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Abstract 

Background:  With the development of current medical technology, information management becomes perfect 
in the medical field. Medical big data analysis is based on a large amount of medical and health data stored in the 
electronic medical system, such as electronic medical records and medical reports. How to fully exploit the resources 
of information included in these medical data has always been the subject of research by many scholars. The basis for 
text mining is named entity recognition (NER), which has its particularities in the medical field, where issues such as 
inadequate text resources and a large number of professional domain terms continue to face significant challenges in 
medical NER.

Methods:  We improved the convolutional neural network model (imConvNet) to obtain additional text features. 
Concurrently, we continue to use the classical Bert pre-training model and BiLSTM model for named entity recogni-
tion. We use imConvNet model to extract additional word vector features and improve named entity recognition 
accuracy. The proposed model, named BERT-imConvNet-BiLSTM-CRF, is composed of four layers: BERT embedding 
layer—getting word embedding vector; imConvNet layer—capturing the context feature of each character; BiLSTM 
(Bidirectional Long Short-Term Memory) layer—capturing the long-distance dependencies; CRF (Conditional Random 
Field) layer—labeling characters based on their features and transfer rules.

Results:  The average F1 score on the public medical data set yidu-s4k reached 91.38% when combined with the clas-
sical model; when real electronic medical record text in impacted wisdom teeth is used as the experimental object, 
the model’s F1 score is 93.89%. They all show better results than classical models.

Conclusions:  The suggested novel model (imConvNet) significantly improves the recognition accuracy of Chinese 
medical named entities and applies to various medical corpora.

Keywords:  Named entity recognition, Convolutional neural network, Chinese electronic medical records, BiLSTM-
CRF, BERT
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Background
Name entity recognition (NER) is a term that refers to 
the task of extracting proper nouns or other named enti-
ties from text [1]. NER is frequently used in machine 
translation, emotion analysis, information retrieval, and 
other fields as a critical step in converting unstructured 
data to structured data during information extraction. 
It is a topic of discussion in natural language processing 
(NLP) [2]. With the development of current medical and 
computer technology [3–7], medical information man-
agement becomes perfect. Modern medical management 
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systems play an essential role in successfully preserving 
and managing text-based data such as electronic medi-
cal records (EMRs) and medical reports [8]. The constant 
accumulation of data enables the analysis of large-scale 
medical text data. How to fully exploit the resources of 
information of these medical data has always been the 
subject of research by many scholars. Using NLP to mine 
medical texts, particularly EMRs, has become a hot spot 
of cross-research in medicine and artificial intelligence.

Certain methods of medical NER are based on tradi-
tional machine learning. The commonly used models 
include Hidden Markov Models [9], Maximum Entropy 
[10], Support Vector Machine (SVM) [11, 12], and Condi-
tional Random Field (CRF) [13–15]. Tang et al. [16] com-
bined the advantages of CRF and SVM and suggested the 
Structural Support Vector Machine (SSVM) algorithm to 
explore its use in clinical NER tasks. Ye Feng, Chen Ying-
ying [17], and colleagues extracted three common enti-
ties from Chinese EMRs using the CRF method: disease, 
clinical symptoms, and surgical operation. The three 
entities’ best F1 values were 92.67%, 93.76%, and 95.06%, 
respectively. However, feature engineering requires a sig-
nificant effort when using traditional machine learning 
[18]. Most work is spent on data preprocessing to pro-
duce a high-quality NER effect [19], making NER ineffi-
cient and costly. Simultaneously, medical data problems 
from high-dimensional sparse data and limited scalability 
render medical NER based on traditional machine learn-
ing worthless [20].

Deep learning has rapidly been developed and entered 
the public’s vision to address these problems. It has 
achieved considerable success in various fields, includ-
ing image and speech processing. Simultaneously, it has 
been increasingly applied to NLP tasks for deep learn-
ing-based medical NER. Lample [21] et  al. proposed an 
approved model named BiLSTM-CRF model, and then it 
widely used in medical NER tasks [22, 23]. NER of Chi-
nese EMR has its particularity. Chinese EMRs have a 
complicated structure, a large number of different types 
of entities, and a certain domain of particularity. Medi-
cal proper nouns have unique naming rules [24], but tra-
ditional NER methods map words to one-hot encoding, 
which cannot express word polysemy. As a result, schol-
ars propose to solve this problem using the pre-training 
model to represent words.

Among the earliest used pre-training models are 
word vector training with the word2vec method [25, 
26], ELMo algorithm [27], and GloVe algorithm [28]. In 
2018, Google published a paper suggesting BERT [29], 
which immediately showed significant success in 11 
NLP tasks and ushered in scholars’ widespread usage 
of BERT model. Many scholars have combined BERT 

and classic models BiLSTM-CRF to greatly improve the 
accuracy of NER [30, 31]. Due to the success of BERT, 
pre-training models are beginning to incorporate a sig-
nificant number of parameters to improve performance. 
However, increasing the number of model parameters 
introduces many problems, including higher and higher 
requirements for computing power, a longer time for 
model training, and, in some situations, the worse 
performance of models with many parameters. Albert 
[32, 33] suggested improving these problems by reduc-
ing the overall number of parameters, accelerating the 
training speed, and increasing the model effect.

The abovementioned models and methods have 
gradually become the mainstream of NER in the medi-
cal field. Numerous models based on the Transformer 
[34] neural network emerge in an infinite number of 
ways. The Transformer has replaced RNN and CNN 
as the significant backbone architecture in the field of 
NLP. Simultaneously, it has made a significant contri-
bution to the field of computer vision. In recent years, 
most publications in CV field have been based on 
Transformer, and the convolutional neural network 
has begun to fade from center stage. Will Transformer 
take the place of the convolutional neural network? 
The proposal of ConvNeXt model answers. Facebook 
AI research and UC Berkeley published an article 
in January 2022: a ConvNet for the 2020s [35], sug-
gesting a pure convolutional neural network. Several 
experimental comparisons revealed that ConvNeXt has 
faster reasoning speed and higher accuracy than Swing 
Transformer under the same FLOPS. CNN has also 
been utilized for NER, compared with NLP field [36–
38]. Even though the traditional CNN has obvious com-
putational advantages, the traditional CNN’s terminal 
neurons can only extract a fraction of the information 
contained in the input text following convolution. Fur-
ther convolution layers must be added to gather con-
text information, resulting in ever-deeper networks, an 
increasing number of parameters, and easy overfitting. 
Strubel et  al. [39] proposed applying dilated convolu-
tion (IDCNN) to NER to address this issue. IDCNN 
outperformed BiLSTM in terms of effect and training 
speed on CoNLL-2003 dataset.

As a result of the preceding discussion, it is worth-
while to investigate if CNN remains useful for improv-
ing NER accuracy. This paper trains the CNN model to 
improve NER effect, beginning with the strategies and 
ideas in the Transformer, investigating ways to improve 
the accuracy of traditional convolutional neural net-
works using mainstream classical models, and creating 
the model imConvNet to improve the accuracy of Chi-
nese medical NER.
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Method
Theoretical principle
BERT model
BERT is a pre-training model and is not limited by a sin-
gle-directional language model, unlike earlier pre-training 
models. It pre-trains the model using a “masked language 
model” (MLM) and then builds it using a deep bidirec-
tional Transformer component. Finally, it provides a deep 
bidirectional language representation that is capable of fus-
ing left and right context information, hence expanding the 
model’s representation capability. Additionally, with only 
one additional output layer, the pre-trained BERT repre-
sentation may be fine-tuned to generate state-of-the-art 
models for a variety of tasks.

BERT’s core structure is a transformer. The main struc-
ture of BERT is constructed by stacking multi-layer Trans-
former structures, as illustrated in Fig. 1.

Long short‑term memory
The Long Short-Term Memory (LSTM) network [40] is 
a more advanced model of the recurrent neural network 
(RNN). It is capable of capturing long-distance depend-
encies and remembering long-term information for the 
purpose of modeling context information in NLP tasks. 
Through training, LSTM can learn which information to 
retain and discard. Figure 2 illustrates its structure:

Where Xt represents the word input at time t, Ct repre-
sents the cell state, C̃t  represents the temporary cell state, 
ht represents the hidden layer state, it represents the mem-
ory gate and ot represents the output gate. Relevant param-
eters are updated to the following formula:

(1)ft = σ Wf · [ht−1, xt ]+ bf

However, it is incapable of encoding information from 
back to front. This issue can be resolved by combining 
forward and backward LSTMs into Bi-LSTM to accu-
rately represent bidirectional semantic dependencies.

Conditional random field
Conditional random field (CRF) is a sequence labe-
ling model that considers the relationship between out-
put labels, effectively models the sequence relationship 
between final prediction labels, and improves the accu-
racy and reasonableness of prediction results.

Given a set of input sequences X = (X1,X2,X3, . . . ,Xn) , 
the conditional probability distribution model of the out-
put sequence y = (y1, y2, y3, . . . , yn) can be acquired, and 
the score of each label can be obtained so that the label 
with the highest score can be selected as the final output 
label. The score is calculated as follows:

Among them, Ai,j is the possibility of transition from 
label yi to label yj . y0 and yn are the first and last labels of a 
sentence. They are added to a list of possible labels. Then, 
using the softmax function, the normalized probability of 

(2)it = σ(Wi · [ht−1, xt ]+ bi)

(3)C̃t = tanh (WC · [ht−1, xt ]+ bC)

(4)Ct = ft ∗ Ct−1 + it ∗ C̃t

(5)ot = σ(Wo · [ht−1, xt ]+ bo)

(6)ht = ot ∗ tanh (Ct)

(7)S
(
X , y

)
=

n∑

i=0

Ayi ,yi+1 +
n∑

i=0

Pi,yi

Fig. 1  Basic structure diagram of BERT

Fig. 2  Basic structure diagram of LSTM
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label sequence y is determined, and the label sequence y 
is the output:

Finally, the loss function (9) defined below is used to 
optimize the log-likelihood of the correct label sequence 
for CRF training, and Viterbi algorithm (10) is used to 
predict the optimal score as follows:

Model building
imConvNet block
This section introduces the imConvNet layer’s funda-
mental modules. Convolutional neural network (CNN) 
can effectively extract local characteristics from input 
data. It starts with a convolution layer as the network’s 
basic element, which utilizes a convolution kernel with a 
small scale relative to the original data as the parameter 
and convolutes the input data using the convolution ker-
nel according to the following formula:

where x(n) represents the input data and h(n) represents 
the convolution kernel.

First, a depth-wise revolution is adopted to split the 
channels and regions in the convolution and perform layer 
by layer convolution calculation, as inspired by ConvNeXt 
model [35]. Assuming that the feature matrix of input 
word vector is Df × Df ×M , the convolution kernel size is 
Dk × Dk ×M , the output feature matrix is Df × Df × N  , 
and the amount of parameters for standard convolutional 
layers is Dk × Dk ×M × N  . The depthwise convolution 
is responsible for filtering, with a size of Dk × Dk × 1 , M 
in total, and acts on each input channel. Therefore, the 
depthwise convolution parameter is Dk × Dk × 1×M , 
which is 1/N of the standard convolution parameter, and a 
good balance between FLOPS and accuracy.

Then, using two convolutions with a size of 1× 1 , 
GELU [41] is chosen as the activation function, and the 
idea of regularization is added to the activation. The cal-
culation formula is as follows:

(8)p
(
y|X

)
=

es(X ,y)
∑

y∈ϒX
es(X ,y)

(9)log
�
p
�
y|X

��
= s

�
X , y

�
− log


�

y∈ϒX

es(X ,y)




(10)y∗ = argmaxy∈ϒX s
(
X , y

)

(11)y(n) =
∞∑

i=−∞
x(i)h(n− i) = x(n) ∗ h(n)

where erf is the error function:

Normalization can be achieved by substituting layer 
normalization (LN) [42] for the commonly utilized batch 
normalization (BN) in CNN, which is more appropriate 
for the field of NLP, accelerates network convergence, 
and reduces overfitting. It normalizes the different chan-
nels of the same sample. The calculation formula is:

where: E[x] = 1
n

n∑
i=1

xi , Var[x] = 1
n

n∑
i=1

(xi − E[x])2 , ε is 

used to prevent division by zero.
The overall structure of the module is depicted in 

Fig. 3A.

imConvNet layer
This section describes the process of constructing the 
convolution layer. Many comparative experiments 
develop the ConvNeXt model’s relevant parameters 
[35]. In this paper, we develop the whole module stack 
by utilizing the same stack ratio 3:3:9:3 of the tiny ver-
sion. Rather than that, we modify the number of chan-
nels in each model’s original input feature layer from 96, 
192, 384, and 768 to 128, 256, 512, and 1024, which are 
more widely used in NLP. Then, in imConvNet layer, the 
module that initially implements local feature extraction 
utilizes a convolutional layer with a convolution kernel 
width of 4.

Additionally, we change the sliding step size 4 of this 
layer’s convolution to 1 to make it acceptable for text fea-
ture extraction and then normalize it using LN (Layer 
Normalization) method. Simultaneously, downsampling 
is performed between each module, using a separate 
downsampling layer composed of a layer normalization 
and a convolution layer with a convolution kernel size of 
2 and stride of 1. Finally, unlike the ConvNeXt, we record 
the result of each module’s convolution, and the results of 
each module’s convolution are spliced to obtain the out-
put of the final imConvNet layer. The overall structure is 
depicted in Fig. 3B.

BERT‑imConvNet‑BiLSTM‑CRF
In terms of the model’s overall structure, we begin by using 
BERT pre-training model to obtain the word embedding 
vector according to the input text. To make the vector meet 

(12)

GELU(x) = xP(X ≤ x) = xφ(x) = x ∗
1

2

[
1+ erf

(
x
√
2

)]

(13)erf(x) =
2

√
π

x
∫
0
e−t2dt

(14)y =
x − E[x]√
Var[x]+ ε
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the imConvNet layer’s usage conditions, we enhance the 
vector by one dimension before entering the imConvNet 
layer. Second, the processed word vector is passed via an 
imConvNet layer, which is utilized to extract the current 
word’s local characteristics to acquire as much context 
information as feasible. Then, using BiLSTM layer, extract 
context-dependent long-range features and produce label 
predictions for all characters. Finally, the CRF layer con-
strains the output of the label to produce the final legal label. 
The overall structure of the model is described in Fig. 4.

Evaluation metrics
The evaluation metrics, namely, Precision (P), Recall (R) 
and F1-measure (F1) are used to evaluate the perfor-
mance of NER methods.

P is utilized to demonstrate the proportion of samples 
divided into positive examples that are actually posi-
tive examples. The calculation formula is described as 
follows:

It reflects the prediction accuracy of the model for 
positive examples.

R denotes the number of positive examples divided 
into positive examples. The calculation formula is 
described as follows:

It indicates the actual ability of the model to discrimi-
nate positive examples.

However, recall and precision are an indicator of 
trade-offs, when one of the values goes up, the other 
goes down and we need an indicator to balance them. 
F1-score represents a metric combining recall and 

(15)P =
TP

TP + FP

(16)R =
TP

TP + FN

Fig. 3  Basic structure diagram of imConvNet. (A) The structure of imConvNet Block; (B) the structure of imConvNet layer
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precision using harmonic mean. The calculation for-
mula is described as follows:

When the F1-score is higher, the performance of the 
model is also better.

Where TP (True Positive) shows the number of posi-
tive classes predicted to be positive, FP (False Positive) 
describes the number of negative classes predicted to be 
positive, and FN (False Negative) demonstrates the num-
ber of positive classes predicted to be negative.

(17)
2

F1
=

1

P
+

1

R

Dataset
Yidu‑s4k dataset
This dataset is derived from one of the evaluation tasks of 
the National Conference on Knowledge Graph and Seman-
tic Computing CCKS 2019 [43] (China Conference on 
knowledge graph and Semantic Computing), which is the 
dataset of "NER for Chinese EMRs", Yidu Cloud Medicine 
manually edits that in accordance with the actual distribu-
tion of medical records. There are a total of 1000 real clini-
cal medical record corpora, with six entities: (1) Disease 
and Diagnosis, medically defined diseases, and doctors’ 
judgments on etiology, pathophysiology, classification and 
staging in clinical work, such as “直肠癌(rectal cancer)”; 
(2) Anatomical site, human anatomy where disease, symp-
toms and signs happen, such as “肝(liver)”; (3) Laboratory 
check, laboratory tests performed in clinical work, such as 

Fig. 4  The overall structure of the model
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“CEA(carcinoembryonic antigen)”; (4) Image examination, 
such as “CT”; (5) Drug, specific chemicals used in disease 
treatment, such as “奥沙利铂(Oxaliplatin)”; (6) Operation, 
treatment such as excision, suture, performed by the doc-
tor on the part of the patient’s body, such as “胃癌切除术
(gastrectomy for gastric cancer)”.

We used BIO labeling with 13 label types, as shown in 
Table 1.

The number distribution of each entity is displayed in 
Table 2 and Fig. 5A, reaching 17,637 entities.

Clinical dataset of impacted wisdom teeth
Impacted wisdom teeth, a prevalent and high-incidence 
disease in the field of stomatology, are critical for clinical 
research. However, the medical NLP datasets have not 

been used in this field. This clinical dataset on impacted 
wisdom teeth is a corpus of clinical medical records 
that have been sorted according to the actual medical 
records of impacted wisdom tooth extraction and patient 
examination reports from Guiyang Hospital of Stomatol-
ogy. According to the experience and opinions of clini-
cians, seven types of entities were extracted: (1) Disease, 
types of impacted wisdom teeth, like “垂直阻生(vertical 
impacted wisdom teeth)”; (2) Symptom, clinical manifes-
tations of impacted wisdom teeth, like “部分萌出(par-
tially eruption)”; (3) Age, patient’s age, like “20岁(20 years 
old)”; (4) History, patient’s past history, like “糖尿病
(diabetes)”; (5) Check, the patient’s preoperative rou-
tine report, like “白细胞数目(white blood cell count)”; 
(6) Method, the process of removing impacted wisdom 
teeth, like “缝合牙龈(suture the gingiva)”; (7) Drug, spe-
cific chemicals used in disease treatment, like “替硝唑片
(Tinidazole Tablets)”.

The clinical dataset of impacted wisdom teeth was 
obtained using BIO annotation format for entity annota-
tion, as described in Table 3. The number distribution of 
each entity is displayed in Table 4 and Fig. 5B, reaching 
14,095 entities.

Table 1  Yidu-s4k dataset entity format

Entity types Labels

Disease and diagnosis B-disease I-disease

Anatomical site B-position I-position

Laboratory check B-LabCheck I-LabCheck

Image examination B-check I-check

Drug B-drug I-drug

Operation B-method I-method

Table 2  The number of Yidu-s4k dataset entities

Entity name Numbers

Disease 4207

Position 8419

LabCheck 1195

Check 966

Drug 1822

Method 1028

Fig. 5  The number of A Yidu-s4k dataset entities and B clinical datasets of impacted wisdom teeth entities

Table 3  Clinical dataset of impacted wisdom teeth entity format

Entity types Labels

Disease B-disease I-disease

Symptom B-symptom I-symptom

Age B-age I-age

History B-history I-history

Check B-check I-check

Method B-method I-method

Drug B-drug I-drug
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Results and discussion
In this paper, all the experiments are conducted on a 
single NVIDIA GeForce GTX 1650Ti GPU with 4  GB 
memory and carried out on the PyCharm platform using 
the python language. The relevant environment configu-
ration required for the experiment is shown in Table  5. 
The data were divided randomly into a train set, a vali-
dation set, and a test set in the ratio of 6:2:2. The train-
ing was conducted with the parameters demonstrated in 
Table  6. Under the condition that each model’s training 
parameters were consistent, the models proposed in this 
paper first used the yidu-s4k dataset and clinical dataset 

of impacted wisdom teeth, respectively, for training and 
then tested using a data set.

On the yidu-s4k dataset, according to comprehensive 
F1 score results of different models shown in Fig. 6A and 
Table  7, the F1 score of classical BiLSTM-CRF model 
for NER is 75.34%, whereas F1 score of IDCNN-CRF 
model is 74.92%. Compared to original text proposed 
by IDCNN-CRF model, it does not reach F1 score men-
tioned in the text and surpasses BiLSTM model. The 
explanation for this could be that the author utilizes 
CoNLL-2003 dataset, which contains a large amount of 
data and a limited number of entity types and is unre-
lated to the medical field. We connect the constructed 
convolutional neural network imConvNet with CRF for 
NER, obtaining an F1 score of 76.38% for the model. This 
value is greater than BiSLTM-CRF model, and P and R 
increased by 0.86% and 1.24%, respectively. However, as 
shown in Fig.  6C, the figures of IDCNN-CRF and BiL-
STM-CRF tend to stabilize between 20 and 30th epoch, 
while the figures of imConvNet-CRF does not tend to 
stabilize until around 50th epoch. It can be seen from 
the change of the loss function that imConvNet-CRF has 
a slower convergence speed compared to IDCNN-CRF 
and BiLSTM-CRF. Combining BiLSTM and imConvNet 
for NER, F1 score increased by 0.25–76.63%, and P and 
R increased by 1.93% and − 1.5%, respectively. BERT is 
a highly effective pre-training model derived from large-
scale public corpus training. The pre-training Chinese 
BERT model is called directly to encode the new task’s 
sentences. The F1 score of Bert-imConvNet-CRF model 
is significantly improved, reaching 88.22%. When com-
pared with the previously discussed models, P, R, and F1 
scores are increased by 12.5%, 10.7%, and 11.59%, respec-
tively. When combining BiLSTM model to construct 
Bert-imConvNet-BiLSTM-CRF model, the maximum 
F1 score reached 91.38%, in which P, R, and F1 scores 
increased by 2.03%, 4.26%, and 3.16% respectively com-
pared with the former. The results indicate that improved 
CNN model imConvNet obtained good results in the 
medical NER task. The three evaluation indexes of P, R, 
and comprehensive F1 scores improved slightly.

In terms of entity types, we horizontally compared the 
recognition impacts of various entities under different 
models and compared BERT-imConvNet-BiLSTM-CRF 
model finally constructed in this paper with IDCNN-
CRF, BiLSTM-CRF, imConvNet-CRF, imConvNet-BiL-
STM-CRF, and Bert-imConvNet-CRF. Compared to the 
models with the highest F1 score in the control group, the 
F1 score in the disease entity was increased by 3.96%, the 
position entity was increased by 3.96%, and the lab check 
entity was increased by 1.69%. It increased by 1.29% in 
the checking entity, 1.85% in the drug entity, and 3.02% in 

Table 4  The number of clinical datasets of impacted wisdom 
teeth entities

Entity name Numbers

Disease 1339

Age 272

History 556

Check 2427

Symptom 4336

Method 3599

Drug 1566

Table 5  Hardware and software environment

Device Configuration

Operating system Windows 10

Processor Intel(R) Core 
(TM) i7-10750H 
CPU @2.60 GHz 
2.59 GHz

GPU GeForce GTX 
1650Ti GPU with 
4 GB memory

Framework TensorFlow

Compilers PyCharm

Scripting language Python 3.7

Table 6  Hyper-parameters

Parameters values

lstm_dim 256

batch_size 16

epoch 60

dropout_keep 0.5

Learning rate 0.001

optimizer adam
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Fig. 6  A The epoch and F1 relationship on the Yidu-s4k dataset. B The epoch and F1 relationship on clinical dataset of impacted wisdom teeth. C 
The epoch and Loss relationship on the Yidu-s4k dataset
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the method entity. It demonstrates that the new model’s 
F1 score for each entity has been improved.

Table 8 shows the results of our method compared with 
previous representative systems on the yidu-s4k data-
set [44–47]. The first system [44] used a domain-spe-
cific ELMo model, the encoder from Transformer (ET) 
as model’s encoder, and the CRF as the decoder, which 
achieved an F1 score of 85.59% on the yidu-s4k data-
set. The second system [45] also used the ELMo model 
but the variant ELMo model uses Chinese characters as 
input, and then combine with the lattice LSTM model, 
achieved an F1 score of 85.02% on the yidu-s4k dataset. 
Jun et al. [46] combine the multi-level CNN with a sim-
ple attention mechanism, and also proposed a data aug-
mentation method to expand the data volume, which 
achieved an F1 score of 85.13%. Ling et al. [47] achieved 
an F1 score of 85.16% by adopting the method of transfer 

learning and ensemble. Our approach achieved an F1 
score of 91.38% which exceed the above models. It dem-
onstrates that the effectiveness of our method is evident.

Simultaneously, as displayed in Table  9 and Fig.  6B, 
IDCNN-CRF model extracted entities from the clinical 
dataset of impacted wisdom teeth, and the comprehen-
sive F1 score is 86.17%. BiLSTM-CRF model has an F1 
score of 86.26%, which was increased by 0.09%. P and 
R were increased by 1.25% and − 1.21%, respectively. 
The imConvNet-CRF model has an F1 score of 87.37%, 
which was increased by 1.11%. P and R were increased 
by − 1.21% and 3.81%, respectively. The imConvNet-
BiLSTM-CRF model has an F1 score of 89.09%, which 
was increased by 1.72%. P and R were increased by 
3.79% and − 0.71%, respectively. After including BERT 

Table 7  Performance comparison of different models on the yidu-s4k dataset

Model Evaluation index (%) Entity type Comprehensive 
value

Disease Position LabCheck Check Drug Method

IDCNN-CRF P(precision) 71.94 72.07 81.35 81.56 77.51 77.55 74.09

R(recall) 70.88 78.83 76.67 76.25 72.38 78.35 75.77

F1-score 71.41 75.30 78.94 78.81 74.86 77.95 74.92

BiLSTM-CRF P(precision) 75.13 71.14 77.78 81.42 77.88 73.63 73.98

R(recall) 72.16 80.06 76.36 78.93 72.93 76.29 76.75

F1-score 73.62 75.34 77.06 80.16 75.32 74.94 75.34

imConvNet-CRF P(precision) 72.45 74.79 77.06 72.26 81.06 76.77 74.84

R(recall) 75.81 78.02 79.39 80.84 80.39 78.35 77.99

F1-score 74.10 76.37 78.21 76.31 80.72 77.55 76.38

imConvNet-BiLSTM-CRF P(precision) 74.53 76.19 77.78 81.60 78.84 81.77 76.77

R(recall) 70.78 78.72 82.73 78.16 75.14 76.29 76.49

F1-score 72.61 77.43 80.18 79.84 76.94 78.93 76.63

BERT-imConvNet-CRF P(precision) 89.77 90.74 95.62 91.89 96.58 91.74 89.27

R(recall) 89.38 86.95 94.70 97.14 97.35 90.97 87.19

F1-score 89.57 88.81 95.16 94.44 96.96 91.35 88.22

BERT-imConvNet-BiLSTM
CRF

P(precision) 92.36 92.44 97.32 95.45 98.42 95.48 91.30

R(recall) 94.73 92.48 96.39 96.00 99.20 93.28 91.45

F1-score 93.53 92.46 96.85 95.73 98.81 94.37 91.38

Table 8  Performance comparison between our approach and 
previous systems on the yidu-s4k dataset

Models P (precision) R (recall) F1-score

ELMo-ET-CRF [44] 83.65 87.61 85.59

ELMo-lattice-LSTM-CRF [45] 84.69 85.35 85.02

ACNN [46] 83.07 87.29 85.13

FS-TL(Ensemble) [47] – – 85.16

Our approach 91.30 91.45 91.38

Table 9  Performance comparison of different models on a 
clinical dataset of impacted wisdom teeth

Models P (precision) R (recall) F1-score

IDCNN-CRF 82.97 89.62 86.17

BiLSTM-CRF 84.22 88.41 86.26

imConvNet-CRF 83.01 92.22 87.37

imConvNet-BiLSTM-CRF 86.80 91.51 89.09

BERT-imConvNet-CRF 89.80 95.75 92.68

BERT-imConvNet-BiLSTM-CRF 91.61 96.30 93.89
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model, the model’s influence was significantly improved. 
The comprehensive F1 score of BERT-imConvNet-CRF 
reached 92.68%, which was increased by 3.59%, while 
P and R were increased by 3% and 4.24%, respectively. 
Finally, by combining BERT, imConvNet, and BiL-
STM, the comprehensive F1 score of the model reached 
93.89% which was increased by 1.21%, and P and R were 
increased by 1.81% and 0.55%, respectively. While there 
are some fluctuations in the improvement of P and R, 
the F1 score is improving, and the performance change 
is consistent with that observed on the public dataset 
Yidu-S4K.

In summary, the imConvNet model proposed in this 
paper has the value of improving the accuracy of entity 
extraction in the task of Chinese medical NER. We can 
extract text features with more context information and 
improve the capture of context long-distance dependent 
characteristics. The final BERT-imConvNet-BiLSTM-
CRF model constructed applies to a variety of datasets in 
the field of Chinese medicine.

Conclusion
The training and testing results on Yidu-S4K dataset 
demonstrate that pure convolutional neural network 
can still achieve good results in the task of Chinese 
medical NER. Although the classical BiLSTM model 
effectively extracts context characteristics, it has prob-
lems of lack of local spatial feature extraction. It can be 
replaced with the imConvNet convolutional neural net-
work introduced in this paper, which extracts local fea-
tures more efficiently than the traditional CNN model. 
Combining imConvNet and BiLSTM model yields bet-
ter results than using only one model. To address the 
problem of a limited training corpus, we applied BERT 
pre-training Chinese model in this research. After 
incorporating BERT model, NER’s F1 score significantly 
improved. Finally, we constructed Bert-imConvNet-
BiLSTM-CRF model and trained it on our clinical cor-
pus of impacted wisdom teeth, which also achieved 
better results. We will continue to adjust imConvNet 
model parameters in subsequent experiments to make it 
more suitable for Chinese medical NER and to enhance 
recognition accuracy and convergence speed and obtain 
good results. At the same time, we only conducted 
experiments on two medical datasets, and we will con-
tinue to test this model on more different datasets to 
improve the comprehensive performance and robust-
ness of the model.
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