four ensemble selectors for perfor-
mance comparison as well as five single selector meth-
ods. There are three subsets based on filter FS (chi2, MI, 
FIS), one wrapper FS (FGS), one embedded FS (RFE-RF), 
two ensembles based on filter FS (UFFS and IFFS), and 
two ensembles based on single FS (UFS and IFS), and the 
baseline feature subset without FS. Finally, the selected 
features from the best FS methods are ranked based on 
the overall mean of their importance and will be present 
amongst the top clinical factors related to the prediction 
of AUD using EHRs.

Data pre‑processing modeling and evaluation
Data pre‑processing
In the AUD-Dataset, the categorical data (see Table  1) 
was encoded into numerical values, as ML algorithms 
only recognize number values as variables of input [36]. 
One of the solutions commonly used to solve this issue 
is to transform a categorical variable into a series of 

(8)IFFS = F(MI) ∩ F(chi2) ∩ F(FIS)

(9)UFS = UFFS ∪ IFFS ∪ REE − RF ∪ FGS

(10)IFS = UFFS ∩ IFFS ∩ REE − RF ∩ FGS

Fig. 4 The procedure of the recursive feature elimination (RFE) using 
random forest (RF) classifier (RFE-RF)
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binary features using a one-hot encoding technique. 
This method transforms a single variable with n observa-
tions and d distinct values into d binary features with n 
observations each, where each observation indicates the 
presence (1) or absence (0) of the dichotomous binary 
variable. Also, to obtain a common scale for all variables, 
the traditional normalization technique was used.

As shown in Fig.  2, the AUD-Dataset, consisting of 
2114 patients in the majority class and 457 in the minor-
ity class, is unbalanced, as shown in Fig. 2. Based on the 
definition of an imbalanced class distribution proposed 
by Zhu, Guo [37], the AUD-Dataset was imbalanced in 
classes where the imbalanced class ratio was 4.9 and the 
majority rate was 83%. Synthetic Minority Oversampling 
(SMOTE) [38] is a common sampling approach to deal 
with an imbalanced class problem. This is a technique in 
which oversampling of the minority class is accomplished 
by producing synthetic samples. However, because some 
majority class samples might be invading minority class 
space, class clusters in this technique might not be well 
defined. To overcome this limitation, in this study, we 
employed SMOTETomek [39], which is a hybrid sam-
pling approach. This approach is a combination of the 
SMOTE and the Tomek Link method in the form of a 
pipeline. In this approach, first Tomek Link does the 
under-sampling of the majority class by eliminating the 
noises, and then SMOTE does the over-sampling of the 
minority class to arbitrarily create records and expand 
minority class records.

Data modeling
Using supervised ML (SML) algorithms, the selected 
features are used to build the AUD classification mod-
els. In this study, the SML algorithms learn the clas-
sification rules from the selected features. The most 
commonly employed discriminatory SML algorithms in 
clinical decision support, i.e., support vector machine 
(SVM), k-nearest neighbors (KNN), and RF [40, 41], were 
equipped to analyze all selected features and classify 
them into two classes, AUD-Positive and AUD-Negative. 
Since one of the aims of this study is to select features 
for prediction tasks, it is necessary not to focus on a lin-
ear classifier but to attempt to map the data to a higher 
dimensional space where the classification is more accu-
rate. The performance of SVM differs according to kernel 
selection, soft margins, and selection parameters. Three 
parameters were examined: kernel types, the C value, 
and γ, via an RBF kernel with γ ∈ [0.001, 0.01, 0.1, 1, 10] 
and C ∈ [0.1, 1, 10]. Moreover, the effectiveness of the 
KNN relies on the value of K, which in this study lies in 
the range of 1 to 10. RF is an ensemble learning method 
that classifies a new instance by combining a variety of 

previously constructed decision trees. In this study, the 
number of trees is set to be 50 for all RF classifiers. The 
AUD-Dataset is used to construct the predictive models, 
using a fivefold cross-validation process to set the hyper-
parameters of the SVM and KNN classifiers. The best 
hyperparameter values for each classifier are identified 
from a set of values. Table 2 shows the final parameters 
that are used in development of predictive models.

Model evaluation
Using the receiver operating characteristics curve (ROC) 
and the area under the ROC curve (AUROC), the area 
under the precision-recall curve (AUPRC), Precision, 
Recall, F1-Score, and overall predictive accuracy (ACC), 
the predictive performances of the constructed classifi-
ers were evaluated. Through seeking values for true posi-
tive (TP), false positive (FP), false negative (FN), and true 
negative (TN), the values of these performance metrics 
can be determined.

• Predictive Accuracy (ACC)
 The most popular measure of the classifier’s per-

formance is ACC, which evaluates the algorithm’s 
overall effectiveness by calculating the likelihood 
of the class label’s actual value [42]. Measuring the 
predictive accuracy is the fastest way to understand 
whether the predictive model has been trained cor-
rectly and what the overall performance is. However, 
it is not the best option to be considered since it can-
not give detailed information about the performance 
of the classifier. The ACC ratio is defined as:

• Precision
 Precision is a performance metric that determines 

how many of the records that were expected to be 
positive were truly positive. The main aim of look-
ing at this number is to decrease the number of false 
positives. Precision can be defined as follows:

(11)Accuracy =
TP + TN

TP + TN + FP + FN

(12)Precision =
TP

TP + FP

Table 2 Hyperparameters of the models

Model Hyperparameters

Support vector machine kernel = RBF, C = 10, gamma = 0.001

Random forest Number of DT = 50, max depth = 30

K-nearest neighbor Number of k = 7
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• Recall (True Positive Rate)
 Recall or True Positive Rate (TPR) describes the 

sensitivity of the classifier. The number of positive 
samples captured by accurate forecasts is meas-
ured by Recall. When all positive samples must be 
identified, and all false negatives must be avoided, 
Recall is considered as a performance metric. It is 
defined as follows:

• F1-Score
 The F1-Score is calculated by averaging Precision 

and Recall. As a result, it shows the performance 
of the classifier in detecting positive records. This 
means that the classifier performs best in the posi-
tive class if the F1-Score is high. For binary classifi-
cations based on imbalanced datasets, F1-Score can 
be a more appropriate metric to be considered than 
accuracy.

The AUROC is a single number that measures the 
total area underneath the ROC curve and thereby 
summarizes the performance of the classifiers, as 
long as we assume that FP and FN are equal mis-
takes. In most medical situations, FN is considered 
more serious as these people are not identified by 
the test. Individuals given an FP classification will 
be tested further, which provides the opportunity to 
change the classification. ROC curve visualizes the 
trade-off between TPR and False Positive Rate (FPR) 
by displaying them for various threshold settings 
(cutoff points). In particular, the ROC curve attempts 
to map the cumulative distribution function of a 
defined probability distribution in the y-axis against 
the x-axis, for both true and false identified events. 
In this curve, the y-axis is the TPR, which is defined 
in Eq. 13, and the x-axis is the FP rate which is calcu-
lated as:

The AUPRC is another widely used performance 
metric in binary classification problem. It is a thresh-
old-independent measure that estimates the area 
under a curve formed by a trade-off between sev-
eral characteristics of performance as the model’s 
prediction threshold changes. In the AUPRC curve, 
Recall is on the x-axis and Precision is on the y-axis. 
In imbalanced datasets, such as AUD-Dataset, the 

(13)Recall(True Positive Rate) =
TP

TP + FN

(14)F1 Score = 2×
Precision× Recall

Precision+ Recall

(15)False Positive Rate =
FP

TN + FP

AUPRC is more informative than AUROC [43]. The 
AUPRC is also called the average positive predictive 
value or the average precision [44].

The performances of all classifiers are evaluated using 
tenfold cross-validation. The k-fold cross-validation pro-
cedure is a frequently used type of evaluation setup that 
is intended to minimize overfitting in a predictive model, 
especially in our cases where  the quantity of data avail-
able is restricted. This approach reduces the level of 
prediction error deviation; maximizes the usage of data 
for both train and test without generating overfitting 
or overlapping testing and validation set; and protects 
against experimental theory provided by arbitrarily split-
ting data [45, 46].

In the proposed setting for this study, the cleaned 
AUD-Dataset is divided into k-equal sizes, and k − 1 
AUD-Dataset is coupled for the training of the classifiers, 
while the kth fold is reserved for testing the classifiers. 
The classifier validation procedure is done 10 times. This 
indicates that 90% of the AUD-Dataset is utilized to train 
the proposed model, while only 10% of the AUD-Data-
set is used to test the model. This procedure is repeated 
k = 10 times and an average result is obtained at the com-
pletion. Stratified sampling is utilized during cross-vali-
dation to ensure uniform and consistent folds. It should 
be noted that the SMOTETomek and each ML algorithm 
are used internally to a stratified cross-validation [47] 
through a pipeline provided by [48].

Results and discussion
The research population consisted of 2571 patients 
aged 18 to 101  years who, between January 2012 and 
June 2016, had visited OUH at least once. Among all, 
457 individuals are categorized as AUD-Positive, and 
2114 are categorized as AUD-Negative, and about 46% 
of patients are male. Throughout the entire data col-
lection span, 14,079 health records with at least one 
record per patient were recorded. For an AUD-Neg-
ative patient, the longest hospital stay was 5574  min 
(a 63-year-old male). The baseline characteristics of 
patients and the AUD-Dataset are presented in Table 3. 
As it is mentioned in the previous chapter and pre-
sented in Table 1, there are 361 features, including 530 
different ICD-10 codes, given as the action diagnosis 
(AD) amongst all records. The most commonly used 
ADs were DM16 (Coxarthrosis (arthrosis of hip), 902 
occurrences), DM17 (Gonarthrosis (arthrosis of knee), 
842 occurrences), DT84 (Complications of internal 
orthopaedic prosthetic devices, implants and grafts, 
597 occurrences), DI63 (Cerebral infarction, 496 occur-
rences) and DM19 (Other arthrosis, 422 occurrences) 
in the AUD-Dataset. The top 20 AD in the AUD-dataset 
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can be seen in Table 4. Using a one-hot-encoding tech-
nique to convert all categorical variables to binary vari-
ables generated 361 features. Variables such as gender 
and main hospital departments were also converted to 
binary numbers. Considering all the variables described 
in Table  1, 361 features from the pre-processed AUD-
Dataset are used in selecting the best subset of features 
for prediction of AUD. The two groups of FS methods, 
the number of features for each FS method, and the 

accuracy of the classification models are presented in 
Table 5.

Base feature selection
The first part of Table  5 shows the effect of the chosen 
feature selection methods on the classification perfor-
mance of SVM, KNN, and RF. As seen, the baseline, 
which contains all 361 features, has the worst prediction 
accuracy-only 80% using the SVM classifier. In contrast, 
the RFE-RF embedded method with its 131 features 
could achieve 89% accuracy with SVM and 93% using 
RF. Among all filter FS methods, only MI did not reduce 
the features as much as the other base FS methods. MI 
reduced the number of features from 361 to 172, which 
resulted in a slight improvement in classification perfor-
mance. The chi2 and FIS reduced the number of features 
from 361 to 106 and 107 respectively., however, none 
of them could improve the classification performance. 
In terms of the number of selected features, FGS as the 
wrapper method reached a maximum accuracy of 88% in 
the  66th iteration using the RF classifier. This means that 
the best accuracy was recorded when 66 features were 
selected using this method. This amount of elimination 
by FGS resulted in the worst classification performance 
among base selectors, lower than baseline using the RF 
classifier. This is most likely due to ‘over selection’ in 
which too many informative features are eliminated. 

Table 3 Characteristics of study population

Variable AUD positive AUD negative

n % n %

Patients 457 17.7 2114 82.3

Gender

 Female 122 4.7 1256 48.8

 Male 335 13.2 858 33.3

Age

 18–40 109 4.2 260 10

 41–60 174 6.7 507 19.7

 61–80 165 6.4 1007 39.1

 81 + 9 0.3 340 13.2

Clinical records 2366 16.8 11,713 83.2

ED 214 1.51 744 5.2

ICU 26 0.2 15 0.1

Table 4 Frequency of top 20 action diagnosis among all patients

No Action diagnosis Description Freq

1 DM16 Coxarthrosis 902

2 DM17 Gonarthrosis 842

3 DT84 Complications of internal orthopaedic prosthetic devices, implants and grafts 597

4 DI63 Cerebral infarction 496

5 DM19 Other arthrosis 422

6 DS72 Fracture of femur 406

7 DK50 Crohn disease 390

8 DZ03 Medical observation and evaluation for suspected diseases and conditions 348

9 DR29 Other symptoms and signs involving the nervous and musculoskeletal systems 347

10 DK51 Ulcerative colitis 337

11 DS82 Fracture of lower leg, including ankle 330

12 DQ65 Congenital deformities of hip 297

13 DI69 Sequelae of cerebrovascular disease 275

14 DS42 Fracture of shoulder and upper arm 275

15 DK70 Alcoholic liver disease 269

16 DK91 Postprocedural disorders of digestive system, not elsewhere classified 247

17 DS52 Fracture of forearm 240

18 DT93 Sequelae of injuries of lower limb 240

19 DK86 Other diseases of pancreas 238

20 DT92 Sequelae of injuries of upper limb 223
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Overall, RFE achieved the best results among all base FS 
methods, both in terms of the low number of selected 
features as well as the accuracy. As can be seen in Table 5, 
RFE reduced the number of features to 131 and still 
achieved better accuracy than the other classifiers.

Ensemble feature selection
The second part of Table  5 shows the influence of each 
ensemble FS method on the classification performance 
of SVM, KNN and RF. As can be seen, the performance 
of the ensemble FSs based on the union of feature sets 
perform better than those based on intersection. In par-
ticular, the best classification model is the result of UFFS 
method, which achieved a classification accuracy of 93% 
based on the RF classifier. This method is made by union 
of the filter FS methods (MI ∪ chi2 ∪ FIS), which reduced 
the number of features from 361 to 276 features. In terms 
of feature reduction, IFS reduced the number of features 
to 27, however, with reduction of too many features it 
resulted in ‘over selection’ and the worst accuracy per-
formance among all models and even below the baseline 
accuracy of 80% for the SVM classifier. The results indi-
cate that ensemble feature selection through the union 
aggregation method is unlikely to cause over selection 
problems, with the least number of features being elimi-
nated leading to a good final classification performance. 
By contrast, using the intersection combination method 
eliminates too many features, thereby causing over selec-
tion problems, and consequently decreasing the final 
classification performance.

Classification model performance
Accuracy is usually considered the most important 
technique for evaluating ML algorithms. As mentioned 
above, we used three classifiers to compare the perfor-
mance of the proposed FS method. As can be seen in 
Table 5, the accuracy of Baseline models is 80%, 86%, and 
90% for SVM-RBF, KNN, and RF classifiers, respectively, 
with 361 features. Looking at the accuracy of all classifi-
ers based on the nine developed FS methods, the RFE-RF 
as a based selector, IFFS and UFS as ensemble selectors 
demonstrated an excellent accuracy of 94%, 94%, and 96% 
for the RF classifier, respectively. The results of the meth-
ods on the KNN classifier also show that the RFE-RF as 
a based selector, IFFS, and UFS as ensemble selectors 
achieved the best performance among all other methods.

As we mentioned earlier, Recall or TPR, is an impor-
tant performance evaluation matrix that describes the 
sensitivity of the classifier. Recall is important because 
it shows the AUD-Positive patients are accurately classi-
fied. As it is shown in Table 5, the Recall scores for the 
Baseline classifiers are very poor, with 30%, 49%, and 65% 
for SVM-RBF, KNN, and RF classifiers, respectively. A 
very poor Recall score (just over 17%) has been generated 
and was obtained with the SVM-RBF classifier based on 
the IFS selector, while the RF achieved the highest recall 
score (92%) when applied to the UFS 272 features. RF 
also had Recall score of 85% and 81% based on REF-RF 
and UFFS respectively. Among the KNN models, the best 
Recall scores were also achieved based on the features 
selected by UFS, UFFS, and RFE-RF for scores of 75%, 
73%, and 74%, respectively.

Figure  5 shows the ROC curves from each classifier 
trained on the result of each FS methods and the full fea-
ture set (Baseline) and reports the AUROC in each case. 
In ML, ROC curves are used to validate the accuracy 
of predictive models by representing the TP rate versus 
the FP rate [49]. In dichotomous diagnostic tests (posi-
tive and negative tests), ROC plays a vital role by meas-
uring the inherent validity of a test based on TP and FP 
rate [50]. The AUROC gives an effective measure that 
represents the area under the ROC curve, and it is a way 
to summarize the quality of a diagnostic models’ per-
formance. In the literature, an AUROC between 0.9 to 
1.0 is regarded as excellent [51]. As can be seen in Fig. 5 
(Baseline), the AUROC for SVM-RBF classifier trained 
by baseline features was 0.679 which is the worst result. 
The RF classifier used on the RFE-RF output achieved 
an AUC value of 0.975 (Fig. 5, ROC of RFE), which is the 
best among all base FS models. On the other hand, the 
RF classifier for the UFFS method, which trained by the 
selected features from our proposed ensemble methods, 
achieved an AUC of 0.982, which is the best performance 
among all classifiers. In contrast, the SVM-RBF classier 
which trained by selected features from the IFS model 
achieved an AUC rate of 0.624 which is the worst per-
formance in comparison to other classifiers, which are 
trained by features from ensemble FS methods.

Figure  6 shows the Precision-Recall curves from each 
trained classifier trained based on the selected features 
by the FS methods as well as the full feature set (Baseline 
Model). It should be noted that the baseline of AUPRC (the 

(See figure on next page.)
Fig. 5 Result ROC curve of random forest (RF), support vector machines (SVM), and k-nearest neighbors (KNN) based on selected features using 
base feature selection methods including Chi-square, Fisher-score, mutual information, recursive feature elimination (RFE), and forward greedy 
search (FGS), and based on selected features using ensemble feature selection methods including union filter feature selection (UFFS), intersection 
filter feature selection (IFFS), union feature selection (UFS), and intersection feature selection (IFS), as well as baseline model
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Fig. 5 (See legend on previous page.)
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light blue dotted line in each curve) is equal to the fraction 
of AUD-Positives. Since the AUD-Dataset consists of about 
17% AUD-Positive and about 83% healthy examples, the 
baseline AUPRC is 0.17. As it is shown in Fig. 6, the best 
models were trained based on the selected features through 
our proposed UFS method. Considering 272 features 
selected by UFS, a notable result of over 89% was obtained 
for AUPRC with the RF model, which is the highest among 
all developed models. When RF was applied to the 131 fea-
tures of RFE-RF and the 223 features of UFFS, both classifi-
ers achieved an AUPRC of approximately 84%, which is the 
second-best performance among all. KNN also obtained a 
good AUPRC score of 77%, 76%, and 74% for UFS, RFE-RF, 
and UFFS, respectively. Among all the developed models 
based on SVM-RBF, only RFE-RF and UFS could achieve a 
reasonable AUPRC score of 70% and 72%, respectively. One 
of the most widely used and relatively new predictive per-
formance metrics to evaluate the performance of classifiers 
in the field of medical research is the precision-recall curve, 
which represents the Recall versus Precision for all possible 
thresholds. Several studies suggest that the AUPRC is more 
informative than the ROC curve and AUROC for evaluat-
ing the risk model’s prediction performance for an imbal-
anced class distribution [52], such as in this study where 
the AUD-Positive rate is low. Since the AUPRC is the area 
under the curve of the plot of Precision versus Recall across 
thresholds, and Precision is based on the records that were 
expected to be AUD-Positive and were truly AUD-Positive, 
it does not incorporate the number of TN.

In this section, we evaluated the performance of ML 
algorithms before and after providing a solution to the 
high dimensionality issue by examining various FS meth-
ods. Each FS method, as explained in "Feature Selection" 
section, focuses on a special metric in order to reduce 
the number of features and improve the predictive accu-
racy. Along with AUROC and AUPRC, the performance 
of models was evaluated based on Precision, Recall, and 
F1-Score. Our results show that in terms of classification 
performance, 131 features selected by the RFE-RF among 
the other base selectors could achieve the best performance 
when trained with RF. Among the proposed ensemble 
selectors, the UFS and UFFS methods performed the best 
when trained with the RF classifier. Overall, the predictive 
performance of all models, except those based on FGS and 
IFS, improved in comparison to the Baseline models based 

on all features. Considering the predictive preferences and 
disadvantages of RFE and FGS [53], such as computational 
costlier than filter methods, complexity, greater execution 
time, and etc., our proposed UFFS method can be consid-
ered as the best FS method among all those that were used 
in this study.

Clinical risk factors
As can be seen in Table 5, UFFS significantly reduced the 
number of features from 361 to 233, and it could like-
wise improve the classification performance. The features 
selected by UFFS are ranked based on their importance, 
and the top 20 are presented in Table 6. RF can rank fea-
tures based on their Gini index (GI) [54] in which higher 
values indicate more important features. It was found 
that age, gender, and length of stay at the hospital are the 
most important factors for the identification of individu-
als with AUD. In terms of ADs, DK50 (Crohn disease), 
DK86 (Other diseases of pancreas), DK70 (Alcoholic liver 
disease), DZ03 (Encounter for medical observation for sus-
pected diseases and conditions ruled out), and DS82 (Frac-
ture of lower leg, including ankle) are the top five clinical 
factors. DM19 (Another arthrosis), D74 (Hepatic fibrosis), 
DM16 (Osteoarthritis of hip), DK29 (Gastritis and duo-
denitis), DT93 (Sequelae of injuries of lower limb), and 
DI69 (Sequelae of cerebrovascular disease) are ADs with 
the same GI in the list of important features. Compar-
ing their ranks (Table  6) with their frequency among all 
patients (Table 4), it can be seen that although DM16 has 
the highest frequency among all diagnoses, its impact on 
the final predictive model is not that high. This is due to its 
frequency among AUD-Positive patients, which is much 
lower compared to AUD-Negative. Some clinical records 
with ICD-10 labels, such as DZ03 "Medical observation 
and evaluation for suspected diseases and conditions" have 
a high impact on our final predictive model but may have 
no informative value for medical staff. In the literature, risk 
factors such as gender and age have been discovered in 
many studies [14, 55]. However, no studies looked for clini-
cal and risk factors for AUD from EHRs. Our findings show 
that, based on the AUD-Dataset, diseases in the group of 
digestive organs, bones, muscles and connective tissue, and 
nervous systems seem to be highly correlated with the pre-
diction of patients with AUD.

Fig. 6 Result precision-recall curve (PRC) of random forest (RF), support vector machines (SVM), and k-nearest neighbors (KNN) based on selected 
features using base feature selection methods including Chi-square, Fisher-score, mutual information, recursive feature elimination (RFE), and 
forward greedy search (FGS), and based on selected features using ensemble feature selection methods including union filter feature selection 
(UFFS), intersection filter feature selection (IFFS), union feature selection (UFS), and intersection feature selection (IFS), as well as baseline model

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Gender disparity
Historically, alcohol consumption seems to have been 
a male-dominated behavior, with males drinking more 
alcohol and inflicting more alcohol-related harm on 
themselves and others than females [56]. In 2016, a 
report showed that three million deaths caused by AUD 
comprised 77% of male [57]. This is because female 
drinkers consume around one-third of the total quan-
tity of alcohol consumed than male drinkers each year 
[57]. It was also reported that more female had regis-
tered driving under the influence of alcohol in 2017 
[56]. Nevertheless, the AUD disparity between males 
and females is narrowing [56]. The growing prevalence 
of AUD among females has been a cause for worry in 
recent years, since females have been exposed to the 

negative health and behavioral consequences of alco-
hol consumption sooner and at a lower rate than males 
[58]. There were various factors that differentiated AUD 
by gender. Generally, females were smaller than males, 
with a lower total body water level and a greater total 
body fat percentage. As a result, alcohol is absorbed 
more quickly by female’s bodies. Females’ blood alco-
hol consumption also increases more rapidly and stays 
higher for a longer period of time than males’ [59]. Fur-
thermore, McCaul, Roach [59] highlighted that gender 
dissimilarities exist in brain structure, neurochemistry, 
and function.

Thus, it is necessary to investigate the fact that gender 
disparity should be taken into account when building 
predictive models for the identification of patients with 
AUD. In this regard, we extended our analysis to compare 
the performance of the predictive models and the diver-
sity of features between female and male patients. First, 
the AUD-Dataset were divided into two different datasets 
based on the gender of patients. The other preprocess-
ing steps were inherited from "Data Gathering" section. 
Our proposed UFFS FS method, which was described 
in "Homogeneous Selector" section, was then employed 
to reduce the number of features in the AUD-Dataset. 
After that, three ML algorithms, including SVM, KNN, 
and RF, were trained and evaluated based on the methods 
in "Data Pre-Processing Modeling and Evaluation" sec-
tion for each group of gender separately.

As can be seen in Table 7, our proposed UFFS FS meth-
ods could reduce the number of features from 359 to 218 
and 233 for Female and Male patients, respectively. In 
terms of predictive accuracy, RF achieved the best accu-
racy in both datasets, whereby it achieved 97% and 90%, 
respectively, for Female and Male patients. Overall, the 
trained models for Female patients had better accuracy 
than Male patients. Figure 7 shows the ROC and Preci-
sion-Recall curves of the classifiers which were trained 
for each group of patients based on the selected features. 
This also indicated that Female patients’ classifiers had 
achieved better performance than Male patients with 
AUROC and an AUPRC of 0.99 and 0.88, respectively, for 
the RF classifier.

Table 6 Top 20 important features extracted by RFE-RF, ranked 
by GI

No Feature Description Ranking

1 Age Age at the relay study 0.411

2 LOS Length of stay at the hospital 0.093

3 Male Gender 0.037

4 Female Gender 0.034

5 DK70 Alcoholic liver disease 0023

6 DK50 Crohn’s disease 0.013

7 DK86 Other diseases of pancreas 0.012

8 DZ03 Encounter for medical observation for sus-
pected diseases and conditions ruled out

0.01

9 ED Visitor of Emergensy Department 0.01

10 DS82 Fracture of lower leg, including ankle 0.009

11 Admission Admited to the hopspital 0.009

12 Outpatient Ambulatory care 0.009

13 DM19 Another arthrosis 0.008

14 DK74 Hepatic fibrosis 0.008

15 DM16 Osteoarthritis of hip 0.008

16 DK29 Gastritis and duodenitis 0.008

17 DT93 Sequelae of injuries of lower limb 0.008

18 DI69 Sequelae of cerebrovascular disease 0.008

19 DK26 Duodenal ulcer 0.007

20 DG56 Mononeuropathies of upper limb 0.007

Table 7 Number of feature and overall accuracy of models

Gender Number of features Machine leaning methods

Support 
vector 
machine

K‑nearest neighbor Random forest

P R F1 ACC P R F1 ACC P R F1 ACC 

Female From 359 to 218 0.88 0.52 0.66 0.95 0.78 0.64 0.70 0.95 0.91 0.83 0.87 0.97

Male From 359 to 233 0.81 0.57 0.67 0.84 0.76 0.69 0.71 0.85 0.81 0.82 0.82 0.90
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The important features of each group of patients 
which were selected by the UFFS FS methods were then 
ranked based on their GI, as noted by the RF classi-
fier. This is presented in Tables  8 and 9 for Male and 
Female patients, respectively. The results indicated that 
apart from Age and Length of Stay, the ranks of other 
features were very different. In terms of AD among the 
group of Male patients, DK86 (Other diseases of pan-
creas), DK50 (Crohn’s disease), K70 (Alcoholic liver 
disease), DG56 (Mononeuropathies of upper limb), 
and DK29 (Gastritis and duodenitis) were identified 
as the top five clinical factors. In comparison, the top 
five AD among Female patients were DK70 (Alcoholic 
liver disease), DK74 (Hepatic fibrosis), DA41 (Other 
sepsis), DZ03 (Observation for suspected tuberculo-
sis), and DI63 (Cerebral infarction due to thrombosis 
of precerebral arteries). Among the top 20 important 

features, four Ads, including DK50 (Crohn’s disease), 
DK70 (Alcoholic liver disease), DM19 (Another arthro-
sis), and DS82 (Fracture of lower leg, including ankle) 
were noted among Male and Female patients. Consid-
ering Age, Length of Stay, Admission type (Outpatient 
and Admission), and Emergency Department as other 
common features among the Female and Male patients, 
we then deduced that more than 50% of high ranked 
features were different in the two groups of patients.

Women with AUD-Positive had been given fewer 
considerations than man, to some extent, because 
women were less exposed to AUD risk factors [58]. 
Although the frequency of AUD-Positive was lower 
in women, as shown in Fig. 2, it has been well proven 
that women experience more serious biopsychosocial 
effects of both short-term and excessive heavy alco-
hol usage than men [58, 60, 61]. Moreover, women 

Fig. 7 Result ROC and precision-recall curve of random forest (RF), support vector machines (SVM), and k-nearest neighbors (KNN) based on two 
dataset female patient and male patients
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Table 8 Top 20 important features extracted from male patients

No Feature Description Ranking

1 Age Age at the Relay study 0.456

2 LOS Length of stay at the hospital 0.121

3 DK86 Other diseases of pancreas 0.015

4 ED Visitor of Emergency Department 0.014

5 DK50 Crohn’s disease 0.013

6 DK70 Alcoholic liver disease 0.011

7 Outpatient Admitted to the hospital 0.011

8 Admission Ambulatory care 0.011

9 DG56 Mononeuropathies of upper limb 0.009

10 DK29 Gastritis and duodenitis 0.008

11 DG40 Epilepsy 0.008

12 DI61 Intracerebral haemorrhage 0.008

13 DG20 Parkinson disease 0.007

14 DK26 Duodenal ulcer 0.007

15 DM19 Another arthrosis 0.007

16 DT93 Sequelae of injuries of lower limb 0.007

17 DT92 Sequelae of injuries of upper limb 0.007

18 DR29 Other symptoms and signs involving the nervous and musculoskeletal systems 0.007

19 DS46 Injury of muscle and tendon at shoulder and upper arm level 0.007

20 DS82 Fracture of lower leg, including ankle 0.007

Table 9 Top 20 important features extracted from female patients

No Feature Description Ranking

1 Age Age at the relay study 0.481

2 LOS Length of stay at the hospital 0.094

3 DK70 Alcoholic liver disease 0.037

4 DK74 Hepatic fibrosis 0.021

5 DA41 Other sepsis 0.020

6 ED Visitor of Emergency Department 0.016

7 DZ03 Observation for suspected tuberculosis 0.014

8 Outpatient Admitted to the hospital 0.014

9 DI63 Cerebral infarction due to thrombosis of precerebral arteries 0.013

10 Admission Ambulatory care 0.012

11 DS82 Fracture of lower leg, including ankle 0.010

12 DI69 Sequelae of cerebrovascular disease 0.010

13 DK90 Intestinal malabsorption 0.010

14 DS53 Dislocation, sprain and strain of joints and ligaments of elbow 0.008

15 DK76 Other diseases of liver 0.007

16 DM19 Another arthrosis 0.007

17 DM24 Loose body in joint 0.007

18 DK50 Crohn disease [regional enteritis] 0.007

19 DK21 Gastro-oesophageal reflux disease 0.007

20 DS62 Fracture of first metacarpal bone 0.007
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progressed faster, from being drinkers to being alco-
hol dependence [62]. They also faced higher rates of 
internalizing disorders when compared to men [63]. 
In their study, Chang [64] noted that there was a lack 
of an alcohol screening tool with high specificity and 
sensitivity for pregnant women. There were a lot more 
evidence which showed the need to have a separate 
identification test for each group of gender [59]. In 
this study, we also showed that the clinical risk factors 
related to prediction of AUD among Female and Male 
patients were different, based on their contributions 
to the RF models. Results indicated that the developed 
models performed with better predictive accuracy for 
Female patients than Male patients.

Perspectives
Problematic alcohol use has a high impact on the indi-
viduals’ health [65–67] and mortality [3]. The first step 
in preventing diseases and deaths attributable to alcohol 
is identifying and acting on the signs. At least in Den-
mark, identification of patients with alcohol use disor-
der may be problematic [68]. Hospital admissions form 
a logical opportunity for acting on signs of alcohol use 
that directly or indirectly have an impact on the health of 
the patient. Between 17 and 25% of hospitalized patients 
drink above the limits recommended by the health 
authorities or screen positive for problematic use [69, 
70], and when problematic alcohol use is not addressed, 
patients are shown to have high a risk of developing fur-
ther alcohol-related conditions [71]. It is, however, also 
well-known that alcohol problems are stigmatized [72] 
and that healthcare staff are reluctant to ask patients 
about their alcohol habits [73]. Furthermore, this view 
of problematic alcohol use may influence the focus and 
care of this patient group [74]. Reasons for not address-
ing problematic alcohol use are many and include lack of 
time and uncertainty about what to look for [75]. Thus, 
using the presented models as the basis for the devel-
opment of a decision support system (DSS) for signs of 
AUD that:

• works without adding time-consuming additional 
screening procedures to the staff ’s workload

• is not influenced by the staff ’s subjective attitude
• is grounded in data that is already present in the EHR
• can predict AUD among patients with a high level of 

Precision could have a huge impact on public health.

A DSS can make it easier for medical staff to iden-
tify and act: to talk with the patients already identified 
to be at risk about what they need to do to recover and 
stay healthy. Ideally, when a patient attends the emer-
gency department, is admitted to hospital, or is seen in 

an outpatient consultation, the DSS will alert the staff if 
the information already stored in the EHR indicates that 
alcohol may be a complicating factor to the current situa-
tion. An alert may be the information needed for the staff 
in order to address the issue of alcohol where relevant, 
in particular since the patients themselves are normally 
positive towards discussing their alcohol use with health 
care professionals [75]. Such knowledge will enable medi-
cal staff to talk to the patient at risk about drinking habits 
and provide the patients with information on how prog-
nosis can be improved by reducing the intake of alcohol, 
and referral to relevant treatment if needed. This could 
be useful not only for hospital staff but also for general 
practitioners.

In addition to a potential DSS that helps hospital staff 
to address and intervene in relation to alcohol prob-
lems where relevant, our study has further perspectives. 
Transference of the technology and methods from the 
present study also have obvious potential in a range of 
similar conditions where screening of EHR data helps 
staff to predict clinically-relevant events or complications 
that may be prevented or mitigated if the staff reacts to 
early signs. Although this field is relatively new and data 
on clinical, workload, and efficiency outcomes are sparse, 
DSSs seem to improve the targeting of health care meas-
ures such as preventive services, clinical studies, and 
therapies [76].

Conclusion
The large amount of information about patients in EHRs 
causes dimensionality challenges for ML studies and 
difficulties in the identification of clinical factors. Clini-
cal factor discovery is important to the study of addic-
tions such as AUD. Dimensionality reduction has been 
an important and challenging step toward having a via-
ble and accurate ML-based application. FS is the task of 
removing irrelevant and redundant information from the 
dataset, and it can be done in many ways. FS for classifi-
cation handles high dimensionality by selecting the most 
relevant subset of features to the target value. Besides fea-
ture reduction, a powerful FS method can suggest impor-
tant clinical risk factors related to disorders like AUD. 
Our study presented a multilevel FS framework which 
consists of the two operational levels, base and ensemble 
selectors, which aims to:

• Reduce the high dimensionality in an EHR dataset.
• Develop several predictive models to detect patients 

with AUD and compare their performance.
• Identify clinical factors related to prediction of AUD 

from a historical EHR dataset collected from AUD-
Positive and AUD-Negative patients of OUH.
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• Investigate the diversity of clinical factors among 
female and male patients and gender disparity based 
on ML techniques.

The base selector level consists of five FS methods 
that use either filter, wrapper, or embedded approaches. 
The filter methods are three ranking univariate 
approaches: chi2, FIS, and MI. The wrapper method 
uses a selector that benefits from a forward-greedy 
search engine and a classifier to evaluate the perfor-
mance of selected subsets. The embedded method, 
which in principle is a combination of filter and wrap-
per methods, is based on RFE. The ensemble selector 
level consists of four approaches based on heterogene-
ous and homogeneous ensembles through aggregation 
functions, union and intersection, which benefit from 
the results of the base-level selectors. Two traditional 
ML methods, including SVM and KNN, and RF as the 
ensemble ML method, are employed to evaluate the 
classification performance of each FS method output.

Our experimental results show that (1) we improved 
the accuracy of the predictive models by using the pro-
posed FS methods, (2) we identified meaningful and 
important clinical factors related to prediction of AUD, 
and (3) we proved that gender disparity must be con-
sidered when developing ML techniques and identi-
fying clinical factors related to prediction of AUD. In 
terms of feature reduction, RFE reduced the number of 
features from 361 to 131, and this improved the perfor-
mance of the predictive models. However, it has several 
disadvantages. Therefore, our proposed UFFS method, 
which could reduce the number of features to 233 and 
improve classification performance to an AUROC of 
0.98 and an AUPRC of 0.84, has been chosen as the best 
method. This method used a smaller number of reduc-
tions, which enables us to identify more informative 
clinical and risk factors related to prediction of AUD in 
medical staff for the prognosis and diagnosis of AUD.

We have identified that diseases related to digestive 
organs, bones, muscles and connective tissue, and nerv-
ous systems, and also the length of stay at the hospital, 
are highly correlated to the development of a predic-
tive model to identify patients with AUD, though not 
as much as age and gender. However, age and gender 
are common features for many diseases (every model is 
based on these), so the methods used in this paper also 
identified these as highly correlated with prediction of 
AUD.

Our experimental results showed that it is important 
to consider gender disparity while developing predic-
tive models for the identification of patients with AUD. 
Our results also indicated that there were more than 50% 

differences among the contributed features in the RF pre-
dictive models for each group of gender. This resulted in 
worsening the predictive accuracy for the Male group.

In summary, the primary contributions of this paper 
are four-fold: (1) the developed feature selection frame-
work is effective in reducing the features to a more 
manageable number; (2) some of the developed models 
demonstrate a high accuracy in prediction AUD as meas-
ured by AUROC and AUPRC; (3) the study points to clin-
ical factors that are highly correlated to development of 
predictive models to identify patients with AUD; and (4) 
proving that gender disparity should be considered when 
building predictive models to identify patients with AUD.

Limitations and future work
One limitation of this study is that the data used to 
develop the predictive models comes from patients 
who were admitted to the Gastrointestinal, Neurologic, 
and Orthopedic departments at OUH. This introduces 
a risk of bias, which can be observed in the identified 
clinical factors. An additional limitation of our study is 
the relatively low numbers of patients and the lack of 
geographical diversity that results from a single-site 
study. Since the results of this study are very promis-
ing, we plan to address the limitations by conducting 
a national study with a much larger dataset to improve 
the predictive accuracy and quality of identified clinical 
factors related to AUD. Our future study will include 
data about patients from several Danish regions and 
hospitals.

Although our framework covers different types of 
FS methods, it is always relevant to evaluate the per-
formance of other FS methods on EHRs for the pre-
diction of AUD. Recent studies show great predictive 
performance by deep learning approaches. Although 
deep learning methods such as deep neural networks 
act as black boxes and are not suitable for clinical and 
risk factor discovery, a deep ensemble FS method based 
on aggregation functions may produce a better result 
along with clear clinical risk factors for AUD. In such a 
framework, at least three levels of FS methods will con-
tribute to evaluating the weight of features, and in each 
level, at least two similar FS methods will be incor-
porated. This approach will produce several feature 
sets for the ensemble FS level. In summary, we plan to 
expand the FS framework in our future national study 
to include deep learning methods as well.

Appendix: Feature selection framework
See Fig. 8.
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