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Abstract 

Background:  The tendency of amyloid-β to form oligomers in the blood as measured with Multimer Detection 
System-Oligomeric Amyloid-β (MDS-OAβ) is a valuable biomarker for Alzheimer’s disease and has been verified with 
heparin-based plasma. The objective of this study was to evaluate the performance of ethylenediaminetetraacetic 
acid (EDTA)-based MDS-OAβ and to develop machine learning algorithms to predict amyloid positron emission 
tomography (PET) positivity.

Methods:  The performance of EDTA-based MDS-OAβ in predicting PET positivity was evaluated in 312 individuals 
with various machine learning models. The models with various combinations of features (i.e., MDS-OAβ level, age, 
apolipoprotein E4 alleles, and Mini-Mental Status Examination [MMSE] score) were tested 50 times on each dataset.

Results:  The random forest model best-predicted amyloid PET positivity based on MDS-OAβ combined with other 
features with an accuracy of 77.14 ± 4.21% and an F1 of 85.44 ± 3.10%. The order of significance of predictive features 
was MDS-OAβ, MMSE, Age, and APOE. The Support Vector Machine using the MDS-OAβ value only showed an accu‑
racy of 71.09 ± 3.27% and F−1 value of 80.18 ± 2.70%.

Conclusions:  The Random Forest model using EDTA-based MDS-OAβ combined with the MMSE and apolipoprotein 
E status can be used to prescreen for amyloid PET positivity.

Keywords:  Machine learning, Oligomer, Amyloid ß, Alzheimer’s disease, Biomarker, Multimer detection system, 
Amyloid positron emission tomography
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Background
Alzheimer’s disease (AD) is a degenerative brain disease. 
It is associated with the loss of independent living due 
to the deterioration of cognitive function and is linked 
to the gradual loss of cortical neurons [1]. Amyloid beta 
(Aβ) plaques and neurofibrillary tangles are the patholog-
ical hallmarks of AD [2, 3]. The amyloid-β (Aβ) monomer 
is produced by β-secretase and γ-secretase from amyloid 
precursor protein, which is bound to the cell membrane. 
Aβ aggregates and forms multimers such as dimers, 
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tetramers, hexamers, which are Aβ oligomers (AβOs). 
These multimers are the most toxic Aβ oligomers and 
have important roles in AD pathology [4]. They can fur-
ther aggregate to form amyloid fibrils, which accumulate 
as amyloid plaques in the brain. Amyloid positron emis-
sion tomography (PET) imaging detects these fibrillary 
Aβ deposits [5].

Cerebral amyloidosis in AD is evaluated based on the 
CSF Aβ levels and amyloid PET imaging findings. How-
ever, these approaches are invasive and costly, which lim-
its their clinical use [6].

Efforts have been made to develop blood-based 
Aβ-targeted biomarkers. The Multimer Detection Sys-
tem-Oligomeric Amyloid-β (MDS-OAβ) level is a valu-
able blood-based biomarker for AD. It is a modified 
sandwich immunoassay for measuring Aβ oligomeriza-
tion in the plasma [7, 8]. This technique involves adding 
synthetic Aβ to the plasma to trigger oligomerization of 
Aβ to measure the oligomerization tendency of plasma 
Aβ in AD [9]. Since it is measured using plasma, the 
samples are treated with heparin or ethylenediaminetet-
raacetic acid (EDTA).

We previously evaluated the role of MDS-OAβ lev-
els in heparin-treated plasma in differentiating between 
individuals with AD and community-based healthy 
participants [10]. This approach had high sensitivity 
and specificity. We also attempted to evaluate whether 
brain AD pathology could be predicted, based on blood 
MDS-OAβ levels in studies investigating the relationship 
between MDS-OAβ findings and magnetic resonance 
imaging or amyloid PET findings [11, 12].

Our previous studies have demonstrated MDS-OAβ 
cut-off levels and sensitivity and specificity values for 
clinical AD diagnosis. MDS-OAβ is a test that meas-
ures the dynamics of amyloid oligomerization in the 
blood, whereas amyloid PET detects static patholo-
gies such as fibrillar Aβ plaques. Amyloid PET has been 
used as a standard biomarker for participant selection in 
many clinical trials. Mofrad et al. demonstrated a sensi-
tivity of 76% and specificity of 67% for predicting amy-
loid PET positivity by using plasma MDS-OAβ and this 
technique reduced the costs and number of PET scans 
needed to screen for amyloidosis [13]. In this study, we 
tested various machine learning models to predict amy-
loid PET positivity using EDTA-based MDS-OAβ values 
combined with other variables (apolipoprotein E [APOE] 
genotype, age, and Mini-Mental Status Examination 
[MMSE] score).

In clinical AD prediction, MDS-OAβ has been vali-
dated and commercialized using heparinized plasma, 
and previous studies have used these samples [10]. How-
ever, most clinical centers store blood samples as EDTA-
treated plasma. It is more accessible in clinical practice.

The objective of this study was to predict amyloid PET 
positivity based on EDTA-based blood Aβ oligomeriza-
tion tendency to predict amyloid positivity by common 
machine learning algorithms in patients with memory 
complaints.

Methods
Study participants
This study was an observational cross-sectional study to 
evaluate machine learning models in predicting amyloid 
PET positivity of Aβ oligomerization tendency in which 
various features were used without previously provided 
cut-off values to predict the clinical decisions. This study 
was based on data obtained from the Alzheimer’s Disease 
All Markers Study (ADAM), which is a clinical study on 
protein biomarker development and early diagnosis of 
Alzheimer’s disease.

The participants were 312 patients who complained 
of memory abnormalities and had undergone EDTA-
based MDS-OAβ and amyloid PET (Fig.  1). In addition 
to MDS-OAβ and amyloid PET, the MMSE was admin-
istered to 289 patients, and apolipoprotein E (APOE) 
genotypes were determined in 263 patients. The 312 
participants included patients with subjective cogni-
tive decline (n = 32), mild cognitive impairment (MCI; 
n = 88), AD dementia (n = 115), non-AD dementia 
(n = 39), and other neurological disorders (n = 38) such 
as alcohol-related cognitive impairment, parkinsonism, 
or individuals with postponed diagnosis.

The amyloid PET ligands used in this study were [18F]
florbetaben (n = 286), [18F]flutemetamol (n = 24), and 
[11C]Pittsburgh compound B (n = 2). Amyloid PET sta-
tus was defined as “positive” or “negative” which was 
assessed based on visual ratings from 3 different amy-
loid PET tracers by one nuclear medicine physician and 
one neurologist who were experienced and trained. They 
were blinded to the clinical information but knew the 
PET tracer utilized for each image. When there were dis-
cordances, the raters discussed and reached a consensus.
Amyloid PET positive and negative findings were found 
in 226 patients and 86 patients, respectively (Table  1). 
The whole dataset used in this study is accessible via the 
following link: (https://​drive.​google.​com/​file/d/​1XvMD​
K1OBs​SiIxh​4QlMQ​JbuLe​qMmbM​leA/​view?​usp=​drive​
sdk; in the Gender column, “0” indicates female and “1” 
indicates male; in the PET column, “1” indicates positive 
and “0” indicates negative; “EDTA_MDS” represents the 
value of EDTA-based MDS-OAβ; in the APOE column, 
“0” indicates without the ε4 allele and “1” indicates with 
the ε4 allele; MMSE represents Mini-Mental Status Exam 
scores).

This study was approved by the institutional review 
board of the Seoul National University Bundang 

https://drive.google.com/file/d/1XvMDK1OBsSiIxh4QlMQJbuLeqMmbMleA/view?usp=drivesdk
https://drive.google.com/file/d/1XvMDK1OBsSiIxh4QlMQJbuLeqMmbMleA/view?usp=drivesdk
https://drive.google.com/file/d/1XvMDK1OBsSiIxh4QlMQJbuLeqMmbMleA/view?usp=drivesdk
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Hospital (Seongnam, Republic of Korea; approval num-
ber, B-2004-604-305). This study was conducted in 
accordance with the Declaration of Helsinki. The need 
for written informed consent was waived owing to the 
retrospective nature of the study.

Data analysis and model training
We evaluated support vector machine (SVM), random 
forest (RF), logistic regression (LR), and deep neural net-
work (DNN) machine learning models from scikit-learn 
(https://​scikit-​learn.​org/​stable/) [14] and TensorFlow 

Fig. 1  The enrollment of subjects for each machine learning model. SCD, Subjective Cognitive Decline; MCI, Mild Cognitive Impairment; ADD, 
Alzheimer’s Disease Dementia; Non-ADD, Non-Alzheimer type Dementia; MDS-OAβ, Multimer Detection System-Oligomeric Amyloid-β; MMSE, 
Mini-Mental Status Examination; APOE, apolipoprotein E

Table 1  Demographic characteristics of participants with amyloid PET positive and negative findings

Of the 312 participants, 263 participants were tested for apolipoprotein E (APOE) and 289 participants were administered the Mini-Mental Status Examination (MMSE). 
APOE was considered “positive” when at least one APOE epsilon 4 allele existed

PET, positron emission tomography; APOE, apolipoprotein E; SD, standard deviation; EDTA, ethylenediaminetetraacetic acid; MDS-OAβ, Multimer Detection System-
Oligomeric Amyloid-β; MMSE, Mini-Mental State Examination

*The difference in MDS-OAβ values (p-value = 0.005)

**MMSE scores (p-value < 0.0001) between the amyloid PET positive and negative groups, based on the Student t-test

Amyloid PET Participants 
(n)

Men:Women 
(n:n)

Age (y) 
(mean ± SD)

EDTA-based 
MDS-OAβ value * 
(mean ± SD)

APOE 4 allele (no. of APOE 4 
allele-positive patients/total no. 
of patients)

MMSE ** [mean 
score ± SD (no. of 
patients)]

Positive 226 87:139 68.4 ± 9.7 1.057 ± 0.242 111/193 17.9 ± 7.4 (213)

Negative 86 43:43 70.8 ± 8.8 0.972 ± 0.226 28/70 22.1 ± 5.6 (76)

Total 312 130:182 69.0 ± 9.5 1.034 ± 0.240 139/263 19.0 ± 7.3 (289)

https://scikit-learn.org/stable/
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(version 2.7.0; available at https://​www.​tenso​rflow.​org) 
[15] to predict amyloid PET status using the EDTA-based 
MDS-OAβ levels combined with other variables. The 
scikit-learn is an open-source tool for predictive data 
analysis, and TensorFlow is also a commonly used open-
source software library for machine learning developed 
by Google, Inc. (Mountain View, CA, USA), based on 
Python.

All the models were performed on the Colab (www.​
colab.​resea​rch.​google.​com) cloud platform.

Preprocessing
The total number of subjects for each model with the 
combination of variables were shown in Fig. 1. To model 
each algorithm, the dataset was subjected to the follow-
ing preprocessing steps. Not all 312 subjects who under-
went MDS-OAβ and amyloid PET did MMSE and APOE 
tests. Therefore, each model has a different number of 
subjects. We imported the data in the “.csv” format and 
dropped out cases having missing data.. Then we stand-
ardized features scaling to unit variance using ‘sklearn.
preprocessing.StandardScaler’. The dataset was randomly 
split into the training dataset and test dataset. To split 
the dataset, we used “sklearn.model_selection.train_test_
split”. The training data size was 70%, which indicated the 
percentage of the data to be withheld for training; the test 
dataset was thus composed of the remaining 30% of the 
data. In preprocessing, features and the outcome variable 
were created in each dataset.

Model training
Each machine learning model based on various combina-
tions of five variables: Age, APOE, EDTA-MDS, MMSE, 
and PET. APOE was “positive” if at least one APOE epsi-
lon 4 allele existed and coded as “1”; otherwise, its value 
was set to 0. One variable, EDTA-MDS was the MDS-
OAβ value, which was data obtained from EDTA anti-
coagulant plasma samples. The last variable, PET, which 
was included as the target outcome, was the “amyloid 
PET positivity.” Amyloid statuses were dichotomized as 
“positive” (coded as 1) or “negative” (coded as 0), based 
on visual assessment.

Because the dataset was obtained during clinical prac-
tice and was inevitably the data were disproportionate 
(participants had an amyloid PET positive to negative 
ratio of 226:86), this was mathematically compensated for 
using the ‘class_weight = 40:60’ parameter in all models.

The RF model used ‘ensemble.RandomForestClassifier’ 
with n_estimators = 1000 from sklearn tool. The follow-
ing link will take users to the Python script for predict-
ing amyloid positivity, given the values of EDTA-based 
MDS-OAβ levels and the other variables: https://​colab.​
resea​rch.​google.​com/​drive/​1FzAg​VcXJm​9P2ls​sKPGq​

TD--​QIfqK​LU-6?​usp=​shari​ng. The SVM Classifier used 
‘svm.SVM’ with decision boundary C = 3, the script is 
shown in following link: https://​colab.​resea​rch.​google.​
com/​drive/​1hdzT​7LIVI​lX96F​YwkA7​kes18​6Ajk2​NvD?​
usp=​shari​ng. In the LR, linear_model.LogisticRegression 
was applied as following, https://​colab.​resea​rch.​google.​
com/​drive/​1U_​24Z15​nPaMR​7Q-​YQlGv​nw68J​SfjVU​hv?​
usp=​shari​ng.

The model trained with a DNN consisted of one input, 
three hidden layers, and one output layer. The cost was 
calculated using “binary_crossentropy” and minimized 
using the “Adam” optimizer, of which script was follow-
ing: https://​colab.​resea​rch.​google.​com/​drive/​1bILn​1Svoj​
LjViN​aT9xI​g69E-​dB1aL​a0b?​usp=​shari​ng.

To evaluate the performance, the accuracy, precision, recall 
and F1-value of amyloid PET prediction were calculated 50 
times, using the randomly split test dataset with various 
combinations: “EDTA_MDS-OAβ”, “MMSE”, “EDTA_MDS-
OAβ + MMSE”, “APOE”, “MDS-OAβ + MMSE + APOE”, 
and “MDS-OAβ + MMSE + Age + APOE.”.

In the dataset with multiple features, the features that 
contributed to the prediction accuracy of the machine 
learning algorithm showing the best performance were 
selected in order of contribution, and feature ranking 
with ‘recursive feature elimination’ was used (https://​
colab.​resea​rch.​google.​com/​drive/​1qWuIf_​Bql3g​jNS-​
3gUna​h2819​ThlFW​Hv?​usp=​shari​ng).

The Student t-test was used to compare accuracy, pre-
cision, recall, and F1-value between groups. Differences 
were considered significant at p < 0.05.

Results
Of the total 312 subjects with an MDS-OAβ, 289 had 
an MMSE score, 263 had APOE genotyping, and 246 
patients had MDS-OAβ, MMSE, APOE, and age data 
(figure). Machine learning algorithms of SVM, LR, RF 
and DNN were performed on each data set. When com-
paring the mean value of the accuracies of the models 
with the statistical significance, the best performance was 
shown in the model using RF (Table  2). The RF model 
of amyloid PET prediction with EDTA-based MDS-
OAβ was evaluated by training the “MDS-OAβ” feature 
alone or in combination with other features. As shown 
in Table 2, the accuracy, precision, recall and F1-value of 
‘Age + MDS-OAβ + MMSE + APOE’ were 77.14 ± 4.21%, 
80.75 ± 4.65%, 91.05 ± 4.78% and 85.44 ± 3.10%, which 
were better than those of MDS-OAβ value alone 
(p < 0.001). They were shown that the accuracy gradually 
increased as features were added. By using this dataset 
which had all MDS-OAβ, MMSE, APOE and Age fea-
ture data, features selection was conducted to determine 
the order of importance in predicting PET potential. The 

https://www.tensorflow.org
http://www.colab.research.google.com
http://www.colab.research.google.com
https://colab.research.google.com/drive/1FzAgVcXJm9P2lssKPGqTD--QIfqKLU-6?usp=sharing
https://colab.research.google.com/drive/1FzAgVcXJm9P2lssKPGqTD--QIfqKLU-6?usp=sharing
https://colab.research.google.com/drive/1FzAgVcXJm9P2lssKPGqTD--QIfqKLU-6?usp=sharing
https://colab.research.google.com/drive/1hdzT7LIVIlX96FYwkA7kes186Ajk2NvD?usp=sharing
https://colab.research.google.com/drive/1hdzT7LIVIlX96FYwkA7kes186Ajk2NvD?usp=sharing
https://colab.research.google.com/drive/1hdzT7LIVIlX96FYwkA7kes186Ajk2NvD?usp=sharing
https://colab.research.google.com/drive/1U_24Z15nPaMR7Q-YQlGvnw68JSfjVUhv?usp=sharing
https://colab.research.google.com/drive/1U_24Z15nPaMR7Q-YQlGvnw68JSfjVUhv?usp=sharing
https://colab.research.google.com/drive/1U_24Z15nPaMR7Q-YQlGvnw68JSfjVUhv?usp=sharing
https://colab.research.google.com/drive/1bILn1SvojLjViNaT9xIg69E-dB1aLa0b?usp=sharing
https://colab.research.google.com/drive/1bILn1SvojLjViNaT9xIg69E-dB1aLa0b?usp=sharing
https://colab.research.google.com/drive/1qWuIf_Bql3gjNS-3gUnah2819ThlFWHv?usp=sharing
https://colab.research.google.com/drive/1qWuIf_Bql3gjNS-3gUnah2819ThlFWHv?usp=sharing
https://colab.research.google.com/drive/1qWuIf_Bql3gjNS-3gUnah2819ThlFWHv?usp=sharing
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features that contribute to predicting amyloid PET posi-
tivity were in the order of MDS-OAβ, MMSE, Age and 
APOE.

When only MDS-OAβ values were used, the SVM 
model showed the highest accuracy (71.09 ± 3.27) and 
was significantly better than LR (69.13 ± 3.91). For the 
SVM model, adding more features did not increase the 
accuracy. The accuracy of the DNN model was lower 
than other models across all datasets (64–69%).

Discussion
The purpose of this study was to determine the accuracy 
of amyloid PET positive prediction regardless of the diag-
nosis using MDS-OAβ and to try algorithms with various 
feature combinations. Therefore, we used data from indi-
viduals with subjective cognitive decline, MCI, AD, and 
other neurodegenerative disorders.

The amyloid PET positive prediction accuracy of 
EDTA-based MDS-OAβ alone was 71.09 ± 3.27% using 
SVM model, and the accuracy with various feature com-
bination using RF was 77.14 ± 4.21%, which was lower 
than our expectation at less than 80%.

However, when predicting positive amyloid PET by 
machine, the precision, which is the ratio of correctly 
predicted PET positive subjects to a total number of 
predicted positive PET, and the recall, which is the ratio 
between the numbers of PET positive subjects correctly 

predicted as positive to the total number of PET posi-
tives, were over about 80%. When it combined with Age, 
APOE, and MMSE features, the precision was 80.75% 
and the recall was 91.05%. In other words, as a screen-
ing tool, these machine learning algorithms using EDTA-
based MDS-OAβ can be used to find brain amyloid 
pathologies.

There are several reasons that could explain why the 
performance did not meet expectations. First, the pathol-
ogy or pathophysiology of Alzheimer’s disease reflected 
by MDS-OAβ and amyloid PET differs. The MDS-OAβ 
exhibits a tendency (i.e., dynamic change) of oligomeri-
zation of Aβ [9], whereas amyloid PET detects fibrillary 
Aβ plaques that have accumulated in the form of a sig-
moid function graph since the onset of cerebral amyloi-
dosis [16, 17]. Even in the early stages of AD dementia 
or an MCI state, amyloid plaques are already fully satu-
rated in the brain [18]. However, the tendency of Aβ 
oligomerization is higher in the stage from MCI to early-
stage AD dementia and decreases in a bell shape as it 
progresses to moderate to severe AD dementia [10]. A 
bell-shaped graph is obtained from the derivatives of the 
sigmoid function, which presents the MDS-OAβ value 
as a dynamic change in Aβ [19]. Therefore, the results 
of these two tests cannot be perfectly matched. EDTA-
based MDS-OAβ reflects another aspect of the patho-
physiology. However, it can be a tool that reflects brain 

Table 2  The mean performance of the MDS-OAβ predicting amyloid PET positivity, evaluated using various machine learning 
algorithms on 50 trials (mean ± standard deviation %)

MDS-OAβ, Multimer Detection System-Oligomeric Amyloid-β; APOE, apolipoprotein E; Acc, accuracy; Prec, precision; Rec, recall

*p = 0.054, when compared ‘MDS-OAβ + Age + MMSE’ with ‘MDS-OAβ + Age + MMSE + APOE’

**p < 0.01, when compared ‘MDS-OAβ’ only of Support Vector Machine model with Logistic Regression
† p < 0.001, when compared ‘Random Forest’ with ‘Deep Neural Network’ algorithm based on the Student t-test

Algorithms Performance MDS-OAβ MDS-OAβ + Age MDS-
OAβ + Age + APOE

MDS-
OAβ + Age + MMSE

MDS-
OAβ + Age + MMSE + APOE

Subject number N = 312 N = 312 N = 263 N = 289 N = 246

Support vector machine Acc 71.09 ± 3.27** 69.21 ± 4.07 68.76 ± 3.99 68.69 ± 4.02 69.86 ± 4.82

Prec 80.06 ± 4.46 76.70 ± 4.03 76.72 ± 4.50 78.25 ± 3.71 82.22 ± 5.25

Rec 80.76 ± 5.38 83.13 ± 5.54 82.99 ± 4.80 78.93 ± 6.69 76.84 ± 5.68

F1-value 80.18 ± 2.70 79.61 ± 3.05 79.59 ± 3.04 78.36 ± 3.45 79.24 ± 3.82

Random forest Acc 66.08 ± 4.15 67.75 ± 3.61 69.49 ± 4.01 75.54 ± 3.98* 77.14 ± 4.21*†

Prec 77.28 ± 4.61 75.68 ± 4.93 76.72 ± 5.54 79.84 ± 4.56 80.75 ± 4.65

Rec 75.93 ± 5.57 82.17 ± 5.17 84.62 ± 4.56 89.81 ± 3.76 91.05 ± 4.78

F1-value 76.40 ± 3.27 78.59 ± 3.08 80.26 ± 2.95 84.42 ± 2.92 85.44 ± 3.10

Logistic regression Acc 69.13 ± 3.91** 69.00 ± 4.06 69.19 ± 4.98 69.38 ± 4.72 73.96 ± 5.30

Prec 71.56 ± 3.78 73.33 ± 4.48 74.15 ± 5.27 75.59 ± 5.85 80.84 ± 5.21

Rec 94.22 ± 3.76 90.30 ± 4.85 89.31 ± 7.41 86.56 ± 6.10 85.58 ± 5.99

F1-value 81.25 ± 2.81 80.77 ± 2.93 80.72 ± 3.81 80.38 ± 3.35 82.94 ± 3.79

Deep neural network Acc 64.00 ± 4.50 64.83 ± 4.45 64.50 ± 4.77 66.80 ± 5.16 69.24 ± 4.18†

Prec 80.81 ± 4.90 77.19 ± 4.37 76.60 ± 4.82 78.50 ± 4.41 80.52 ± 4.12

Rec 66.39 ± 8.25 74.20 ± 6.25 75.06 ± 6.31 75.65 ± 7.00 78.03 ± 6.18

F1-value 72.46 ± 4.87 75.45 ± 3.64 75.61 ± 3.94 76.81 ± 4.04 79.03 ± 3.19
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amyloidosis in a different manner from amyloid PET in 
AD prediction.

Second, an expectation has been that cerebrospi-
nal fluid (CSF) Aβ markers could be used to accurately 
predict brain amyloidosis because samples are obtained 
from closest to the brain in clinical practice and are 
regarded as reflecting brain pathology directly. However, 
CSF Aβ1-42 and amyloid PET findings were discordant 
in 21% of cognitively healthy people and 6% of dementia 
patients in one study [20]. Whether AD pathophysiology 
is caused by the centrifugal or centripetal spread of amy-
loidosis is not yet determined, but most researchers and 
clinicians believe that pathologic Aβ is produced in the 
brain and drains into CSF and bloodstream. More barri-
ers, other than the CSF, exist in pathologic Aβ traveling 
from the brain to the blood, and the reflection of amyloid 
pathology is bound to be lower in the CSF.

Another consideration is diffuse Aβ plaques. Diffuse 
plaques are focal poorly marginated amyloid deposits 
that are not fibrillar (i.e., neuritic) and not associated 
with glial responses [21–23]. Some early indications were 
that Pittsburgh compound B (PIB), a PET tracer, binds 
to neuritic plaques but not to diffuse plaques [24]. The 
abundance of diffuse Aβ plaques can contribute to PET 
signals, although fibrillar Aβ is essential for higher PET 
tracer binding [25]. Plaques with more fibrillar amyloid 
have a greater affinity for Aβ ligands than do plaques 
with less fibrillar amyloid. A case of a mismatch between 
peripheral markers and amyloid PET has been reported, 
which demonstrated that amyloid PET findings may be 
negative but CSF Aβ may be decreased in AD with dif-
fuse Aβ plaques [26].

Finally, a negative amyloid PET finding does not mean 
that the brain is free of Aβ plaques. Signals above the set 
threshold must be acquired to be interpreted as amyloid 
PET positive. Therefore, a negative finding should be 
regarded as meaning “not exceeding the set threshold” 
and that the presence of Aβ plaques in the brain cannot 
be completely ruled out.

Pyun et al.[11] statistically predicted amyloid PET posi-
tivity based on MDS-OAβ values using heparin plasma 
and showed higher accuracies. In the current study using 
EDTA plasma, the predictive accuracy of the machine 
learning algorithm using MDS-OAβ only was approxi-
mately 71.09%, and when the “MMSE” and “APOE” 
features were added, the accuracy was 77.14%. Heparin-
based MDS-OAβ would be better in prescreening amy-
loid PET positive individuals. To predict clinical AD 
dementia, the validated decision cut-off value of MDS-
OAβ is different depending on anticoagulant, EDTA-
based MDS-OAβ values was approximately 1.0  ng/mL 
and the corresponding heparin-based level was 0.76 ng/
mL. Plasma treated with different anticoagulants would 

have different mechanisms to obtain the values of MDS-
OAβ. Heparin-based MDS-OAβ has been relatively well-
validated than EDTA-based. Considering the accessibility 
of blood samples, however, EDTA-based MDS-OAβ may 
be an alternative for screening purposes. A comparative 
study of heparin-based MDS-OAβ versus EDTA-based 
MDS-OAβ is needed regarding their prescreening value 
for amyloid PET positivity.

When the “MMSE” and “APOE” features were concur-
rently included with the “MDS-OAβ” value, the perfor-
mance of the algorithm significantly improved (p < 0.001). 
The ‘recursive feature elimination’ showed that the order 
of significance in contributing features was MDS-OAβ, 
MMSE, Age and APOE, and the MDS-OAβ is the most 
important feature in predicting amyloid PET positiv-
ity. The “Age” feature did not contribute to significant 
changes in predictive performance.

The APOE epsilon 4 allele is associated with amyloid 
PET [27, 28]. In this machine learning algorithm (data 
not shown), for “APOE” alone, the global predictive accu-
racy was less than that of “MDS-OAβ”; the variability of 
repeated measures was instead greater. APOE alone is 
insufficient. However, adding “MDS-OAβ” and “MMSE” 
to the “APOE” feature had an additive effect on the accu-
racy of predicting amyloid PET positivity in RF model.

One limitation of this study is the use of imbalanced 
data; in particular, 72.4% of the participants were amy-
loid PET-positive. Owing to the small number of par-
ticipants, creating a random balance dataset to develop 
an algorithm that could be used to evaluate prediction 
accuracy was not possible. Datasets obtained in a clini-
cal setting are unlikely to be balanced. The imbalance 
observed in this study was deemed acceptable; however, 
the presented findings must be interpreted with caution. 
Our previous study [29] did not show any differences 
in the accuracy of classification between imbalanced 
clinical datasets and randomly selected balanced data-
sets. Another limitation of this study is its retrospective 
design, whereby PET examinations were conducted at 
the discretion of the attending neurologist rather than 
using a standardized protocol.

Conclusions
Machine learning algorithms to predict amyloid PET 
positivity performed satisfactorily when using the 
EDTA-based MDS-OAβ values as a predictive feature. 
The random forest model performed the best when 
using the MDS-OAβ combined with MMSE and APOE 
status, with the MDS-OAβ being the most predictive 
feature. The support vector machine model showed 
acceptable performance with MDS-OAβ as a single 
predictive feature. Machine learning models that use 
EDTA-based MDS-OAβ can be used to screen patients 
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for amyloid PET positivity to predict those at risk of 
developing AD. The data were obtained retrospectively, 
and further well-designed prospective studies using 
balanced datasets are required to confirm the predic-
tive value of EDTA-based MDS-OAβ for amyloid PET 
positivity..
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