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Abstract 

Background:  Epilepsy is the fourth-most common neurological disorder, affecting an estimated 50 million patients 
globally. Nearly 40% of patients have uncontrolled seizures yet incur 80% of the cost. Anti-epileptic drugs commonly 
result in resistance and reversion to uncontrolled drug-resistant epilepsy and are often associated with significant 
adverse effects. This has led to a trial-and-error system in which physicians spend months to years attempting to iden-
tify the optimal therapeutic approach.

Objective:  To investigate the potential clinical utility from the context of optimal therapeutic prediction of char-
acterizing cellular electrophysiology. It is well-established that genomic data alone can sometimes be predictive of 
effective therapeutic approach. Thus, to assess the predictive power of electrophysiological data, machine learning 
strategies are implemented to predict a subject’s genetically defined class in an in silico model using brief electro-
physiological recordings obtained from simulated neuronal networks.

Methods:  A dynamic network of isogenic neurons is modeled in silico for 1-s for 228 dynamically modeled patients 
falling into one of three categories: healthy, general sodium channel gain of function, or inhibitory sodium channel 
loss of function. Data from previous studies investigating the electrophysiological and cellular properties of neurons 
in vitro are used to define the parameters governing said models. Ninety-two electrophysiological features defin-
ing the nature and consistency of network connectivity, activity, waveform shape, and complexity are extracted for 
each patient network and t-tests are used for feature selection for the following machine learning algorithms: Neural 
Network, Support Vector Machine, Gaussian Naïve Bayes Classifier, Decision Tree, and Gradient Boosting Decision Tree. 
Finally, their performance in accurately predicting which genetic category the subjects fall under is assessed.

Results:  Several machine learning algorithms excel in using electrophysiological data from isogenic neurons to 
accurately predict genetic class with a Gaussian Naïve Bayes Classifier predicting healthy, gain of function, and overall, 
with the best accuracy, area under the curve, and F1. The Gradient Boosting Decision Tree performs the best for loss of 
function models indicated by the same metrics.

Conclusions:  It is possible for machine learning algorithms to use electrophysiological data to predict clinically valu-
able metrics such as optimal therapeutic approach, especially when combining several models.
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Introduction
Epilepsy is a highly prevalent neurological disorder which 
affects all age groups. The majority of patients with epi-
lepsy will not go into remission from their first antie-
pileptic drug (AED) with up to 40% percent of patients 
experiencing seizures that are not controlled by medica-
tion [1]. Not only does this potentially impart permanent 
injury, but it accounts for 80% of the cost of epilepsy in 
the United States. Moreover, more than 66% of patients 
with unmanaged seizures are considered to have refrac-
tory or drug resistant epilepsy (DRE) [2]. This implies 
that patients that initially go into remission have a high 
likelihood of the efficacy of the therapy diminishing over 
time to the point of not sufficiently managing epileptic 
activity at all.

Forty percent of patients experience intense adverse 
effects that significantly impact quality of life and con-
tribute to treatment failure. These can occur for a vari-
ety of reasons ranging from the inability to metabolize 
the therapeutic to a complex combination of specific 
genomic, proteomic, metabolomic, transcriptomic and 
manifestly electrophysiological (EP) characteristics [3]. 
These adverse effects include fatigue, memory loss, gas-
trointestinal disturbances, cardiovascular disturbances, 
vision problems, nausea, ataxia, cephalgia, insomnia, 
depression, and much more. The reported side effects 
are not uncommon, with most of the individual adverse 
effects occurring in 10–40% of patients, and up to 88% of 
patients experiencing at least one [4].

The current standard of care, when a patient is not 
responding to a particular AED monotherapy or poly-
therapy, or the adverse effects are unmanageable and 
the quality of life is significantly impacted, is to proceed 
through a trial-and-error system to find a monotherapy 
or polytherapy that is both effective and has manage-
able adverse effects. This process can take years, cost 
hundreds of thousands of dollars, and impart irreparable 
harm and suffering to the patient [2]. Therefore, there 
exists a large interest in novel strategies to predict how 
a patient will respond to a particular medication a priori. 
While some progress has been made regarding the use 
of genomic information to predict treatment efficacy, 
it is far from capable of predicting the ideal therapeutic 
approach in most patients [5]. One contributing element 
to the lack of predictive power in pharmacogenom-
ics is the myriad of other factors that dynamically affect 
the electrophysiology of patient neurons. These factors 

include metabolomics, transcriptomics, proteomics, epi-
genetic variables, and many more.

Given the number of variables that have the poten-
tial to affect patient electrophysiology and therapeutic 
efficacy, it is implausible to expect that a single physi-
cian should be able to strategically synthesize them and 
derive the optimal therapeutic approach. Therefore, there 
has been considerable interest in implementing machine 
learning (ML) algorithms to guide patient classification.

In addition to implementing novel strategies to cohe-
sively consider the information relevant to predicting 
therapeutic efficacy, there is also a growing interest in 
identifying novel biomarkers and parameters that are 
predictive of therapeutic efficacy. Recently, variables 
extracted from patient cellular electrophysiology have 
shown great promise in their predictive power regard-
ing a number of neurological conditions. For example, 
dynamical electrical complexity has been shown to be 
reduced in neurons isogenic to patients with autism spec-
trum disorders and epilepsy has been shown to be related 
to theta band network connectivity as well as interictal 
spike and paroxysmal depolarization shift frequency [6–
9]. These results implicate the strategy of using patient 
derived induced pluripotent stem cells (iPSCs) to create 
isogenic neuron and/or glial cells which can be cultured 
or co-cultured on microelectrode arrays (MEA) or nano-
electrode arrays (NEA) to record EP activity and extract 
relevant biomarkers. Recent improvements in the speed 
and efficiency with which skin associated fibroblasts 
and peripheral blood monoclonal cells (PBMCs) can be 
induced into iPSCs [10, 11], as well as improvements in 
speed and yield of neurons differentiated from iPSCs [12, 
13], are bringing this approach closer to clinical feasibility 
at a large scale. Moreover, demand for reagents theoreti-
cally exert market forces to scale the production of said 
reagents, driving down the price, and further incentiviz-
ing this type of testing; with better predictive biomark-
ers, it may be possible to identify an effective therapeutic 
strategy at an earlier stage, thereby significantly reducing 
the healthcare cost while improving patient prognoses 
[2].

It has been well-established that genetic variables are 
effective at coarsely predicting which therapies may be 
more effective in some cases [5]. It is of current interest 
to assess the ability of electrophysiology to have simi-
lar predictive power. Recent studies have shown that 
ML algorithms can be used to extract features from 
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electrophysiological data [14]. Furthermore, it has been 
shown that electrophysiological data can be utilized in 
isolation by machine learning algorithms to identify 
pathologic states or perturbations [15, 16]. Much of the 
current work in the field is focused on cardiac patholo-
gies and typically investigate only one machine learning 
method such as a support vector machine or Bayesian 
supervised learning method. Therefore, it is not only of 
interest to explore these methods in neuronal applica-
tions but also to assess the capability of various different 
statistical and machine learning methods to synthesize a 
large quantity of relevant information to make such pre-
dictions about the state of neuronal cultures.

Ideally, a large-scale clinical study involving a moder-
ately variable group of patients with differently origi-
nating and manifesting epilepsy would be conducted to 
answer these questions. In such study, one could extract 
skin associated fibroblasts or PBMCs to induce to iPSCs 
and further differentiate to isogenic neurons and glial 
cells. These cells could be co-cultured on an MEA to 
record EP activity and further processing of the data 
would extract the relevant EP variables. These variables 
would then be subjected to statistical analysis to deter-
mine if they are predictive of actual patient treatment 
response. Although such a study involves subjecting 
patients to minimally invasive, low-risk procedures, these 
procedures carry inherent risk, nonetheless. This study 
design would also take a considerable amount of time 
and resources to complete.

Therefore, it is important to perform pre-validation 
studies to confirm the scientific promise of conducting 
such an extensive study. Thus, the goal of this explora-
tion is to assess the ability of EP variables to predict 
therapeutic response in an efficient manner. Since genetic 
mutation status has been shown to predict therapeutic 
efficacy to some degree [5] and because certain genetic 
mutations provoke alterations in the presentation of epi-
leptic disease on an EP level, it follows that genetic based 
differences in EP presentation should also have predic-
tive power for identifying the more effective treatment 
strategy for the individual. Moreover, from an informa-
tion theory perspective, something that is predictive of 
genomic mutation status should also have predictive 
power for therapeutic efficacy given genomic mutation 
status is, of itself, predictive of therapeutic efficacy. This 
point is important because this study utilizes in silico 
modeling of neuronal cultures and modeling of disease 
status defined by a unique genetic mutation, which exerts 
a very well-defined action that is much more direct and 
therefore reliable than in silico modeling of a particular 
therapy [17].

In order to accomplish this, a small-scale dynamic 
network of isogenic neurons is modeled in silico for 1 s 

for 228 dynamically modeled patients. There are thou-
sands of unique epileptogenic genetic mutations, many 
of which are voltage-gated sodium channel (VGSC) 
mutations. These mutations are usually either global 
gain of function (GoF) or loss of function (LoF) in 
VGSC isoforms highly selectively expressed in inhibi-
tory neurons, both of which cases result in increased 
network excitability [18]. Thus in the current in silico 
model, patients fall into one of three categories: healthy, 
general sodium channel GoF mutation (GoF), or inhibi-
tory sodium channel LoF. Following this, a number of 
simple and advanced EP parameters are extracted for 
each patient. Using statistical tests to determine which 
variables serve as inputs to ML algorithms, several dif-
ferent ML algorithms are tested to assess their relative 
performance in predicting which genetic category the 
subject falls under.

Methods
In Silico modeling
In order to recapitulate the most important features 
of neuronal networks in a dynamic and customiz-
able manner, the BRIAN 2 Python library was utilized. 
Data used to determine parameters that define the fol-
lowing model were obtained from Stimberg et al. [17], 
BRIAN 2 documentation, and Hodgkin-Huxley [19], 
and summarized in Table  1. A modified version of 
Hodgkin-Huxley [19] dynamics were used to govern 
the membrane voltage response with the system of dif-
ferential Eqs. 1–6.

(1)

dV

dt
=

gl(El − V )+ gNam
3h(ENa − V )+ gkn

4(EK − V )

Cm

(2)

dm

dt
=

0.32(13− V + VT )

e
13−V+VT

4 − 1
(1−m)−

0.28(V − VT − 40)

e
V−VT−40

5 − 1
m

Table 1  Summary of parameters adapted from Stimberg et  al. 
(2017), (17) BRIAN 2 documentation, and Hodgkin-Huxley 
(1952) (19) for healthy patients in the in silico simulation of a 2D 
neuronal network

Parameter Value Units

τK 6.00 ms

τNa 6.00 ms

gl 50.00 µS cm−2 Area

gNa,0 100.00 mS cm−2 Area

gK,0 30.00 mS cm−2 Area

Ωf 3.33 s−1

Ωd 2.00 s−1

U0 0.6



Page 4 of 16Kress et al. BMC Medical Informatics and Decision Making          (2022) 22:290 

With V representing the membrane voltage in mV, n, 
m, and h are dimensionless values between 0 and 1 rep-
resenting the proportion of the n, m, and h gates open 
in their respective voltage-gated ion channels. The val-
ues gl, gk, and gNa represent the leak, potassium, and 
sodium conductances in siemens (S), respectively, and 
the corresponding subscripted E values are the leak, 
potassium, and sodium Nernst potentials in mV. VT, 
gNa,0, and gK,0 are the threshold potential in mV and 
resting sodium and potassium membrane conductances 
in S. Finally, Cm is the membrane capacitance in Farads 
and τNa and τK  are the time constants associated with 
the clearance of ligands opening ligand-gated sodium 
and potassium channels in ms, respectively.

For simplicity, only sodium and potassium channels 
were explicitly modeled, with the rest of the dynam-
ics surmised and allocated to the leak variables. The 
modified opening and closing coefficients for the gat-
ing dynamics are from the BRIAN 2 documentation 
to optimize physiologic recapitulation under current 
injection-like conditions with a defined threshold volt-
age, which in this case was defined as − 63 mV. Passing 
the threshold defines a firing event, and the refractory 
parameter is set to the same threshold such that a spike 
is not counted more than once; see the BRIAN 2 docu-
mentation for more information about threshold and 
refractory configurations in current injection Hodgkin-
Huxley type models. The method used to solve the sys-
tem of differential equations was exponential Euler in 
time steps of 0.1 ms.

Neurons were initialized on a small scale in silico 
2-dimensional array, which is 20 electrodes by 10 elec-
trodes with 10  µm electrode spacing. Two-hundred 
neurons were centered on each of the 200 electrodes, 
132 of which were excitatory and 68 inhibitory. This 
is consistent with estimates of excitatory to inhibitory 
neuron ratios [20, 21]. Each neuron was placed ran-
domly on the array using the random module in Python 
and initialized with a random size uniformly distributed 

(3)

dn

dt
=

0.032(15− V + VT )

e
15−V+VT

5 − 1
(1− n)− 0.5e

10−V+VT
40 n

(4)
dh

dt
= 0.128e

17−V+VT
18 (1− h)−

4

1+ e
40−V+VT

5

h

(5)
dgNa

dt
=

gNa,0 − gNa

τNa

(6)
dgK

dt
=

(

gK ,0 − gK
)

τK

between 10,000 and 30,000 µm2, consistent with litera-
ture ranges [20]. Additionally, each neuron was given a 
random starting voltage uniformly distributed between 
the leak Nernst potential and the threshold potential, as 
well as a random initial sodium and potassium mem-
brane conductance governed by Eq. 7.

Here, i corresponds to sodium or potassium, wi is the 
synaptic weight of excitatory and inhibitory connections, 
respectively, and η is a random number between 0 and 1. 
Each of the neurons on the array are randomly connected 
based on a probability defined by the 2-D Gaussian dis-
tribution in Eqs. 8 and 9, with the condition that a neu-
ron cannot be connected to itself.

In these equations, E and I represent the amplitude of 
the gaussian distribution for excitatory and inhibitory 
presynaptic neurons, respectively. The variables x and y 
indicate the location of the neuron (presynaptic or post-
synaptic indicated by the subscript), and the standard 
deviation of the Gaussian Distribution is given by SD. 
The probabilities and standard deviations have subscripts 
indicating the different values for inhibitory and excita-
tory presynaptic neurons.

Synaptic dynamics were governed by the phenomeno-
logical description of synaptic short-term plasticity by 
Tsodyks and Markram [22, 23]. This description is partly 
expressed in Eqs. 10 and 11.

where uS relates to the docked neurotransmitter 
resources for synaptic exocytosis and xS is the fraction of 
total neurotransmitter available for release [17]. It is evi-
dent that between firing events uS decays to 0 at a rate �f  
and xS approaches 1 at rate �d.

When the presynaptic neuron fires, the calcium influx 
at the presynaptic terminal provokes a fraction U0 of the 
neurotransmitter to become available for release. Follow-
ing this, the proportion of the docked neurotransmit-
ters ready for release are released ( rS ), and of course, the 

(7)gi = (η + 1)wiA

(8)PE = E exp

[

(

xpre − xpost
)2

+
(

ypre − ypost
)2

2SD2
E

]

(9)PI = Iexp

[

(

xpre − xpost
)2

+
(

ypre − ypost
)2

2SD2
I

]

(10)
duS

dt
= −�f uS

(11)
dxS

dt
= �d(1− xS)
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released neurotransmitters are deducted from the frac-
tion available for release. This is expressed in Eqs. 12–14.

Finally, when a presynaptic neuron fires it exerts an 
action on all of the postsynaptic neurons which it syn-
apses on, governed by Eqs. 15 and 16.

Here, w is the weight of the synapse indicated in Eq. 7 
and r is the ratio of the synaptic weight in these equations 
to the initialization weight in the reference equation, 
which were set to 15.1 for excitatory and 9 for inhibitory 
to optimize recapitulation of physiological activity. The 
Eqs. 1–16 along with the noted parameters and connec-
tion methodology completely describe the structure of 
the in silico model. The leak Nernst potential was set at 
− 65 mV, with sodium and potassium Nernst potentials 
set to 50 mV and − 90 mV, respectively, which are within 
the ranges reported in the literature [24–29]. The excita-
tory and inhibitory synaptic weights, w, were set at 70 
mS and 20 mS, respectively; the connection amplitudes 
and standard deviations for excitatory and inhibitory pre-
synaptic neurons were 0.83 (15.5 µm) and 0.41 (12 µm), 
respectively. These were chosen to optimize the excita-
tory to inhibitory ratio for healthy patients such that 
activity best represented in vitro experiments.

The remaining parameters for healthy patients were 
adapted from Stimberg et al. [17], BRIAN 2 documenta-
tion, and Hodgkin-Huxley [19] to optimally recapitulate 
neuronal network activity based on the current configu-
ration. These are summarized in Table 1.

The parameters above fully describe the healthy patient 
parameters. GoF patients were modeled as if they had a 
global Nav 1.1 mutation which leads to the adoption of 
open channel conductance at all times for the proportion 
of sodium channels of the Nav 1.1 form which ranges 
from 5 to 20% of all membrane sodium channels [30]. 
The disease neurons were modeled to express the Nav 1.1 

(12)uS → uS +U0(1− uS)

(13)rS = uSxS

(14)xS → xS − rS

(15)gNa → gNa + werSRE

(16)gK → gK + wirSRI

isoform at 20%, with an open conductance that is 80-fold 
that of the closed channel as noted in Hodgkin and Hux-
ley [19]. This specific mutation often results in Dravet 
Syndrome, a subtype of epilepsy common in younger 
patient populations [31]. The increase in conductance for 
these isoforms manifests as a global disease-state sodium 
leak conductance of 1680 mS cm−2 Area. For LoF mod-
els, it was assumed that the mutation affects a negligible 
proportion of sodium channel isoforms in excitatory neu-
rons and roughly 20% of sodium channels in inhibitory 
neurons. The mutation was modeled to cause the sodium 
channel to have roughly no leak conductance, thus reduc-
ing the sodium leak conductance to 80 mS cm−2 Area; 
since this isoform was modeled as a voltage-gated ion 
channel, the synaptic dynamics were unchanged. Clearly, 
both disease models result in enhanced network excit-
ability, which can potentially produce epileptogenicity.

A total of 228 subjects were modeled for 1 s of activity 
each: 76 Healthy, 76 GoF, and 76 LoF. Figure 1A–H show 
plots generated by exemplar models.

Electrophysiological variables
For each of the neuronal network models, 92 poten-
tially relevant EP variables were extracted. These vari-
ables mostly consist of derived variables from one of 
the following eight variable classes: frequency, complex-
ity as determined by the minimum embedding dimen-
sion (MED), complexity as determined by the multiscale 
entropy (MSE), waveform shape indicated by paroxysmal 
depolarization shifts (PDS), waveform shape indicated 
by interictal spikes (IIS), waveform shape as indicated 
by line length, waveform shape as indicated by area 
under the curve (AUC), and functional connectivity 
as determined by the Transfer Shannon Entropy (TE). 
Moreover, the most common derived variable is a type 
of gradient which indicates heterogeneity and network 
communicability.

The frequency of each neuron on the array was meas-
ured and the following summary statistics were extracted: 
maximum frequency, maximum frequency spatial gra-
dient, average frequency, and average frequency spatial 
gradient.

The complexity of the waveform as determined by the 
MED was also extracted for each neuron on the array. It 
has been proposed that the dynamical complexity of a 

(See figure on next page.)
Fig. 1  A Connectivity Network. Exemplar network of connections of healthy neurons modeled on a 2D array. Blue lines indicate inhibitory 
presynaptic neurons and red lines indicate excitatory. B Heat map of the x spatial gradient of the neuron frequency in Hz µm−1. C Heat map of 
the y spatial gradient of the neuron frequency in Hz µm−1. D Heat map of the neuron frequency in Hz. E Vector plot of the spatial gradient of the 
neuron frequency in Hz µm−1. F Three exemplar neurons’ voltage as a function of time in a healthy model. G Raster plot of a disease model showing 
synchronous (epileptiform) activity. H Raster plot of a healthy model showing asynchronous activity
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Fig. 1  (See legend on previous page.)
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neuronal voltage trace is characterized by the minimum 
number of dimensions it resides in as determined by the 
false nearest neighbor’s (FNN) algorithm [32]. Moreo-
ver, MED analyses have shown that it is associated with 
clinical endpoints, such as nonverbal intelligence [6]. 
The justification for its characterization of complexity 
is derived from the mathematical principle that func-
tions embedded in higher dimensional spaces generally 
depend on the dimensions in which they are embedded. 
Therefore, voltage traces that are correctly embedded in a 
higher number of dimensions depend on a greater num-
ber of variables and are thus more complex in that sense. 
See Kennel et  al. [32] for more information about how 
the number of dimensions is computed. In this study, 
the parameters used to calculate the MED are as follows: 
the threshold fold distance increase is 10, the threshold 
standard deviation is 2, and the time delay used is 50 ms. 
The summary statistics extracted for MED are mean, 
maximum, and standard deviation of the MED and MED 
spatial gradient.

Another common gauge of EP complexity is the MSE 
of a voltage trace [33]. MSE is a function that maps time 
scales to sample entropy values. The sample entropy is 
related to the quantity of information in a time series and 
thus a characterization of complexity in that way [34]. By 
analyzing the sample entropy at various time scales, one 
derives the scales in which the information in a signal 
resides, which is a unique and highly dynamic character-
istic of a time series. Because, in this case, each neuron 
has a function associated with it, a large number of sum-
mary statistics can be extracted. For each function the 
integral, mean, and standard deviation of the function 
were computed, and for each of these four statistics the 
mean, maximum, standard deviation, mean spatial gra-
dient, maximum spatial gradient, and spatial gradient 

standard deviation were extracted for a total of 18 sum-
mary statistics. A plot of the sample entropy as a function 
of scale for an exemplar model is shown in Fig. 2.

There are six variables extracted, characterizing the 
waveform shape. Two of these are derived from PDSs 
which are defined by action potentials that are at least 
50% longer than the average action potential and two of 
which are also derived from the number of short IISs, 
defined by isolated action potentials that are less than 
50% of the duration of a typical action potential. These 
are characteristic waveforms that have been implicated 
in various neurological disorders such as epilepsy and the 
detection criteria do not fully describe the nature of the 
waveform but serve as a means to detect them in an auto-
mated way in an in silico model with mostly consistent 
action potentials [8, 9]. For both IISs and PDSs the fre-
quency and mean duration are extracted. The other two 
variables that depict information regarding waveform 
shape are AUC and total line length of the voltage trace, 
which have also been found to express important infor-
mation about the nature of neuronal signals in epilepsy 
such as signal variation and extremity [35, 36]. For each 
of these neuron specific variables, the mean, maximum, 
standard deviation, mean spatial gradient, maximum 
spatial gradient, and spatial gradient standard deviation 
were extracted for a total of 36 summary statistics.

The functional connectivity as determined by the TE 
has been related to a number of neurological disorders, 
including epilepsy [7, 37, 38]. The TE can be interpreted 
as a characterization of the amount of information one 
can derive about one time series from another time 
series. It is calculated by taking the logarithm of the ratio 
of the probability of observing a value at a particular time 
t in time series A given the past of time series A and the 
past of time series B to just that given the past of time 

Fig. 1  continued
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series A, all weighted by the probability of observing the 
value given the past of time series A and the past of time 
series B and summing for each time point. If time series B 
provides useful predictive information about time series 
A, it logically follows that the two are functionally con-
nected; the behavior of B affects the behavior of A. See 
Vicente et  al. [37] for more information about how the 
Transfer Shannon entropy is calculated.

For each pair of neurons this was calculated in both 
directions, and if the TE was greater than 5e−5, the 
neuron was said to be functionally connected to the 
other. This was optimized to most closely correspond to 
a theoretical graphical mapping of neurons modeled to 
be physically connected with a separation of less than 
two nodes based on careful visual inspection of multiple 
models. Connections were categorized based on the ori-
gin node frequency band in the following ranges: Alpha 
(0–12.5 Hz), Beta (12.5–30 Hz), Gamma (30–80 Hz), and 
all frequencies. For each of the four frequency ranges, the 
mean number of connections for each neuron, maximum 

number of connections, total number of connections, 
standard deviation of the number of connections, mean 
number of connections spatial gradient, maximum num-
ber of connections spatial gradient, and the standard 
deviation of the spatial gradient of the number of con-
nections was calculated for a total of 28 summary statis-
tics. The identified connections for an exemplar subject 
are shown in Fig. 3.

Machine learning approaches
With the 92 separate EP variables, various ML 
approaches were assessed by their ability to discern the 
status of an in silico subject; that is, given a set of EP vari-
ables, determining if the subject is healthy, GoF, or LoF. 
In order to ensure the information provided to the ML 
algorithms was valuable to a specified extent, a t-test was 
performed for each variable between each pair of groups 
and a threshold p-value was used as an inclusion crite-
rion for particular feature. This value was set at 0.02, 
which was set to optimize the performance of the ML 

Fig. 2  Sample entropy as a function of scale in number of time steps for an exemplar subject
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algorithms; this decision is discussed further in Results. 
Other methods of feature election [39] were considered 
and investigated with the aforementioned results yielding 
best model performance.

Five ML approached were evaluated: a Neural Net-
work (NN), a Support Vector Machine (SVM), a Gauss-
ian Naïve Bayes Classifier (GNB), Decision Tree (DT), 
and Gradient Boosting Decision Tree (GBDT). Before 
use in the ML algorithms, the input variables were con-
verted to z-scores to optimize the performance of ML 
methods affected by variable groups in different ranges. 
The NN was implemented with the Keras library with 
the TensorFlow backend and consisted of an input layer 
with a one-to-one correspondence of neurons with the 
input variables, followed by 3 identical hidden layers with 

rectified linear activation functions, and an output layer 
of three nodes with SoftMax activation. This structure 
is depicted in Fig. 4B. The activation functions and layer 
structure were chosen to minimize vanishing gradient 
and optimize performance. The SoftMax activation was 
chosen for the output such that each of the three nodes 
describe a probability that the given inputs are derived 
from each of the three model categories. With this type 
of output, the amenable sparse categorical cross entropy 
loss function was used and optimized with the ADAM 
optimization algorithm performed with 800 epochs at 
a batch size of 80. The remaining ML algorithms were 
implemented with the SciKit Learn. The Serial Vector 
machine regularization parameter was found to result 
in a best performing model at 0.2 with a radial basis 

Fig. 3  Functional Connectivity Plot. Exemplar network of functional connections of healthy neurons modeled on a 2D array as determined by the 
Transfer Shannon Entropy method. Blue lines indicate connections and red node size scales with number of connections
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function (RBF) kernel using the Grid Search library. All 
other parameters were found to optimize performance 
at their default values set by the SciKit Learn library for 
the SVM, GNB, DT, and GBDT. Each ML algorithm was 
trained with 50 models from each category and tested 
with the remaining 78 evenly distributed models and 
models were serialized based on meeting performance 
thresholds. Overall accuracy, true positive rates (TPRs), 
false positive rates (FPRs), and F1-scores were calcu-
lated for each class and ML method. A receiver operating 
characteristic (ROC) curve of best fit was found from the 
TPRs and FPRs of each class and method and integrated 
using the Simpson’s method to obtain AUC values. A 
graphical depiction of exemplar machine learning models 
is shown in Fig. 4A–D.

Results
It has been noted that the significance threshold for 
including a variable in a ML model was a p-value of 
0.02; this was chosen based on trial and error to opti-
mize the performance of the ML algorithms. This is a 
better approach than making a multiple comparisons 
correction to the arbitrarily agreed upon 0.05 because 
the threshold for widespread acceptance of a result 
and probability of providing valuable information to 
differentiate groups are fundamentally different ques-
tions. Given that 92 variables were analyzed, the sta-
tistical correction for acceptance of results needs to 
be appropriate. It is clear that many of the 92 variables 
are intimately related and thus treating them as totally 
independent is irresponsible. For example, if the mean 
of a variable is found to be statistically significant 
between groups, one would expect the maximum and 
other derived quantities of the same metric to be dif-
ferent between the groups. Thus, treating these as 92 
separate statistical tests would be overcorrecting. It 
is more reasonable to look at each category as some-
thing with mostly orthogonal information and use 
a correction closer to that of using 8 tests. However, 
even given the fact that each of the 8 categories are not 
completely orthogonal, it is also evident that each of 
the derived quantities are not completely dependent 
on the quantities in which they are derived from, espe-
cially those derived from the spatial gradients. There-
fore, the authors agreed that a reasonable correction 
would be closer to that of 16 comparisons, leading to 
α = 0.003125. The results of the t-tests found 65 rel-
evant features and are outlined in Additional file  1: 
Table S1.

The performance of the Machine Learning mod-
els varied little within serialization of single mod-
els, but more between models. GNB performed best 

overall with an average accuracy of 65.98% which 
can be brought up to 70.51%, likely because it was 
far better at identifying Healthy (Accuracy = 83.19%, 
F1 = 0.67, AUC = 0.82) and GoF (Accuracy = 68.88%, 
F1 = 0.75, AUC = 0.9) subjects than the other models 
as indicated by all performance metrics, despite its 
worse overall performance in identifying LoF models. 
The best performing model for the LoF subjects was 
the Gradient Boosting Decision Tree with an aver-
age accuracy of 62.15% up to 76.92% (F1 = 0.61 and 
AUC = 0.74). The performance metrics for each model 
are summarized in Table 2 and AUC values are shown 
in Fig. 5.

Discussion and conclusions
Overall, the ML algorithms performed exceptionally 
well given only 1 s of EP data, with a maximum percent 
correct of 70.51%. Predictive power is further improved 
further by taking the best performing ML models from 
each category and having each of them make an inde-
pendent prediction. For each model that predicted a 
given category, multiply each of their probabilities of 
being wrong (1—probability correct in category) giving 
the total probability all the predictions are wrong. Per-
form this for each category to derive a probability that 
the subject does not belong to every category. If none of 
the models predict a particular category, the probability 
that the given subject is not of that category is 1. Obvi-
ously, the lowest probability is the chosen prediction. 
Using this strategy, the current accuracy was brought to 
74.14%. The largest obstacle to obtaining higher accu-
racy was the LoF models, however the GBDT model 
performs somewhat well here at average of 62.15% 
accuracy which can be brought up to 76.92% (F1 = 0.61, 
AUC = 0.74). The 20% decrease in inhibitory neuronal 
excitability had a very subtle effect on the overall sub-
ject model, and with only one second of EP data, dif-
ferentiating them from healthy subjects was sometimes 
elusive to the ML algorithms. Due to this, models that 
are highly adept at classifying Healthy patients typi-
cally perform worse at classifying LoF patients and 
vice-versa. This results in a considerably higher class 
accuracy standard deviation than overall accuracy as 
the performances offset each other. Much of the cur-
rent space in using ML to classify disease state from 
solely EP is assessing cardiac arrhythmias [14, 15, 40] 
which present with a number of simplifications com-
pared to assessing neuronal pathologies. These include 
the ease of obtaining and accessibility of electrocar-
diograms (ECGs) compared to Electroencephalograms 
(EEGs) or MEA recordings of isogenic neurons as well 
as the significantly higher quality signal obtained from 
ECGs compared to the methods of recording neuronal 
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signals. Finally, arrhythmias are very well defined and 
can be quickly identified by inspection whereas most of 
the EP perturbations that manifest as a result of neu-
ropsychiatric pathologies are not well established or 
consistent. Despite these challenges, the classification 
metrics reach comparable overall classification levels 
as many of these methods with some models reaching 
90–100% accuracy and 0.8–0.9 ROC AUC values for 
certain classes. Moreover, in addition to the challenges 
already present, this model simultaneously classifies 
between three states whereas most current research 
has focused on implementing models aimed at binary 
classification. The only related study the authors have 
found in the neuronal space was able to achieve a maxi-
mum accuracy of 93.1% with a maximum ROC AUC of 
0.92 at binary classification [16] which is comparable 
to the best performing multiclass classification mod-
els in this study. This indicates the current study pre-
sents a considerable advance toward the direction of 
utilizing electrophysiological data to predict clinically 
valuable metrics due to the fact that ultimately, in this 
application, the classification must fundamentally not 

be limited to binary decisions. Clearly, more investi-
gation is needed to bring this methodology to clinical 
applications as the potential number of patient classes 
may far exceed three. By replicating the present study 
in  vitro significantly more model complexity can be 
observed and on much larger time scales. The resultant 
increase in information collection could significantly 
improve model bias in currently difficult to distin-
guish categories such as LoF and Healthy classes and 
augment model reliability, moreover by incorporating 
other measurable in  vitro (-omic) biomarker classes it 
is expected that the performance of these methods has 
the potential to achieve excellent metrics with limited 
variance even with significantly expanded classification 
categories.

The subject models recapitulated in vitro MEA record-
ings quite well. All models showed classic Hodgkin-Hux-
ley waveform shapes with occasional PDS and IIS, as well 
as time varying frequency and a notable graphical rela-
tionship between physically modeled and functional con-
nectivity. There were a number of simplifications to the in 
silico model compared to in vitro models; notably, the lack 

Table 2  Summary of the relative performance of each model in the percent of testing subjects classified correctly indicated by mean 
(standard deviation)—max

Overall Healthy GoF LoF

Decision tree

Accuracy 62.05 (1.54)–65.38 60.0 (6.92)–69.23 70.77 (8.8)–80.77 55.38 (9.3)–73.08

True Positive Rate 0.6 (0.07)–0.69 0.71 (0.09)–0.81 0.56 (0.09)–0.73

False Positive Rate 0.23 (0.05)–0.31 0.17 (0.05)–0.25 0.17 (0.05)–0.25

F1 0.58 (0.04)–0.64 0.69 (0.04)–0.76 0.58 (0.06)–0.7

Gaussian Naive Bayes

Accuracy 65.98 (2.07)–70.51 83.19 (6.1)–100.0 68.88 (5.65)–80.77 45.86 (6.85)–61.54

True Positive Rate 0.83 (0.06)–1.0 0.69 (0.06)–0.81 0.46 (0.07)–0.62

False Positive Rate 0.33 (0.06)–0.48 0.07 (0.04)–0.17 0.11 (0.04)–0.23

F1 0.67 (0.03)–0.75 0.75 (0.04)–0.83 0.55 (0.05)–0.62

Neural network

Accuracy 53.2 (1.5)–57.69 53.85 (7.45)–65.38 61.78 (7.38)–73.08 43.99 (9.42)–57.69

True Positive Rate 0.54 (0.08)–0.65 0.62 (0.07)–0.73 0.44 (0.09)–0.58

False Positive Rate 0.24 (0.05)–0.33 0.19 (0.06)–0.37 0.27 (0.06)–0.37

F1 0.53 (0.04)–0.59 0.62 (0.04)–0.67 0.44 (0.06)–0.53

Support vector machine

Accuracy 60.34 (2.66)–65.38 72.46 (10.18)–92.31 60.18 (7.3)–76.92 48.37 (12.3)–73.08

True Positive Rate 0.72 (0.1)–0.92 0.6 (0.07)–0.77 0.48 (0.12)–0.73

False Positive Rate 0.31 (0.09)–0.58 0.11 (0.04)–0.19 0.18 (0.07)–0.33

F1 0.62 (0.04)–0.71 0.66 (0.06)–0.77 0.52 (0.08)–0.67

Gradient boosting decision tree

Accuracy 62.55 (1.23)–66.67 59.16 (7.89)–76.92 66.32 (6.59)–80.77 62.15 (7.28)–76.92

True Positive Rate 0.59 (0.08)–0.77 0.66 (0.06)–0.81 0.62 (0.07)–0.77

False Positive Rate 0.22 (0.05)–0.35 0.14 (0.04)–0.25 0.2 (0.05)–0.31

F1 0.58 (0.04)–0.68 0.68 (0.04)–0.79 0.61 (0.05)–0.73
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of noise and well defined, consistent behavior that is con-
trolled by parameters. This presents as the most notable 
limitation of the study and thus the conclusions need fur-
ther validation using in vitro recordings of cultured neu-
rons with known pathogenic mutation statuses. In  vitro 
recording will likely have some noise despite consistent 

progress in noise filtering circuits, which may alter some 
of the variables. Moreover, the full complexity of neu-
ronal cultures was not modeled here, but any number 
of the dozens of small factors such as temperature fluc-
tuations, cell media used, and cell line specific genetics, 
among others, may have an impact on the extracted vari-
ables. Considering this, the results of this in silico study 
strongly encourage the implementation of an in  vitro 
study in which these variables are in effect. Other limi-
tations include sample size and duration of simulation, 
primarily due to computational and storage resources as 
well as a lack of benefit in an in silico context in regard 
to the increased signal homogeneity compared to in vitro 
recordings.

In addition to EP data, more information about the 
patient can help make predictions, such as demo-
graphic information, and certain genomic, transcrip-
tomic, or other -omic information. Clearly, not all of 
this information is mutually exclusive, but this study 
has shown that sufficiently optimized ML algorithms 
are able to account for this on large scales with high 
accuracy. An in  vitro study would have the additional 
benefit of using treatment response directly as an out-
come, thus allowing for the genomic mutation status 
which categorizes a patient into a particular type of epi-
lepsy to also be used as an input to the ML models.

In addition to the in vitro extension to this study, the 
results of the statistical analysis on the EP data encour-
age independent explorations into the utility of these 
variables as biomarkers for genetic epilepsy and verifi-
cation of different manifestations of these biomarkers 
in vitro (MEA) and in vivo (EEG).
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