
Kumar et al. 
BMC Medical Informatics and Decision Making          (2022) 22:307  
https://doi.org/10.1186/s12911-022-02046-7

RESEARCH

Choice of intraoperative ultrasound adjuncts 
for brain tumor surgery
Manoj Kumar1*, Santosh Noronha2, Narayan Rangaraj1, Aliasgar Moiyadi3,4, Prakash Shetty3,4 and 
Vikas Kumar Singh3,4 

Abstract 

Background:  Gliomas are among the most typical brain tumors tackled by neurosurgeons. During navigation for 
surgery of glioma brain tumors, preoperatively acquired static images may not be accurate due to shifts. Surgeons use 
intraoperative imaging technologies (2-Dimensional and navigated 3-Dimensional ultrasound) to assess and guide 
resections. This paper aims to precisely capture the importance of preoperative parameters to decide which type of 
ultrasound to be used for a particular surgery.

Methods:  This paper proposes two bagging algorithms considering base classifier logistic regression and random 
forest. These algorithms are trained on different subsets of the original data set. The goodness of fit of Logistic regres-
sion-based bagging algorithms is established using hypothesis testing. Furthermore, the performance measures for 
random-forest-based bagging algorithms used are AUC under ROC and AUC under the precision-recall curve. We also 
present a composite model without compromising the explainability of the models.

Results:  These models were trained on the data of 350 patients who have undergone brain surgery from 2015 to 
2020. The hypothesis test shows that a single parameter is sufficient instead of all three dimensions related to the 
tumor ( p < 0.05 ). We observed that the choice of intraoperative ultrasound depends on the surgeon making a 
choice, and years of experience of the surgeon could be a surrogate for this dependence.

Conclusion:  This study suggests that neurosurgeons may not need to focus on a large set of preoperative param-
eters in order to decide on ultrasound. Moreover, it personalizes the use of a particular ultrasound option in surgery. 
This approach could potentially lead to better resource management and help healthcare institutions improve their 
decisions to make the surgery more effective.

Keywords:  Brain cancer surgery, Medical decision making, Logistic regression, Random forest classifier, Intraoperative 
adjuncts, Bootstrap sampling
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Background
Gliomas are among the commonest brain tumors 
encountered by neurosurgeons. Surgery is an integral 
component of its treatment, and the extent of resection 
is a crucial prognostic factor. The advancements in basic 

sciences and the availability of sophisticated technologi-
cal surgical aids have led to the rise of innovative surgi-
cal strategies meant to profoundly impact the outcome of 
patients diagnosed with these aggressive tumors, which 
can show very different radiological patterns depend-
ing on their WHO grade and therefore pose different 
challenges in terms of surgical excision [1]. Due to the 
ill-defined nature of these tumors, surgeons increas-
ingly rely on technological adjuncts to identify and 
remove maximum tumor safely. Navigation or frame-less 
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stereotaxy is the standard tool based on preoperatively 
acquired MR images which acts like a GPS providing a 
road map for the surgical procedure. However, due to 
the changes in anatomical structures during surgery, its 
accuracy is compromised, necessitating updated intraop-
erative imaging.

Tumor surgery has two main stages - lesion localiza-
tion, and control of resection during surgery [2]. State-
of-the-art intraoperative micro-surgical techniques 
are supplemented by techniques such as Magnetic 
Resonance Imaging (MRI), CT, and ultrasonography to 
improve the real-time updates [3].

Although intraoperative MRI (iMRI) would be ideal, 
it is not widely available and is costly. Intraoperative 
ultrasound (US) has emerged as a very popular solution 
[4], both 2D US (standard default US modality) as well 
as advanced navigated 3D US (3DUS). 3DUS provides 
navigated multiplanar images often with fusion imaging 
with preoperative MR and is believed to provide better 
orientation and image interpretation, thereby making it a 
viable option.

However, the navigated 3D ultrasound costs more as 
one scan takes 3–5 min (1–2 min for 2D), and the setup 
cost is higher than 2D ultrasound. Thus there is a trade-
off between these imaging technologies, and one of the 
objectives in this paper is to analyze how neurosurgeons 
choose to deploy these two modalities during routine 
practice.

Different studies have shown that the resolution of 
ultrasound images deteriorates as the surgery progresses 
[2, 5]. Thus, navigated 3D ultrasound might not be ben-
eficial in later stages.

In this study, we attempt to understand the preopera-
tive factors that affect the choice of ultrasound.

Objective of the study
This study proposes a data-driven optimal decision pol-
icy based on patients and tumor characteristics. We have 
investigated the following research questions: 

1.	 What attributes of the patient and the tumor affect 
the choice of ultrasound?

2.	 Does the experience of the surgeon affect the deci-
sion?

While assessing the benefits of certain technical adjuncts 
in healthcare, it is important to understand the pat-
terns of use during routine care, which may differ from 
those under controlled trial conditions. Routine prac-
tices reflect day-to-day factors which are often difficult 
to pinpoint in preliminary observation. These factors 
need to be better understood to make conscious and 

well-informed decisions regarding the deployment of 
such health care technologies. This is more important if 
the eventual outcomes are affected by this choice or if 
there is a significant cost-consequence of these choices. 
In health care situations, it is often very difficult to test 
the effect of different states of the same factor (different 
types of techniques/adjuncts) due to practical and logisti-
cal difficulties. Using large databases and employing rig-
orous data science methods may be the best option.

The major conclusion is that contrast enhancement 
pattern, prior treatment, and surgeon’s experience vari-
ables are statistically significant in most models. The 
patient’s age is the only demographic factor that is statis-
tically significant.

Literature survey
Surgical workflow analysis
The use of adjuncts needs to be understood in the con-
text of surgical workflow. This workflow has different 
components, including low-level tasks, high-level tasks, 
patient status, and the use of medical devices. The low 
level activities described with the terms like cut the skin 
with a scalpel or remove tissues with forceps and high 
level tasks such as skin incision made, skull opened or 
tumor tissue removal. Considering the above, a study 
has been proposed to classify these situations based on 
multi-perceptive analysis [6]. Medical devices are devel-
oped stand-alone to provide specific functionality for a 
certain stage of the surgery. In [7], the authors have pre-
sented a model-driven design of surgical workflow to 
map the information of all these devices.

Surgeons need to make decisions about various tasks 
during surgical operations, called intraoperative deci-
sions. Different situations and strategies in general are 
discussed in [8].

Glioma surgery
An automatic estimation method for brain tumor resec-
tion was developed in [9] based on the anatomical infor-
mation received by the surgical navigation system using 
a Bayesian technique. The surgical navigation systems’ 
stand-alone use fails to improve the outcome of brain 
tumor surgeries.

In the literature, many studies highlight the impact 
of intraoperative ultrasound for controlling the extent 
of resection of tumor tissue, for example [4, 10, 11]. A 
study [12] has been conducted to understand the appli-
cations and interaction between different modes of 
intraoperative imaging under the subjective basis of 11 
surgical case studies. It highlights that iMRI is always 
the surgeon’s choice, while it is evident from the study 
that the beneficial imaging modality is linear array 
intraoperative ultrasound.
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Preoperative MRI features such as Eloquent Loca-
tion, Sub-cortical Depth, Lobar vs non Lobar Glioma 
Location are considered to develop a predictive grad-
ing scheme model for surgical outcome in patients with 
glioblastoma multiforme [13]. Some of their limitations 
were highlighted in the study [14], which are selection 
bias, the premise of the study, finding that high-com-
plexity lesions are significantly less likely to result in 
complete resection.

The authors in [15] showed that the superimposition 
of navigable 3D ultrasound with preoperative MRI pro-
vides a better orientation of the cross-sectional anatomy. 
Another study [2] showed that navigated 3D ultrasound 
without the preoperative images eliminates the registra-
tion inaccuracy inherent to image-to-patient registration 
algorithms. Another study has compared image-guided 
surgery with surgery being performed by either not using 
any image guidance or using two different forms of image 
guidance [3].

Statistical analysis and machine learning in healthcare
In medical decision-making, different statistical tech-
niques have been widely used to improve the under-
standing of medical practitioners such as Logistic 
regression [16], principal component analysis [17, 18], 
and bootstrap sampling [16].

Many researchers have used machine learning algo-
rithms in a variety of applications of healthcare such as 
diagnosis of a disease, prediction of survivability of a 
cancer patient, graft survival among kidney transplant 
recipients [19–24].

Convolutional neural networks have been proposed 
to diagnose gastric endoscopy-based gastric cancer, and 
they performed better than human pathologists [25].

A random forest and Cox proportional-hazard model 
has been developed to assess the association between 
contrast enhancement pattern of IHD mutant and dif-
fuse glioma tumor with survival [26].

While several studies have been done to understand 
the parts of brain cancer workflow and the adjuncts 
used during surgery, benefits discussed in these stud-
ies are stand-alone and do not include the decision 
regarding the imaging modality to use in a particular 
patient case. Most importantly, none address the fac-
tors that influence the choice of using a particular tech-
nical modality. Our study integrating the above aspects 
would be novel and relevant for the field of brain can-
cer surgery. This could better inform neurosurgeons on 
selecting the most suitable modality a priori and poten-
tially dictate decision making when identifying and 
inducting appropriate adjuncts in setting up a service.

Methods
Problem and data description
Intraoperative imaging technologies play a vital role in 
brain cancer surgery. Some of the possible technologies 
are intraoperative 2-Dimensional ultrasound (2DUS), 
navigated 3-Dimensional ultrasound (3DUS), and Mag-
netic Resonance Imaging (MRI). We try to identify fac-
tors that govern the choice of using the different types 
of intraoperative ultrasound based on the demographic 
factors of the patient, surgeon’s experience, and tumor 
characteristics. These factors are known a priori and 
can be built into a decision-making algorithm during 
the preoperative stage allowing optimal allocation and 
utilization of resources as well as serving as a recom-
mendation in different types of scenarios.

We also explore whether the surgeon’s personal 
choice affects intraoperative 2DUS versus 3DUS 
decisions.

The data used in this analysis is secondary data col-
lected from the electronic records of a tertiary care 
referral neurosurgical oncology centre. All patients 
undergoing resection for gliomas where intraoperative 
ultrasound was utilized and had preoperative MRI avail-
able for review during the time period 2015–2020 were 
analyzed. The use of anonymised retrospective data was 
approved for this study.

Clinical and radiological features based on preopera-
tive routine MRI were extracted. The attributes of inter-
est included patient’s age, gender, prior treatment status 
(yes/no), eloquent location (yes/no), depth of tumor (sur-
facing/sub-cortical/deep), histology (high grade/low 
grade), glioma location (lobar/no-lobar), delineation 
(good/moderate/poor), contrast enhancement pattern 
(negligible/mixed/predominant), tumor dimensions 
in three orthogonal planes (height, length, width), and 
surgeon experience. Additionally, a variable spherical 
diameter was computed using the volume equivalent 
spherical diameter using MRI height, length, and width 
of the tumor.

We have included 350 procedures, out of which 2D 
ultrasound was used for 143 surgeries. Out of these three 
values were missing for contrast enhancement patterns, 
these were imputed using mode value.

In this data set, four surgeons have performed all the 
surgeries. The number of surgeries accomplished by a 
surgeon is taken as the surgeon’s experience. The average 
(SD) age of patients is 41.23 (14.71) years. Appropriate 
correlation methods measuring the association between 
the variables were applied [27] and are shown in the 
attached Additional file 1.

The correlation among the tumor’s length, height, and 
width is significant, and all other variables showed negli-
gible correlation.



Page 4 of 11Kumar et al. BMC Medical Informatics and Decision Making          (2022) 22:307 

Statistical analysis
We have performed both parametric (t-test) and non-
parametric (Mann–Whitney test) tests on the data sets 
to confirm the normality of the data. We have presented 
the p-values corresponding to the Mann–Whitney test 
here as we obtained the same result from both methods. 
The hypothesis tested is that both groups of technologies 
result in the same mean/proportions for the variables 
listed. Table  1 depicts the description of the complete 
data set with p-values for the hypotheses designed above.

Surgeon experience and prior treatment status are 
statistically significant in both groups. The most expe-
rienced surgeon has used the navigated 3D ultrasound 

more often. The average age of the patients, length, and 
height are more in 3DUS group but not statistically 
significant.

The data set is stratified into two groups—surgeon 
group 1, which includes the patients whose surgery was 
performed by the most experienced surgeon, and sur-
geon group 2 that consists of the patients whose surgeries 
were performed by three other surgeons.

Surgeon group 1 has performed 214 surgeries, out of 
which 58 (27%) surgeries are with 2DUS. Table 2 depicts 
the description of surgeon group 1 data set. The t-test 
and Mann–Whitney tests showed that none of the attrib-
utes are statistically significant.

Surgeon group 2 has performed 136 surgeries, out 
of which 51 (37.5%) surgeries are with navigated 3D 
ultrasound. Mann–Whitney test shows that none of 
the parameters (taken one at a time) are statistically 

Table 1  Description of complete data set

*p < 0.05 ; p-value are corresponding to Mann–Whitney test

2D (n = 143) 3DUS (n = 207) p-value
Mean (SD)

Age (in years) 40.32 (15.72) 41.86 (13.97) 0.35

Length (in cm) 4.81 (1.59) 4.98 (1.65) 0.21

Width (in cm) 3.91 (1.18) 3.83 (1.14) 0.53

Height (in cm) 4.03 (1.30) 4.15 (1.33) 0.34

Surgeon experience 
(no. of surgeries)

143.17 (64.65) 184.23 (55.20) 0.00*

Gender

Male 97 149 0.4

Female 46 58

Prior treatment

Yes 45 36

No 98 171 0.00*

Eloquent location

Yes 55 98

No 88 109 0.1

Depth of tumor

Surfacing 68 113

Sub-cortical 41 49

Deep 34 45 0.26

Histology

Low grade 31 49

High grade 112 158 0.66

Glioma location

Lobar 135 203 0.06

No-Lobar 8 4

Delineation

Poor 10 23

Moderate 80 102

Good 53 82 0.97

Contrast enhancement pattern

Negligible 33 78

Mixed 88 80

Predominant 22 49 0.30

Table 2  Description of surgeon group 1 data

p-values are corresponding to Mann–Whitney test

2D (n = 58) 3DUS (n = 156) p-value
Mean (SD)

Age (in years) 43.79 (16.64) 41.42 (13.77) 0.43

Gender

Male 39 114

Female 19 42 0.4

Prior treatment

Yes 17 27

No 41 129 0.05

Eloquent location

Yes 25 79

No 33 77 0.32

Depth of tumor

Surfacing 26 88

Sub-cortical 18 36 0.18

Deep 14 32

Histology

Low grade 12 34

High grade 46 122 0.86

Glioma location

Lobar 54 153

No-Lobar 4 3 0.07

Delineation

Poor 3 16

Moderate 32 80 0.59

Good 23 60

Contrast enhancement pattern

Negligible 12 63

Mixed 36 54 0.22

Predominant 10 39
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significant except prior treatment, which is at border-
line, as shown in Table 3.

Thus, the major difference between surgeon groups 1 
and 2 is that the former had more navigated 3D proce-
dures, and the latter had more 2D ultrasound ones.

Methodology
We have designed two bootstrap cum aggregation (bag-
ging) algorithms with logistic regression, and random 
forest as base (weak) classifiers [28, 29]. The non-para-
metric bootstrap sampling technique [16] was used for 
generating different learning set from the data set. The 
bagging algorithms are an aggregation of weak classi-
fiers trained on bootstrap samples. We aggregated the 
final prediction by averaging the predicted probabilities 
of each of the weak classifiers.

Data analysis
Both bagging algorithms have been trained on the com-
plete data set, on various subsets, and after dimensional 
reduction of the data set. We have also combined some 
levels of ordinal features and trained the logistic regres-
sion and random forest classifier to develop a composite 
model. All these data sets were standardized to stand-
ard normal distribution beforehand. All the data sets are 
divided randomly in the training set (80%) and testing 
test (20%), and models were trained on bootstraps sam-
ples drawn from training data sets.

Actual data set analysis
In this section, we have discussed the models trained on 
the actual data set and their corresponding results.

Complete data set
The complete data set was used to generate 11000 boot-
strap samples and logistic regression (referred as LR-full 
model) and random forest-based bagging (referred as RF-
full model) were trained.

Odds ratio (OR) of patient’s gender, surgeon’s experi-
ence, eloquent location, length, height, and glioma loca-
tion are greater than one, and for all other variables, they 
are less than one. OR > 1 indicates the likelihood of nav-
igated 3D is higher as compared to 2D ultrasound, and 
OR < 1 indicates a decrease in the likelihood of navigated 
3D ultrasound.

Complete data set with spherical diameter
Brain tumor shape was approximated using spherical 
harmonics, which is defined by the orthogonal basis of 
functions over unit sphere for image-guided surgery [30]. 
In this data set, instead of height, length, and width, we 
have introduced a new parameter ‘spherical diameter’ 
which is computed from equivalent spherical volume 
( 3 6

π
× length× height× width ). The logistic regression 

(LR-Spherical model) and random forest (RF-Spherical 
model) based bagging algorithm were trained on this 
dataset.

The spherical diameter variable is constructed because 
there is a high correlation between the tumor’s length, 
height, and width (tumors are relatively unlikely to grow 
along only one dimension). A χ2-test shows that the 
hypothesis that the spherical diameter is sufficient to 
capture the information of the three-dimension-related 
variables cannot be ruled out ( p = 0.763 > 0.05 ). This 
allows us to make the models more compact.

The surgeon experience variable is a most important 
feature in RF-full and RF-Spherical shown in Fig.  1 and 
has a larger coefficient in LR-full and LR-Spherical model 
as well. Also, its coefficient is statistically significant in 
both the models defined earlier. We have performed the 

Table 3  Description of surgeons group 2 data set

p-values are corresponding to Mann–Whitney test

2D (n = 85) 3DUS (n = 51) p-value
Mean (SD)

Age (in years) 37.95 (14.70) 43.23 (14.64) 0.07

Gender

Male 58 35

Female 27 16 0.96

Prior treatment

Yes 28 9

No 57 42 0.05

Eloquent location

Yes 30 19

No 55 32 0.82

Depth of tumor

Surfacing 42 25

Sub-cortical 23 13 0.89

Deep 20 13

Histology

Low grade 19 15

High grade 66 36 0.36

Glioma location

Lobar 81 50

No-lobar 4 1 0.41

Delineation

Poor 7 7

Moderate 48 22 0.69

Good 30 22

Contrast enhancement pattern

Negligible 21 15

Mixed 52 26 0.99

Predominant 12 10
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analysis after excluding it to claim that this is indeed an 
important factor.

Data set with surgeon experience removed
We have removed the surgeon’s experience from the 
complete data set and randomly divided the data set 
into training (80%) and testing set (20%). The bootstrap 
samples were drawn from the training set. The random 
forest (RF-Surgeon’s Experience Removed) and logistic 
regression-based bagging algorithm (LR-Surgeon’s Expe-
rience Removed) were trained on each of these bootstrap 
samples.

We have observed that the performance of both bag-
ging algorithms worsened after dropping the surgeon 
experience feature.

The χ2-test showed that LR-Spherical model and LR-
Surgeon’s Experience Removed are statistically different 
( p = 0.005 < 0.05 ). Therefore, removing the surgeon’s 
experience from the model increases the deviance of the 
model and thus degrades the performance of the model. 
Hence surgeon’s experience is an important factor in the 
choice of intraoperative ultrasound.

Surgeon based stratification
The complete data set is stratified into two groups based 
on the surgeons who have executed the surgeries. The 
details are discussed in the Tables 2 and 3.

Surgeon group 1 has 27% 2DUS samples, and surgeon 
group 2 has 37.5% 3DUS samples. Class imbalance is 
when one class has more elements than another in the 
data set, which biases predictive models towards the 
majority class. To prevent this, we have used the Syn-
thetic Minority Oversampling Technique (SMOTE) [31]. 
SMOTE over-samples the minority class using k nearest 
neighbors technique.

In surgeon group 1, we have considered the value of 
k as six. The balanced data set of surgeon group 1 was 

divided into training and test set with an 80:20 ratio. The 
logistic regression (LR-Surgeon 1 group) and random for-
est-based bagging algorithm (RF-Surgeon 1 group) were 
trained on 11500 bootstrap samples from the training set.

In surgeon group 2, we have over-sampled the navi-
gated 3D ultrasound class using k is equal to 3 and 
divided the data into 80:20 ratio for training and testing 
set. The logistic regression (LR-Surgeon 2 group) and 
random forest-based bagging algorithm (RF-Surgeon 2 
group) were trained on 11500 bootstrap samples of size 
equal to the training set.

The prior treatment is statistically significant in LR-full 
( p = 0.008 ), LR-Surgeon’s Experience Removed model 
( p = 0.023 ), LR-Surgeon 1 group model ( p = 0.007 ), 
and at border line in LR-Spherical model. The width is 
statistically significant in LR-full model ( p = 0.04 ). The 
LR-Surgeon 1 showed that patient’s age is statistically sig-
nificant as p = 0.011 , whereas histology ( p = 0.018 ) in 
LR-Surgeon 2 model.

Table  4 shows the likelihood of choice of ultrasound-
based on the odds ratios corresponding to all logistic 
regression models discussed so far.

Analysis after redesigning of some parameters
The above models include the patient as well as tumor 
characteristics. It is very unlikely that patient’s age and 
gender would influence the choice of the US being used. 
Therefore, we will consider only the tumor characteristics 
visible to surgeons before starting the surgery in further 
models, but after redefining some of them, such as con-
trast enhancement pattern, delineation, and location of 
tumor.

The contrast enhancement pattern is redefined as fol-
lows: ‘predominant’ + ‘mixed’ is taken as enhancing, and 
‘negligible’ is taken as ‘non-enhancing’.

Delineation is redefined as a dichotomous variable in 
two distinct ways: 

Fig. 1  Feature Importance for random forest model: the bars show the 95% confidence interval centered on the mean value. Surgeon_exp 
represents surgeon experience and contrast_en represents contrast enhancement pattern
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1.	 Moderate grouped with poor delineation, and good 
delineation kept separate (denoted as PMD)

2.	 Moderate grouped with good, and poor delineation 
kept separate (denoted as GMD)

This is because the definition of moderate may be subjec-
tive, whereas poor and good delineations are more easily 
and reproducibly defined. The location of tumor was also 
redefined by coupling the depth of the tumor and height 
of the tumor as follows: 

1.	 We club ‘surfacing’ and ‘sub-cortical’ tumors as ‘sur-
facing’ and assign all of them as fixed ‘surface depth’ 
value of 0.5 cm as these were defined as less than 1 
cm. The ‘surface depth’ of deep tumors is considered 
as 1 cm.

2.	 Then we use the height value of each tumor, take its 
midpoint and add it to ‘surface depth’ (which is 0.5 or 
1) to get the epicenter depth of the tumor.

3.	 Then we have defined the new variable location of 
tumor as ‘superficial’ if epicenter depth is less than 3 
cm and otherwise ‘deep’ tumor.

A threshold of 3  cm is reasonable as total depth of the 
brain practically is observed to be 5–6 cm. The statistical 
analysis of all these variables showed that the prior treat-
ment and contrast enhancement pattern are statistically 
significant (see the attached Additional file 1).

.
Based on this, we have constructed the following data 

set after suitable changes. 

A.	Complete data set with PMD The logistic regression 
and random forest models trained on this data set are 
referred as LR-PMD Spherical and RF-PMD Spheri-
cal.

B.	 Surgeon Stratified data sets with PMD The logis-
tic regression and random forest models trained on 
these data sets are referred as LR-PMD Spherical 
Surgeon 1, LR-PMD Spherical Surgeon 2, RF-PMD 
Spherical Surgeon 1, and RF-PMD Spherical Surgeon 
2.

C.	Complete data set with GMD The logistic regression 
and random forest models trained on this data set are 
referred as LR-GMD Spherical and RF-GMD Spheri-
cal.

D.	Surgeon stratified data sets with GMD The logis-
tic regression and random forest models trained on 
these data sets are referred as LR-GMD Spherical 
Surgeon 1, LR-GMD Spherical Surgeon 2, RF-GMD 
Spherical Surgeon 1, and RF-GMD Spherical Sur-
geon 2.

In (A) and (B), we have only included the tumor charac-
teristics with delineation defined as PMD, whereas in (C) 
and (D), delineation is defined as GMD. We have trained 
different logistic regression and random forest models on 
these data sets. Table 5 shows the likelihood of choice of 
intraoperative ultrasound in different models.

We have compared all logistic regression models 
using the chi-square test as depicted in Table  6. This 
table summarizes the important models that lead to our 
conclusions.

Table 4  Likelihood of ultrasound of different logistic regression based bagging models

2D represents the 2D ultrasound whereas 3DUS represents the navigated 3D ultrasound. – represents the exclusion of that variable in the model

Name LR Full LR-Spherical LR-Surgeon’s Exp LR-Surgeon 1 LR-Surgeon 2

Age 2D 3DUS 3DUS 2D 3DUS

Gender 3DUS 3DUS 3DUS 2D 2D

Surgeon’s Exp 3DUS 3DUS – – –

Prior treatment 2D 2D 2D 2D 2D

Contrast enhancement pattern 2D 2D 2D 2D 2D

Delineation 2D 2D 2D 2D 2D

Eloquent location 3DUS 3DUS 3DUS 3DUS 2D

Histology 2D 2D 2D 3DUS 2D

Depth of tumor 2D 2D 2D 2D 2D

Length 3DUS – – – –

Width 2D – – – –

Height 3DUS – – – –

Glioma location 3DUS 3DUS 3DUS 3DUS -

Spherical diameter – 3DUS 2D 3DUS 2D
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Our composite models with redesigned variables 
showed performance comparable to the LR-spheri-
cal model. Hence, a decision may be taken with fewer 
parameters instead of all patient and tumor characteris-
tics. This can also be concluded from the surgeon group 1 
and surgeon group 2 data.

Table 7 shows the performance of all the models. RF-
Surgeon 1 model resulted in all performance measures 
(accuracy, AUC ROC score, and AUC PR being more 
than 80%. All except LR-Surgeon Experience removed, 
and RF-Surgeon Experience removed models resulted 
in the AUC ROC score of more than 70%. The AUC 
ROC score 0.7–0.8 is considered acceptable, 0.8–0.9 is 
considered excellent, and more than 0.9 is considered 
outstanding [32]. Hence all our models expect LR-Sur-
geon’s Experience removed and RF-Surgeon’s Experience 
removed are acceptable.

Discussion

1.	 All models discussed in Table  4 except LR-full and 
LR-Surgeon 1 group model favoring the navigated 3D 
ultrasound more likely when a patient is older.

2.	 All the logistic regression models discussed in 
Tables 4 and 5 agree that choice of 2D ultrasound is 
more likely when prior treatment is ‘yes’ or contrast 
enhancement pattern is ‘enhancing’. As discussed 
with medical practitioners, 2D ultrasound is used 
either to localize the tumor or for a confirmatory 
scan whenever any prior treatment is done. Also, 
‘enhancing’ tumors are clearly visible to surgeons; 
therefore, 2D ultrasound is enough. Wherever the 
tumor is in eloquent areas or the location is deep, all 
models recommend using navigated 3D ultrasound 
as the surgeon’s focus is to prevent damage to elo-
quent areas while achieving maximal possible resec-

Table 5  Likelihood of ultrasound of logistic regression based bagging models

Name LR-PMD 
Spherical

LR-PMD 
Surgeon 1

LR-PMD 
Surgeon 2

LR-GMD 
Spherical

LR-GMD 
Surgeon 1

LR-GMD 
Surgeon 
2

Prior treatment 2D 2D 2D 2D 2D 2D

Contrast enhancement pattern 2D 2D 2D 2D 2D 2D

Delineation 3DUS 2D 3DUS 2D 2D 2D

Eloquent location 3DUS 3DUS 3DUS 3DUS 3DUS 3DUS

Histology 2D 3DUS 2D 2D 3DUS 2D

Location 3DUS 3DUS 3DUS 3DUS 3DUS 3DUS

Spherical diameter 2D 3DUS 2D 2D 3DUS 2D

Table 6  Statistical analysis of different models

Bold values are < significance level 0.05 (i.e. p < 0.05)

Full data set

Model Deviance Degree of freedom Model comapred P value

1 LR-full model 85.67 56

2 LR-Spherical model 85.14 58 1–2 0.763

3 LR-Surgeon’s Experience removed 92.78 59 1–3 0.068

2–3 0.005
4 LR-GMD Spherical 87.17 62 2–4 0.845

5 LR-PMD Spherical 86.62 62 2–5 0.915

Surgeon Group 1 data set

6 LR-Surgeon 1 77.18 52

7 LR-GMD Spherical Surgeon 1 77.48 55 6–7 0.960

8 LR-PMD Spherical Surgeon 1 76.04 55 6–8 0.767

Surgeon Group 2 data set

9 LR-Surgeon 2 40.21 23

10 LR-GMD Spherical Surgeon 2 39.40 26 9–10 0.847

11 LR-PMD Spherical Surgeon 2 41.06 26 9–11 0.837
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tion. In cases, 2D ultrasound may not provide suffi-
cient information about deeply situated tumors, then 
navigated 3D ultrasound is preferred.

3.	 The surgeon 1 model elaborated in Table 4 suggests 
the use of navigated 3D ultrasound for large spheri-
cal diameter tumors. In contrast, all other models 
trained on PMD and GMD data sets suggest the use 
of 2D ultrasound.

4.	 Except LR-PMD surgeon 2 and LR-PMD spherical, 
all other models discussed in Table 5 suggest the use 
of 2D ultrasound whenever delineation is good.

5.	 LR-PMD Spherical and LR-GMD Spherical models 
discussed in Table  5 have the same sign coefficient 
except for the delineation, which is defined in various 
ways. The random forest trained on these data sets 
also exhibits a different order of feature importance. 
Therefore, how surgeons interpret the moderate 
delineation is also an essential factor in deciding the 
type of intraoperative ultrasound.

6.	 The random forest-based models trained on surgeon’s 
stratified datasets resulted spherical diameter as a most 
important factor in the models. Also, it is observed 

that feature importance is distinct for different models, 
which may be due to the surgeon’s personal choice that 
they would have for 2D or navigated 3D ultrasound.

7.	 We have also applied Principal Component Analysis 
(PCA) on complete data set with spherical diameter 
and found that it does not provide us a model with 
fewer dimensions that could explain intraoperative 
ultrasound decisions. However, after redesigning a 
few ordinal variables without compromising explain-
ability, a more compact model with fewer features 
was obtained. This perhaps overcomes the limitation 
of the Principal Component Analysis method.

Contrast enhanced ultrasound (CEUS) is a rapidly evolv-
ing US technique which employs nano bubbles and har-
monic imaging to produce contrast images. This reflects 
tissue perfusion and is different from MR contrast 
enhancement in gliomas which is a function of tissue 
permeability and extravasation of contrast from a leaky 
blood brain barrier. However, CEUS is fast emerging as 
a useful adjunct to standard B Mode US. We did not use 
CEUS and hence our results may be taken in this con-
text only. we agree that in the future they may need to be 
revisited as more evidence accumulates. The use of CEUS 
for brain cancer surgery can be found elsewhere [33].

Contrast enhancement may not be important in 
decision-making in low grade gliomas [14], which may 
be because a majority of low grade gliomas are non-
enhancing. However, our pool of cases was a mix and 
since there were many high grade tumors, enhancement 
did show some significance (as shown in the Additional 
file 1). It also corroborates the study [34], which showed 
the importance of intraoperative ultrasonography for 
resections of non-enhancing tumors.  It should be kept 
in mind that histology is usually not available at the time 
of surgical planning and the surgeon has to rely on avail-
able parameters and information. In such a case, contrast 
enhancement is especially valuable as a surrogate marker 
of tumor grade, and for decision making.

Conclusion
In this paper, we have attempted to examine the factors 
that could have influenced the choice of use of a particu-
lar intraoperative imaging adjunct (US) in a large series 
of patients consecutively treated at a reference neuro-
surgery centre. Different logistic regression and random 
forest-based bagging models were fitted over the various 
data sets generated from a data set of 350 patients and 
tested on the test data sets. We found that the surgeon 
experience, prior treatment, and contrast enhancement 
pattern are statistically significant in almost all logis-
tic regression-based models. The models trained on the 

Table 7  Performance of all models

AUC ROC denotes area under the receiver operating characteristic curve 
whereas AUC PR denotes area under the precision-recall curve

Model Accuracy (%) AUC ROC (%) AUC PR (%)

LR Full 70 70 75

RF Full 66 72 79

LR Spherical 66 74 82

RF Spherical 69 72 75

LR-Surgeon’s Exp removed 56 63 74

RF-Surgeon’s Exp removed 57 64 73

LR-Surgeon 1 group 70 76 72

RF-Surgeon 1 group 81 89 97

LR-Surgeon 2 group 71 79 80

RF-Surgeon 2 group 74 80 82

LR-PMD Spherical 64 71 77

RF-PMD Spherical 64 77 83

LR-PMD Spherical Surgeon 
1

70 77 75

RF-PMD Spherical Surgeon 
1

71 78 76

LR-PMD Spherical Surgeon 
2

62 76 77

RF-PMD Spherical Surgeon 
2

59 70 71

LR-GMD Spherical 64 70 76

RF-GMD Spherical 64 80 85

LR-GMD Spherical Surgeon 
1

65 78 75

RF-GMD Spherical Surgeon 
1

71 72 70
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surgeon’s stratified data sets show that patients’ age and 
histology are also statistically significant.

The random forest-based bagging model also showed 
that the surgeon experience and patient’s age are the two 
most important factors. The spherical diameter of the 
tumor is the essential attribute after removing the sur-
geon experience parameter from the model. The random 
forest-based model trained on the surgeon’s stratified 
group where only tumor characteristics are considered, 
depicts the distinct order of feature importance.

Logistic regression-based model highlights that likeli-
hood of ultrasound type depends on how the delinea-
tion is considered. Therefore, we can say that different 
surgeons give different weightage to various features 
while selecting the intraoperative ultrasound. The mod-
els trained on the surgeon’s stratified data sets show 
that the surgeon’s personal choice affects the overall 
decision of intraoperative ultrasound.

We have introduced spherical diameter as a single 
parameter instead of three MRI measured dimensions 
of tumor. We found that one parameter, i.e., spherical 
diameter, is enough to capture the information of all 
three dimensions of the tumor. Tumor characteristics 
(delineation/prior treatment/contrast enhancement 
pattern/eloquent monitoring/histology/location) were 
found to be adequate to explain the decision irrespec-
tive of patient characteristics (age, gender), by and 
large. Only in one subset of data, age plays some role in 
the decision-making. The 2D ultrasound was used more 
likely for previously treated superficial and enhancing 
tumors situated in non-eloquent areas. The navigated 
3D ultrasound was used for non-enhancing tumors sit-
uated in eloquent areas and deep inside the brain.

The limitation of our work is that the results reflect 
associations between tumor factors and the use of a 
particular US type, but this cannot be interpreted as 
recommendations for the use of such US type in those 
subsets. For that, outcome analysis and correlation are 
important. However, analyzing choice distribution is 
important to be able to account for surgeon choices in 
future outcome comparison studies.
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