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Abstract 

Purpose:  The association of patent foreman ovale (PFO) and cryptogenic stroke has been studied for years. Although 
device closure overall decreases the risk for recurrent stroke, treatment effects varied across different studies. In this 
study, we aimed to detect sub-clusters in post-closure PFO patients and identify potential predictors for adverse 
outcomes.

Methods:  We analyzed patients with embolic stroke of undetermined sources and PFO from 7 centers in China. 
Machine learning and Cox regression analysis were used.

Results:  Using unsupervised hierarchical clustering on principal components, two main clusters were identified 
and a total of 196 patients were included. The average age was 42.7 (12.37) years and 64.80% (127/196) were female. 
During a median follow-up of 739 days, 12 (6.9%) adverse events happened, including 6 (3.45%) recurrent stroke, 5 
(2.87%) transient ischemic attack (TIA) and one death (0.6%). Compared to cluster 1 (n = 77, 39.20%), patients in clus-
ter 2 (n = 119, 60.71%) were more likely to be male, had higher systolic and diastolic blood pressure, higher body mass 
index, lower high-density lipoprotein cholesterol and increased proportion of presence of atrial septal aneurysm. 
Using random forest survival (RFS) analysis, eight top ranking features were selected and used for prediction model 
construction. As a result, the RFS model outperformed the traditional Cox regression model (C-index: 0.87 vs. 0.54).

Conclusions:  There were 2 main clusters in post-closure PFO patients. Traditional cardiovascular profiles remain top 
ranking predictors for future recurrence of stroke or TIA. However, whether maximizing the management of these fac-
tors would provide extra benefits warrants further investigations.
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Introduction
Foreman ovale is a bridging structure during embryologi-
cal development. Normally, this structure closes sponta-
neously after birth. If it is not the case, a patent channel 
will be formed and named as patent foreman ovale (PFO), 

predisposing an increased risk of paradoxical embolisms 
[1, 2]. The association of PFO and stroke was first pro-
posed in 1988 [3]. Since then, numerous studies, includ-
ing observational or randomized control trials (RCTs), 
have shown potential causal effect of PFO on cryptogenic 
stroke (CS) [4–10]. The prevalence of PFO in general 
population is around 25%, but reaches up to 40% in CS 
patients [3].

Although the first three RCTs suggested a neutral effect 
of PFO closure on stroke prevention [4–6], latest RCTs 
[7, 9, 10] and updated meta-analyses [11, 12] all sup-
ported the benefits of PFO closure. In view of these data, 
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current guidelines have recommended PFO closure in 
patients with proved PFO-associated stroke (PFO-AS), 
a new concept created in 2020 [13, 14]. Although device 
closure on average decreases the risk for recurrent stroke, 
treatment effects varied substantially across different 
studies [15].

In recent years, the applications of artificial intelli-
gence or machine learning have shown promising results 
in health care system. It not only helps the process of 
data management, but also aids in disease prediction 
or patient sub-clustering. For example, in a data-driven 
machine-learning analysis, the authors applied hierar-
chical k-means clustering algorithm to explore potential 
sources of embolic stroke [16]. In another study, machine 
learning was used to automatically discriminate cardi-
oembolic from non-cardioembolic strokes in large data-
sets [17].

Understanding different causes and classifying strokes 
based on etiologic subtypes are prerequisites for effective 
treatments. With the state-of-the-art machine learning, 
we could easily identify subsets of patients that would 
benefit most from PFO closure or sustain elevated risk 
for recurrent stroke. Thus, in this study, we applied unsu-
pervised machine learning to detect sub-clusters in post-
closure PFO patients and assess their associated risk with 
adverse outcomes. As the second aim, we used super-
vised machine learning to identify potential predictors 
for adverse outcomes.

Methods
Study design and population
The analyzed population was from 7 centers in China, 
including Guangdong Cardiovascular Institute, Zhong-
nan Hospital of Wuhan University, Wuhan Asian Heart 
Hospital, Hubei Huiyi Cardiovascular Center, Jiang Men 
Central Hospital, the first people’s hospital of Foshan and 
General Hospital of Southern Theatre Command of PLA. 
Patients with embolic stroke of undetermined sources 
(ESUS) and PFO were included during June 1st, 2013 
and May 31st, 2020. The diagnosis of ESUS was deliber-
ately and systematically assessed by both a neurologist 
and a cardiologist after excluding the other common eti-
ologies of stroke. PFO was initially discovered by either 
transthoracic/transesophageal or right heart contrast 
echocardiography and finally confirmed during cardiac 
catheterization. Patients with overt alternative causes of 
their strokes or not receiving PFO closure were excluded. 
We collected demographic information, laboratory and 
echocardiographic data for the included subjects.

Outcome ascertainment
Patients were followed by regular telephone interviews or 
outpatient examinations. The main outcome in our study 

was a composite of recurrent ischemic stroke, transient 
ischemic attack (TIA) or all-cause death. Major bleed-
ing or new-onset atrial fibrillation (AF) was examined 
as secondary outcomes. Cardiac rhythm was assessed by 
cardiac auscultation, which was followed by electrocar-
diography if abnormal auscultation was found. At each 
telephone interview or outpatient visit, a standardized 
and validated questionnaire (Questionnaire for verifying 
stroke-free status) was used to detect potential stroke or 
TIA.

Statistical analysis
Student t-test and chi-square test were used for compari-
sons of differences between groups. Data were shown as 
mean (SD), median (interquartile range[IQR]) or number 
(percentage). Two-sided P < 0.05 was considered to be 
significant.

Data pre-processing was conducted before machine 
learning. The summary for missing data is shown in 
Additional file  1: eTable1. As suggested by the missing 
data pattern (Additional file  1: eFigure1), it was con-
sidered as random missing data case with no particular 
trend among all the variables. Missing values were then 
computed with multiple imputation using R package of 
“mice”. Thirty-four variables from demographic, labora-
tory and echocardiographic data were finally included.

We first used principal component analysis (PCA) to 
reduce the dimensions with the function of FAMD (Fac-
tor Analysis of Mixed Data). Next, we applied cluster 
analysis on the PCA outputs using the function of HCPC 
(Hierarchical Clustering on Principal Components) in 
FactoMineR package. The partitioning of the HCPC 
is performed by cutting the hierarchical tree (dendro-
gram). To consolidate the final partitioning solution, we 
further performed k-means clustering. The binary data 
was treated as numeric values before clustering [18]. The 
average silhouette of observations for different values of 
k (1 to 10) were computed. The location of the maximum 
is considered as the optimal number of clusters. Cox pro-
portional hazards regression was then applied to calcu-
late the hazard ratio (HR) and 95% confidence interval 
(95%CI) of adverse events by different clusters. Propor-
tional-hazards assumption was tested and no violation 
was found. To examine potential bias from the imputed 
datasets, we performed complete case analysis as one of 
the sensitivity analyses.

In supervised learning, we first used all available vari-
ables to construct the random forest survival (RFS) 
model and accessed the variable importance (VIMP). We 
then selected the top ranking features to reconstruct the 
prediction models and assessed the performance using 
concordance index (C-index) and Brier score (BS). A 
higher C-index and lower BS suggest a better prediction 
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performance. In addition, we applied supervised self-
organizing maps to help visualize features associated 
with individual cluster within the studied patients. All 
statistical analyses were performed using R version 
4.1.2 or Stata 15.1 (StataCorp/SE, College Station, TX). 
Detailed descriptions of R source code were disclosed in 
the supplement.

Results
197 PFO patients receiving percutaneous interventions 
were initially included in this study. The first 12 princi-
pal components with an eigenvalue ≥ 1, which accumu-
latively counted for 70.62% of the dataset, were used 
as input for the HCPC method (Additional file  1: eTa-
ble  2). Using HCPC, 3 clusters were identified (Fig.  1-
A). Since the middle cluster included only 1 patient, 
we excluded this cluster, leaving a final number of 196 
patients for subsequent analysis. Briefly, the average 
age of the included subjects was 42.7 (12.37) years and 
64.80% (127/196) were female. During a median follow-
up of 739 (IQR 731–924) days, 22 (11.22%) patients 
were lost to follow up. A total number of 12 adverse 
events (12/174, 6.9%) were reported, including 6 recur-
rent stroke (6/174, 3.45%), 5 TIA (5/174, 2.87%) and 
one death (1/174, 0.6%). No AF or major bleeding was 
documented.

Among the analyzed subjects, 77 (39.29%) patients 
were assigned to cluster 1 and 119 (60.71%) were 
assigned to cluster 2. Compared to cluster 1, patients in 
cluster 2 were more likely to be male, had higher systolic 
and diastolic blood pressure, higher body mass index 
(BMI), lower high-density lipoprotein cholesterol (HDL-
C) and increased proportion of presence of atrial septal 

aneurysm (ASA). The values of red blood cell, hemo-
globin, creatinine, uric acid, left atrium (LA), left ventric-
ular end-diastolic dimension (LVEDD), interventricular 
septum (IVS) and posterior wall thickness (PW) were 
also higher in patients of cluster 2. Detailed descriptions 
of these variables were summarized in Table 1 and vividly 
visualized in Fig.  2. In Cox regression analysis, patients 
in cluster 2 tended to have 21% increased hazards for 
adverse events than those in cluster 1 (HR 1.21, 95%CI 
0.62–2.36, P = 0.58, Fig. 3-A).

In k-means clustering analysis, the highest average 
silhouette was located at k = 2, suggesting 2 as the opti-
mal number of clusters (Fig. 1-B). Detailed descriptions 
of baseline characteristics across the 2 clusters were 
summarized in Additional file  1: eTable  3. Generally, 
the results were similar to what we found from HCPC. 
Cox regression analysis also suggested that patients in 
high risk cluster tended to have increased hazards for 
adverse events (HR 2.11, 95% CI 0.63–6.96, P = 0.21, 
Fig.  3-B). And the high risk cluster was characterized 
by higher proportion of male gender, higher blood pres-
sure, higher BMI and lower HDL-C. Likewise, the finding 
from complete case analysis was largely identical to that 
of the primary analysis, except that the analyzed sample 
was significantly reduced (Additional file 1: eFigure2 and 
eTable4).

Figure 4 plots the variable importance of the full model 
using random forest survival analysis. We then selected 
the eight top ranking features to construct the predic-
tion models, including fasting blood glucose, thickness 
of interventricular septum, the ratio of mitral peak early 
(E) to late (A) diastolic filling velocity, left ventricular 
end-systolic dimension, BMI, systolic blood pressure, 

Fig. 1  Clusters identified by different methods. A Dendrogram from hierarchical clustering on principal components analysis. B The average 
silhouette of observations for different values of k (1 to 10) using k-means clustering analysis. The highest average silhouette was located at k = 2



Page 4 of 8Luo et al. BMC Medical Informatics and Decision Making          (2022) 22:305 

thickness of the posterior wall and PTA. As presented in 
Table 2, the RFS model had similar Brier Score (2.6% vs 
2.4%) but higher C-index than the traditional Cox pro-
portional hazard regression model (0.87 vs 0.54), suggest-
ing a better predictive model for adverse events.

Discussion
Increasing data have supported that PFO closure 
could significantly reduce the risk of stroke or TIA 
compared to medical therapy [7, 9–12]. The reported 
rate of recurrent stroke or TIA after PFO closure 

Table 1  Baseline characteristics of the study patients according to the clusters (from HCPC)

p value <0.05 are shown in bold

HCPC Hierarchical Clustering on Principal Components; TIA transient ischemic attack; AST Aspartate aminotransferase; ALT Alanine aminotransferase; LDL-C low-
density lipoprotein cholesterol; HDL-C high-density lipoprotein cholesterol; LA left atrium; LVEDD left ventricular end-diastolic dimension; LVESD left ventricular end-
systolic dimension; IVS interventricular septum; PW posterior wall; LVEF left ventricular ejection fraction; RVEDD right ventricular end-diastolic dimension

Total (n = 196) Cluster 1 (n = 77) Cluster 2 (n = 119) P value

Age, years 42.70(12.37) 43.42(11.45) 42.24(12.95) 0.52

Gender, male 127(64.80%) 12(15.58%) 115(96.64%)  < 0.001
Han destiny 179(91.79%) 69(90.79%) 110(92.44%) 0.68

Heart rate, bpm 77.30(11.46) 78.60(12.24) 76.45(10.83) 0.20

Systolic BP, mmHg 121.83(15.64) 117.27(16.63) 124.78(14.28)  < 0.001
Diastolic BP, mmHg 76.74(10.78) 73.49(9.94) 78.85(10.78)  < 0.001
Body mass index, kg/m2 23.37(3.25) 22.25(2.91) 24.12(3.26)  < 0.001
History of stroke 120(61.22%) 44(57.14%) 76(63.87%) 0.35

History of TIA 84(42.86%) 36(46.75%) 48(40.34%) 0.38

History of migraine 27(13.78%) 14(18.18%) 13(10.92%) 0.15

Laboratory data

Red blood cell, 10*12/L 4.58(0.68) 4.16(0.52) 4.86(0.63)  < 0.001
Hemoglobin, g/dl 132.92(18.96) 116.57(15.09) 143.50(12.66)  < 0.001
HCT, L/L 40.16(5.09) 35.96(4.21) 42.88(3.52)  < 0.001
APTT, s 35.02(5.70) 34.73(6.24) 35.22(5.32) 0.56

PT, s 13.21(2.82) 13.18(2.97) 13.22(2.73) 0.91

PTA%, % 71.80(42.27) 65.47(43.75) 76.21(40.85) 0.11

Fibrin, mg/dl 3.11(2.06) 3.25(2.36) 3.02(1.82) 0.44

AST, U/L 23.12(10.33) 20.58(9.58) 24.75(10.52) 0.006
ALT, U/L 27.90(22.14) 19.06(13.06) 33.67(24.84)  < 0.001
Albumin, g/dl 40.77(4.70) 39.91(5.90) 41.31(3.69) 0.04
Creatinine, umol/L 69.62(15.39) 58.81(9.91) 76.58(14.24)  < 0.001
BUN, mmol/L 4.95(2.73) 5.16(4.10) 4.81(1.20) 0.37

Uric acid, umol/L 363.32(96.93) 289.75(64.70) 408.80(84.97)  < 0.001
Fasting blood glucose, mg/dL 5.04(1.25) 5.03(1.18) 5.05(1.30) 0.94

Triglycerides, mg/dL 1.39(0.88) 1.29(1.02) 1.45(0.77) 0.26

Total cholesterol, mg/dL 4.09(1.13) 4.27(1.20) 3.98(1.08) 0.11

LDL-C, mg/dL 2.38(0.84) 2.39(0.83) 2.38(0.85)  > 0.99

HDL-C, mg/dL 1.21(0.56) 1.46(0.77) 1.05(0.26)  < 0.001
Echocardiographic data

Presence of atrial septal aneurysm 17(9.66%) 2(2.99%) 15(13.76%) 0.02
LA, mm 32.15(4.08) 30.77(3.73) 33.03(4.06)  < 0.001
LVEDD, mm 45.52(3.65) 43.79(3.40) 46.62(3.38)  < 0.001
LVESD, mm 29.47(4.08) 28.97(4.22) 29.81(3.97) 0.18

IVS, mm 9.44(1.51) 8.67(1.21) 9.94(1.48)  < 0.001
PW, mm 9.23(1.25) 8.60(1.13) 9.63(1.16)  < 0.001
LVEF, % 65.87(5.49) 65.90(5.31) 65.87(5.49) 0.97

MVE/MVA 1.12(0.34) 1.13(0.35) 1.12(0.34) 0.83

RVEDD, mm 29.28(10.53) 29.36(10.23) 29.22(10.77) 0.94
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varied across different studies, ranging from 0 to 5.61% 
[4–10]. As pointed out by previous researchers, the 
key determination of treatment effect relies mainly 
on whether the discovered PFO is causally related to 
the stroke or just an innocent bystander [19]. Cur-
rently, there are two prediction systems used to eval-
uate the likelihood of a stoke-related PFO-the risk of 

paradoxical embolism (RoPE) score and the PASCAL 
classification system [14, 20].

Main components for RoPE score include age, smok-
ing status, history of hypertension, diabetes, stroke 
or TIA, characteristics of the infarct on imaging [20]. 
PASCAL classification system is based on RoPE score, 
with combined consideration of PFO features, like PFO 

Fig. 2  Self-organizing maps supervised by clusters identified by HCPC analysis. HCPC, hierarchical clustering on principal components; sbp, systolic 
blood pressure; dbp, diastolic blood pressure; bmi, body mass index; hdlc, high-density lipoprotein cholesterol; hgb, hemoglobin; ast, aspartate 
aminotransferase; alt, alanine aminotransferase; alb, albumin; ua, uric acid, asa, atrial septal aneurysm

Fig. 3  Cumulative hazard estimates of adverse events according to the identified clusters. A Clusters from hierarchical clustering on principal 
components analysis. B Clusters from k-means clustering. HR, hazard ratio
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shunt size or the presence/absence of an ASA [2, 14]. 
Although the prediction systems are widely used in 
clinical practice, these estimations are sometimes vio-
lated by model assumptions or limited by subjective 
feature selections.

Machine learning is a promising technique increas-
ingly applied in health care system. It allows pheno-
typing or sub-clustering of the analyzed population 
without knowing the definite outcomes, which helps 
reveal the underlying etiologies. In this study, we iden-
tified two main clusters in post-closure PFO patients, 
with the high risk cluster characterized by higher pro-
portion of male gender and poorer cardiovascular pro-
files. Machine learning also enables objective feature 
selections and efficient prediction model constructions. 
The analysis of RFS further supported the predictive 

value of traditional risks factors, suggesting that high-
risk groups should continue to be targeted to prevent 
stroke recurrence even after PFO closure [21, 22]. How-
ever, whether maximizing the management of these 
factors would provide extra benefits for these patients 
warrants further investigations.

Till now, few studies are conducted on machine 
learning and PFO [16, 17]. Owing to the small num-
ber of adverse outcomes, statistical power to identify 
independent predictors of recurrent stroke/TIA was 
often limited, when using the traditional Cox regres-
sion model [23]. The application of supervised machine 
learning to some extent helps settle this matter [24]. 
As shown in this study, RFS model did display better 
performance compared to Cox regression model after 
selecting the top ranking features. Additionally, RFS 
model was able to identify predictive features that were 
neglected in previous studies, for example, the ratio of 
mitral peak early (E) to late (A) diastolic filling velocity 
and thickness of the interventricular or posterior wall.

Although this is a pioneer study, several limitations 
should still be acknowledged. First, this is a post-hoc 
analysis, some data are not available, for example, PFO 
shunt size before closure or residual shunting after 
closure. Second, the small datasets and missing data 
could potentially bias the results, although the missing 
pattern suggests a random missing data case and the 
results from complete case analysis was similar to that 
of the imputed datasets. Third, the constructed model 
was not further validated by external datasets, which to 
some extent limits its generalizability. Finally, the eval-
uation of AF was based on cardiac assessment during 
follow-up visits. Occult AF might still be possible, lead-
ing to an underestimation of the prevalence of AF being 
reported.

Conclusions
There were 2 main clusters in PFO patients receiv-
ing device closure. The supervised and unsupervised 
machine learning both suggest that traditional cardio-
vascular profiles remain important predictors for future 
recurrence of stroke or TIA. However, whether maxi-
mizing the management of these factors would provide 
extra benefits in post-closure PFO patients warrants 
further investigations.

Abbreviations
PFO: Patent foreman ovale; TIA: Transient ischemic attack; ASA: Atrial septal 
aneurysm; HCPC: Hierarchical clustering on principal components; RFS: 
Random forest survival; SBP: Systolic blood pressure; BMI: Body mass index; 
HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein 
cholesterol.

Fig. 4  Random forest variable importance (VIMP). Blue bars indicate 
positive VIMP, red indicates negative VIMP. Importance is relative to 
positive length of bars

Table 2  Performance metrics for different prediction models*

*Both models were constructed from the top ranking features, including fasting 
blood glucose, thickness of interventricular septum, the ratio of mitral peak early 
(E) to late (A) diastolic filling velocity, left ventricular end-systolic dimension, 
body mass index, systolic blood pressure, thickness of the posterior wall and PTA

RFS random forest survival, CI confidence incidence

C-index 95%CI Brier Score 95%CI

Cox model 0.54 0.20–0.97 0.024 0.007–0.048

RFS model 0.87 0.71–0.98 0.026 0.011–0.046
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