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Abstract 

Background:  Colon cancer is the foremost reason of cancer-related mortality worldwide. Colon adenocarcinoma 
constitutes 90% of colon cancer, and most patients with colon adenocarcinoma (COAD) are identified until advanced 
stage. With the emergence of an increasing number of novel pathogenic mechanisms and treatments, the role of 
mitochondria in the development of cancer, has been studied and reported with increasing frequency.

Methods:  We systematically analyzed the effect of mitochondria-related genes in COAD utilizing RNA sequencing 
dataset from The Cancer Genome Atlas database and 1613 mitochondrial function-related genes from MitoMiner 
database. Our approach consisted of differentially expressed gene, gene set enrichment analysis, gene ontology ter-
minology, Kyoto Encyclopedia of Genes and Genomes, independent prognostic analysis, univariate and multivariate 
analysis, Kaplan–Meier survival analysis, immune microenvironment correlation analysis, and Cox regression analysis.

Results:  Consequently, 8 genes were identified to construct 8 mitochondrial-related gene model by applying Cox 
regression analysis, CDC25C, KCNJ11, NOL3, P4HA1, QSOX2, Trap1, DNAJC28, and ATCAY. Meanwhile, we assessed the 
connection between this model and clinical parameters or immune microenvironment. Risk score was an independ-
ent predictor for COAD patients’ survival with an AUC of 0.687, 0.752 and 0.762 at 1-, 3- and 5-year in nomogram, 
respectively. The group with the highest risk score had the lowest survival rate and the worst clinical stages. Addition-
ally, its predictive capacity was validated in GSE39582 cohort.

Conclusion:  In summary, we established a prognostic pattern of mitochondrial-related genes, which can predict 
overall survival in COAD, which may enable a more optimized approach for the clinical treatment and scientific study 
of COAD. This gene signature model has the potential to improve prognosis and treatment for COAD patients in the 
future, and to be widely implemented in clinical settings. The utilization of this mitochondrial-related gene signature 
model may be benefit in the treatments and medical decision-making of COAD.

Keywords:  Colon adenocarcinoma (COAD), Mitochondrial-related genes, Risk score, Overall survival (OS), Signature, 
Immune checkpoint
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Introduction
According to the 2018 Global Cancer Data Report, colo-
rectal cancer (CRC), including colon adenocarcinoma 
(COAD), is now among the top three cancers in terms 
of morbidity and ranks second with respect to mortal-
ity [1, 2]. Currently, the prognosis for COAD is largely 
determined by clinicopathological characteristics and the 
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stage of the tumor [3, 4]. The primary COAD treatments 
include surgery, radiotherapy, and chemotherapy. 5-Fluo-
rouracil (5-FU) and folinic acid (leucovorin), which are 
combined with oxaliplatin (FOLFOX) or irinotecan, 
represent one of the highest standards among these 
therapies (FOLFIRI). Although effective early screening 
improved recurrence, and additional treatment options 
have contributed to a decline in the incidence and mor-
tality of COAD, many patients continue to be diagnosed 
at an advanced stage. In recent years, the average age 
of onset has decreased, and the 5-year survival rate of 
patients with distant metastases is under 10% [5]. Since 
early symptoms of COAD are not readily apparent, most 
patients have already entered advanced stage when diag-
nosed. Over 50% of COAD patients are diagnosed in 
their advanced stages [5]. For the development of effec-
tive treatment strategies, it is pivotal to conduct addi-
tional investigation on carcinogenesis of COAD to probe 
new and promising biomarkers. During tumor cell for-
mation, the metabolism is reprogrammed to rapidly facil-
itate cancer cell growth. The central role of mitochondria 
in this process is critical. Pan-cancer mitochondrial-gene 
analysis displayed that mitochondrion genomic altera-
tions and nuclear mitochondrial were closely associated 
with 38 tumor types [6]. Some researches had showed 
the roles of mitochondrial genes and its relationship 
with the survival status of cancer patients. But the effi-
cacy of mitochondrial-related genes in evaluating COAD 
patients’ prognosis lacks depth researches [7]. Thus, our 
research aims to investigate whether transcriptomic pro-
filing of mitochondrial genes is connected to the progno-
sis of COAD patients.

Mitochondria are unique organelles that carry extra-
nuclear genetic material, and they are associated with a 
variety of metabolic diseases, degenerative diseases, age-
related human diseases, and cancer [8, 9]. Mitochondria 
is evidenced to exert a significant part in the carcino-
genesis and progression of COAD through retrograde 
regulation of the nucleus [10]. Furthermore, reactive 
oxygen species (ROS) produced in mitochondria can pro-
mote the proliferation and migration of tumor cells [11]. 
Accordingly, research into mitochondria is extensively 
acknowledged in a variety of fields. More recently, it has 
been demonstrated that mitochondria from non-tumor 
cell lines inhibit tumor formation in the same nuclear 
context, including inhibition of apoptosis, prolifera-
tion, anoxic survival, drug resistance, colony formation, 
and invasion, as well as enhanced tumor cell response to 
therapy [12]. In addition, the bidirectional communica-
tion between mitochondria and the nucleus facilitates 
retrograde regulation of the nucleus [13]. During the for-
mation of tumor cells, metabolism is reprogrammed to 
facilitate rapid proliferation of cancer cells. Mitochondria 

play an indispensably pivotal role in this process. Mito-
chondrial gene analysis of pan-cancer revealed that 
nuclear mitochondrial genomic alterations were closely 
associated among 38 tumor types [6]. There are many 
studies to explore the functions of mitochondrial-related 
genes in cancer and how they are connected to progno-
sis. However, research on the role and effectiveness of 
mitochondrial-related genes in predicting the prognosis 
of COAD is insufficient [7]. Mitochondria could become 
innovative target for anti-cancer drugs, and the role of 
mitochondria-related genes in cancer prognosis predic-
tion may become a novel and potential diagnostic model. 
Therefore, the object of this research is to excavate 
whether transcriptomic profiling of mitochondrial genes 
correlates with the prognosis and survival of COAD 
patients.

Recent evidence indicates that the combination of 
microarray technology and bioinformatics tools can 
effectively identify new targets concerning diagnosis, 
and prognosis of cancer [14, 15]. Therefore, bioinformat-
ics is a feasible tool for filtering DEG and questing key 
genes [11, 12]. Using RNA sequencing data from TCGA 
database in conjunction with bioinformatics and sta-
tistical methods, we aimed to systematically discuss the 
effect of mitochondria-related genes in COAD. Initially, 
we analyzed 1613 mitochondrial-related genes and cor-
responding clinical data from TCGA of COAD patients. 
Then, we identified 249 mitochondrial-related genes 
with differential expression in COAD patients. Sec-
ondly, we developed a novel 8-gene signature prognosis 
model by employing Cox regression analysis to screen 
8 significant genes that influence the survival of COAD 
patients. Thirdly, we validated the prognostic efficacy of 
the established mitochondrial-related gene pattern utiliz-
ing validation dataset GSE39582. On the basis of this sig-
nature model, a nomogram and good AUC curves were 
developed to demonstrate the predictability and stabil-
ity of the model. Finally, the functional signaling path-
ways, immune checkpoints and immune cell fraction in 
the tumor microenvironment, and clinical parameters 
between high- and low-risk groups were further inves-
tigated and analyzed. The novel 8 mitochondria-related 
gene pattern to assess prognosis in COAD provided 
essential bioinformatics evidence to advance understand-
ing of the complex mechanisms of the COAD progres-
sion and to optimize prognosis and improve survival of 
COAD patients.

Methods
Data origin and collection
RNA-seq transcriptome data of 480 COAD and 41 normal 
samples, along with corresponding clinical parameters of 
COAD patients, were downloaded from TCGA-COAD 
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cohort (https://​portal.​gdc.​cancer.​gov/). GEO dataset 
GSE39582 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) com-
prising 566 colorectal cancer patients was defined as an 
independent validation dataset. Patients without survival 
information were excluded. Mitochondrion-related genes 
were downloaded from the MitoMiner database [16], 
which collected human genes encoding proteins associat-
ing with mitochondria and affecting their form and func-
tion. The most recent update to MitoMiner is version 4.0, 
which includes 1613 mitochondrial-related genes.

DEGs analysis
Differential expression of mitochondrion-related genes 
was analyzed by “limma” package (R v3.6) [17] with the 
cut-off P < 0.05 and abs(logFC) > 1. The expression of 
mitochondrion-related DEGs was compared between 
tumor and normal tissue utilizing heatmaps and volcano 
diagrams.

Functional enrichment analysis
Using the JAVA program gsea-3.0.jar, the GSEA was car-
ried out on the gene ontology gene set of MSigDB to 
illustrate differences between normal tissue samples and 
COAD samples [18–20]. The algorithm of random sam-
pling consisted of 1,000 permutations. Employing a false 
discovery rate (FDR) < 0.05, an enrichment between two 
types was identified. The "clusterProfiler" [21], "ggplot2" 
[22], and "GOplot" R packages [23] were utilized to per-
form GO and KEGG analyses n tumor tissue versus nor-
mal tissue.

Model construction based on differential 
mitochondrial‑related genes
To unearth mitochondrion-related DEGs value, a uni-
variate Cox analysis of OS was performed. We per-
formed boxplot diagrams to visualize the expression of 
prognostic-related genes. The multivariate Cox analysis 
was leveraged to establish a prognostic pattern to mini-
mize the hazard of overfitting. Normalized expression 
of each gene and their regression coefficients were uti-
lized to compute risk scores. The formula was as follows: 
score = ESUM (expression of each gene × homologous 
coefficient).  R​isk​sco​r​e​ = ​0.5​3*C​D​C25​C +​ ​0​.64​*NO​L3 ​
+​ 0.​601​*QS​OX2​ + ​0.28​1​*KC​NJ1​12.​44*​DNA​JC2​8​ + ​1.2​
94*ATCAY-0.604*TRA​P1 ​+ 0​.436*P4​HA1​. P​atients were 
stratified into high-risk and low-risk groups based on 
median risk score. For survival analysis, the optimal cut-
off expression value was resolved by the "surv cutpoint" 
of "survminer" R package [24]. Based on expression of 
each prognostic-related gene, Kaplan–Meier curves 
were utilized to juxtapose OS between two subgroups. 
To compare the correlation between clinicopathological 
variables and risk score, univariate and multivariate Cox 

analyses were performed. Independent cohort GSE39582 
was retrieved to validate the model.

Construction of nomogram, ROC curves clinical features, 
and immune status for COAD
The "survivalROC" R package [25] was used to assess pre-
dictive worth of the gene pattern using time-dependent 
receiver operating characteristic (ROC) curve analyses. 
RMS package [26] was utilized to generate nomograms 
that incorporated clinically significant characteristics and 
risk scores. The relationship between clinicopathological 
variables and risk score was assessed by student’s t-test. 
Visual data representations were produced using R pack-
age “beeswarm” [27]. The correlation of immune check-
points and immune cell infiltration fraction with risk 
score was also calculated by spearman correlation.

Statistical analysis
All statistical analyses were conducted by R package (v. 
3.6.3). The Kaplan–Meier analysis with log-rank test was 
used to determine the significance of the difference in 
survival rates among risk groups. P values were adjusted 
utilizing Benjamini–Hochberg method. P < 0.05 was 
regarded significant.

Results
Flow chart of overall design
521 COAD patients from the TCGA-COAD cohort 
were enrolled totally, including both tumor (n = 480) 
and normal samples (n = 41) (Fig.  1A). Upon down-
loading the RNA expression data for COAD patients 
from TCGA, the GSEA enrichment analysis was used 
to identify various mitochondrial-related pathways. 
These pathways enriched in mitochondrion-related 
metabolism prompted us to investigate the connec-
tion between mitochondrial metabolism and COAD 
pathogenesis further. We obtained the mitochondrion-
related gene set (n = 1613) from MitoMiner database 
in a previous study by Anthony C Smith. The mito-
chondrion-related gene set was intersected with DEGs 
from TCGA-COAD datasets to obtain "differentially 
expressed mitochondrion-related genes" (n = 249). 
Next, we analyzed each gene using univariate/multivar-
iate Cox regression, ultimately selecting eight genes for 
establishing the signature model. By using, univariate/
multivariate Cox regression, correlation analysis, and 
Kaplan–Meier analysis, the relationship among the 8 
gene signature model, clinical characteristics, immune 
checkpoint, and significance of survival were explored 
further. Finally, the nomogram graph and area under 
(AUC)/ receiver operating characteristic (ROC) curve 
were constructed to validate the efficacy. GSE39582 

https://portal.gdc.cancer.gov/
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cohort also was applied to validate accuracy of the sig-
nature model.

Identification of differential metabolic gene sets 
between COAD tumors and normal tissue
Although it has been reported that COAD tumorigen-
esis exhibits a unique relationship with mitochondrial 
metabolic processes, the associated metabolic signifi-
cance remains unknown. GSEA evidenced that in nine 
associated metabolic pathways (NOM P < 0.05) (Fig.  2), 
the gene sets were significantly enriched. These pathways 
included mitochondrial gene expression (NES = 1.7721, 
NOM P = 0.03), mitochondrial genome maintenance 
(NES = 1.6818, NOM P = 0.0153), mitochondrial RNA 
metabolism (NES = 1.8746, NOM P = 0.0123), mitochon-
drial RNA processing (NES = 1.8651, NOM P < 0.001), 
mitochondrial  translation  (NES =  1.7320,  NOM 
P = 0.0412), positive regulation of mitochondrial trans-
lation (NES = 1.8722, NOM P < 0.001), positive regula-
tion of mitochondrial outer membrane permeabilization 
involved in apoptotic signaling pathway (NES = 1.6025, 
NOM P = 0.0281), protein import into mitochondrial 
matrix (NES = 1.7508, NOM P = 0.0117), and regulation 
of mitochondrial gene expression (NES = 1.9865, NOM 
P < 0.001) (Table 1).

Functional analyses of differentially expressed 
mitochondrion‑related genes in TCGA​
We further investigated the relationship between COAD 
and mitochondrial metabolism as GSEA revealed the 
gene sets were significantly enriched in nine associated 
metabolic pathways. We identified 249 mitochondrion-
related DEGs by intersecting the mitochondrion-related 
gene set with the TCGA-COAD DEG datasets (Addi-
tional file 3: Table S1). These mitochondrial-related DEGs 
appeared on volcano and heat maps (Fig. 3A–B). To clar-
ify the biological implication connected with these mito-
chondrial-related DEGs, GO and KEGG analyses were 
performed on DEGs. Expectedly, DEGs were enriched in 
mitochondrial metabolism, including transport processes 
and fatty acid metabolism (P < 0.05) (Fig. 3C–F). Moreo-
ver, the DEGs were considerably enriched in a number 
of other biological processes, such as thermogenesis, the 
peroxisome proliferator-activated receptor (PPAR) sign-
aling pathway, and apoptosis in multiple species.

The establishment of a mitochondrion‑related prognostic 
model
To identify genes significantly associated with progno-
sis, a univariate Cox analysis was applied. 18 mitochon-
drion-related were initially identified as prognostic genes 

Fig. 1  The flow diagram for the establishment of the mitochondrial-related gene signature model
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(Fig. 4A–B). Figure 4A displays18 mitochondrion-related 
differential genes in COAD and normal tissues. Figure 4B 
depicts the results of the univariate Cox analysis. Next, 
a prognostic pattern according to multivariate Cox anal-
ysis was developed (Additional file  4: Table  S2). As dis-
played in Fig. 4C and 5A, a risk score was computed, as 
detailed in Materials and Methods section. A high-risk 
group and a low-risk group were divided according to 
median risk score (P < 0.001). High-risk patients often die 
earlier than low-risk patients (Fig.  5B). As for this scat-
ter plot, every point just represents a patient. Tumors are 
heterogeneous, and each clinical patient is also specific. 

Analyzing this issue from a clinical point of view, patients 
assigned to a high-risk group do not absolutely have a 
worse prognosis, whereas patients assigned to a low-risk 
group do not necessarily have a longer survival time. Our 
model efficacy is decided by the final proportions and 
probability.

Eight genes were involved in the mitochondrion-related 
pattern. Kaplan–Meier plots revealed that eight genes 
were identified as independent prognostic signatures 
(P < 0.05) (Fig.  6A–F), involving CDC25C [P = 0.001, 
Hazard Ratio (HR) = 0.5], KCNJ11 (P = 0.004, HR = 1.91), 
NOL3 (P = 0.004, HR = 1.96), P4HA1 (P = 0.008, 

Fig. 2  Gene set enrichment analysis of mitochondrion-related pathways of tumor in TCGA-COAD. The enrichment items were selected with a 
normalized P value 0.05. NES: normalized enrichment score; FDR: false correction rate
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HR = 1.73), QSOX2 (P = 0.017, HR = 1.65), and TRAP1 
(P = 0.002, HR = 0.52), and two genes with P value > 0.05, 
DNAJC28 (P = 0.051, HR = 0.66) and ATCAY (P = 0.206, 
HR = 1.3) (Additional file 1: Fig. S1), involving DNAJC28 
(P = 0.051, HR = 0.66) and ATCAY (P = 0.206, HR = 1.3). 
A heat map depicts the expression of eight mitochon-
drion-related signatures in COAD (Fig. 5C).

Equipped with the available variables, univariate and 
multiple Cox analyses were performed to clarify whether 
risk score was independent for OS. In univariate Cox 
analyses, the risk score was strongly associated to OS in 
TCGA-COAD cohort (P < 0.001, HR = 1.112) (Fig.  7A). 
These included variables are important parameters used 
in the clinical treatment of colon adenocarcinoma to 
measure its disease progression, grading and staging. Age 
and gender can determine the pathogenic factors of the 
patient, while T, N, M, stage can indicate the severity of 
the disease. By comparing the risk score with these typi-
cal variables, we can show that it has a relatively better 

predictive value for prognosis. In a multivariate Cox anal-
ysis, after adjusting for other confounding factors, the 
risk score remained independent for OS (P < 0.001, 
HR = 1.109) (Fig.  7B). After multiple Cox analysis com-
bined with clinical stage and risk score and the develop-
ment of a prognostic prediction pattern, the nomogram 
was conducted. This was used to confirm the model’s risk 
score as a prognostic factor to assess the predicted prob-
ability of OS at 1-, 3- and 5- years (Fig. 7C). It has been 
demonstrated that the model is effective in predicting OS 
at 1-, 3-, and 5- years (Risk score-AUC: 1-year -: 0.687, 
3-year: 0.752, 5-year: 0.762) (Fig.  7D). In addition, we 
conformed risk score and clinical representative charac-
teristics into the same ROC curve to compare their 1-, 3-, 
and 5-year prediction efficacy (Fig. 7E–G).

Additionally, the prediction efficacy was validated in 
GSE39582 (Fig.  8A–C). The ROC curve was also vali-
dated in GSE39582 dataset, and 1-year risk score-AUC 
value: 0.757, 3-year risk score-AUC value: 0.714, 5-year 

Table 1  9 mitochondrion-related GSEA pathways

NAME SIZE ES NES NOM p-val FOR q-val FWER p-val RANKAT MAX LEADING EDGE

GOBP_REGULATION_OF_MITO-
CHONDRIAL_GENE_EXPRES-
SION

28 0.828871 2.004785 0.002037 0.004225 0.175 3584 tags = 68%, list = 6%, 
signal = 73%

GOBP_MITOCHONDRIAL_RNA_
PROCESSING

16 0.830658 1.874972 0 0.012356 0.454 5467 tags = 81%, list = 10%, 
signal = 90%

GOBP_POSITIVE_REGULATION_
OF_MITOCHONDRIAL_TRANS-
LATION

16 0.888397 1.870809 0 0.012631 0.463 3584 tags = 81%, list = 6%, 
signal = 87%

GOBP_MITOCHONDRIAL_RNA_
METABOLIC_PROCESS

44 0.709743 1.833979 0.014463 0.016309 0.542 10,154 tags = 75%, list = 18%, 
signal = 92%

GOBP_MITOCHONDRIAL_
GENE_EXPRESSION

161 0.707892 1.757023 0.029724 0.028204 0.703 7928 tags = 65%, list = 14%, 
signal = 76%

GOBP_PROTEIN_IMPORT_
INTO_MITOCHONDRIAL_
MATRIX

20 0.728259 1.742189 0.012048 0.030894 0.723 8594 tags = 80%, list = 16%, 
signal = 95%

GOBP_MITOCHONDRIAL_
TRANSLATION

132 0.72311 1.716128 0.044304 0.036107 0.757 7928 tags = 67%, list = 14%, 
signal = 79%

GOBP_MITOCHONDRIAL_
GENOME_MAINTENANCE

21 0.58461 1.634145 0.023033 0.056558 0.872 3623 tags = 48%, list = 7%, 
signal = 51%

GOBP_POSITIVE_REGULATION_
OF_MITOCHONDRIAL_OUTER_
MEMBRANE_PERIMEABI_LIZA-
TION_INVOLVED_IN_APOP-
TOTIC_SIGNALING_PATHWAY​

35 0.553105 1.611109 0.014286 0.063709 0.899 9343 tags = 63%, list = 17%, 
signal = 76%

(See figure on next page.)
Fig. 3  Functional analyses of differentially expressed mitochondrion-related genes in TCGA. A The heat map of mitochondrion-related DEGs in 
TCGA-COAD. Red: high expression level. Green: low expression level. B The volcano map of mitochondrion-related DEGs in TCGA-COAD. Red: 
upregulated genes. Blue: downregulated genes. Gray: no-significant difference genes. C–D The most significant GO and KEGG enrichment 
pathways in the TCGA cohort in up-regulated genes group. E–F: The most significant GO and KEGG enrichment pathways in the TCGA cohort in 
up-regulated genes group. Respectively, the enriched items were filtered with a corrected P value 0.05; the length and color of the point represent 
the absolute value of NES and the q values.
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Fig. 3  (See legend on previous page.)
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risk score-AUC value: 0.691 (Fig.  8D). With respect to 
these data, Additional file  1: Fig. S2 displays the Deci-
sion Curve Analysis for this risk score. We developed two 
models; both of which included risk score and excluded 
risk score. It is evident that the risk score model appears 
to offer more advantages.

Connection between risk score and clinicopathological 
characteristics
Utilizing clinical information from the TCGA-COAD 
cohort, the current research probed the connection 
between risk score and prognostic factors. Results revealed 
a significant connection between higher risk scores and 
higher tumor (P = 4.116e-04), node (P = 0.022), and stage 
(P = 0.017) levels, as well as with tumors (P = 0.065) 

(Fig. 9). Other important clinical characteristics were not 
significantly interrelated with gender (P = 0.360), M stage 
(P = 0.107), histological type (P = 0.613), carcinoembry-
onic antigen (CEA) level (P = 0.313), lymphatic (P = 0.658) 
or perineural invasion (P = 0.450), which have been each 
reported to be correlated with COAD prognosis (Fig. S3).

Connection between risk score and immune status 
in tumor microenvironment
Immunotherapy is an emerging treatment for COAD. 
Increasingly related target mechanism research and clini-
cal trials are in progress. Immunotherapies that inhibit 
immune checkpoints and target specific immune cell 
are common and effective immunotherapies in clini-
cal practice. To discuss the fesible connection between 

Fig. 4  Predictive model construction according to Cox regression analysis. A The expression of 18 independent prognostic factors between tumor 
and normal tissue in TCGA-COAD. B The forest plot of the relation between the expression levels of 18 genes and OS in TCGA-COAD patients. 
Hazard ratios (HR), P value, and corresponding 95% confidence intervals were evaluated by univariate Cox regression analyses. C Kaplan–Meier OS 
curves for patients with high- and low-risk score group in the TCGA-COAD cohort
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our risk score model and immune cell infiltration and 
immune checkpoints, we first performed correlation 
analysis between 22 immune cell infiltration fraction and 
our risk score. Results revealed that CD4 memory rest-
ing T cells (P = 0.007) and CD4 memory activated T cells 
(P = 0.0059) were significantly higher in low-risk group 
(Fig.  10A–B). But the macrophages M0 cells (P < 0.001) 

and NK resting cells (P = 0.034) were significantly higher 
in high-risk group (Fig.  10C–D). In addition, we per-
formed the correlation analysis between expression of six 
representative immune checkpoints and risk score. The 
expression level of CD274 (P = 0.032), HAVCR2 (P < 0.001) 
(Fig.  10E–F) and PDCD1LG2 (P = 0.22) (Fig. S4A) was 
higher in high-risk group than low-risk group. However, 

Fig. 5  Prognostic values of the eight-gene signature model in TCGA-COAD cohort. A The distribution and median value of the risk scores between 
high- and low- risk score group in the TCGA-COAD cohort. B The risk distribution curve of OS status, OS and risk score between high- and low- risk 
score group in TCGA-COAD cohort. C The heat map of eight-genes expression level between high- and low- risk score group in TCGA-COAD cohort. 
Red: high expression level. Green: low expression level
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the expression of CTLA4 (P = 0.048), IDO1 (P = 0.017) 
(Fig. 10G–H) and PDCD1 (P = 0.085) (Fig. S4B) was lower 
in high- risk group. Different relationships among immune 
checkpoints may reflect the non-negligible tumor het-
erogeneity, and they may serve as a reference for future 
immune checkpoint inhibition treatment.

Discussion
As the world’s population ages, the incident rate of 
COAD is increasing globally. Genetic and epigenetic 
alteration, smoking and alcohol consumption, dietary 
factors, and inflammatory bowel disease are all con-
tributory factors to the development of COAD. Current 

Fig. 6  Kaplan–Meier plots of the prognostic mitochondrion-related gene signatures. A–F: The six genes included CDC25C, KCNJ11, NOL3, P4HA1, 
QSOX2 and TRAP2 (P < 0.05). Another two genes were displayed in Additional file 1: Fig. S2 due to their P value > 0.05
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COAD treatment consists primarily of surgical resection 
and chemotherapy, but their ineffectiveness exemplifies 
the need for novel approaches [27]. Due to a lack of early 
diagnostic tools, the majority of patients are diagnosed 
at advanced stages of disease. As a result, many patients 
miss the optimal window for curative surgical treatment 
[28, 29]. Although numerous studies have addressed the 
diagnosis and treatment of COAD in the past, no mean-
ingful breakthroughs have been made. Resultantly, estab-
lishing a reliable model for early diagnosis and prognosis 
prediction in COAD is paramount. The use of such a 
model could accurately and promptly assess the out-
comes of treatment and offer recommendations for addi-
tional treatment [30]. Chen et al. and Zuo et al. [31, 32] 
published the COAD prognostic model of transcriptome 
characteristic genes, which describes the construction 
of prognostic models for patients. Nonetheless, the role 
of mitochondria-related genes in COAD has yet to be 
explored.

As an indispensable intracellular organelle of eukary-
otes, mitochondrial function plays a crucial role in many 
cellular processes [33]. Mitochondria serve as a meta-
bolic hub to regulate the metabolic process and provide 
energy for cell growth, differentiation, and apoptosis. It 
has been proven that mitochondrial dysfunction affects 
the occurrence and development of cancer [34]. Some 
biological processes related to cancer, including tumor 
formation, development, invasion, metastasis, and drug 
resistance, are dependent on mitochondria [35, 36]. Since 
the metabolic process in tumors is frequently changed, 
mitochondrial-related genes have been investigated as 
a potential cancer therapy target in a number of recent 
studies [37, 38]. Differential expression of mitochondria-
related genes is associated with occurrence and metasta-
sis of breast cancer [39], as well as the invasive phenotype 
of osteosarcoma [40], according to studies. During tumor 
initiation and metastasis, the metabolism is repro-
grammed, and this reprogramming is largely dependent 
on mitochondria [41].

Furthermore, there are a number of studies focus on 
mechanisms of mitochondrial-related genes and design-
ing corresponding drugs and inhibitors for COAD treat-
ments. Growing tumors will quickly exceed the size that 

diffusion provides an adequate supply of oxygen, leading 
to tumor hypoxia and transition to glycolysis. This switch 
is caused by an important factor, hypoxia-inducible tran-
scription factor 1α (HIF-1α), which determines metabolic 
fate of COAD. Downregulation of MPC1 and MPC2 has 
been reported in COAD, which is associated with poor 
prognosis [42]. Moreover, a series of researches found 
the role of mitochondrial oxidative phosphorylation 
(OXPHOS) in COAD. Increased mitochondrial DNA 
copy number in COAD is connected to higher prolif-
eration and lower apoptosis by mitochondrial OXPHOS 
[43]. With the in-depth understanding of these metabolic 
processes and mitochondrial genes, recent studies to tar-
get cancer metabolism focus on the mitochondrial TCA 
and OXPHOS to block the aerobic glycolysis in tumor 
cells. A large number of drugs are under study to target 
mitochondria and mitochondrial function, such as met-
formin, 3-bromopyruvate or 2-deoxyglucose [44, 45]. 
Notably, most studies have explored a single mitochon-
drial-related gene or an associated signaling pathway in 
tumor formation, invasion, metastasis, and its relation-
ship with the prognosis of cancer. In present study, the 
complicated biological process of mitochondria has 
been paid attention, and the utilization of mitochondria-
related gene sets will be more reliable and can effectively 
judge the survival and prognosis of COAD.

Furthermore, a number of studies concentrate on 
the mechanisms of mitochondrial-related genes and 
the development of drugs and inhibitors for COAD 
treatments. Tumors will quickly outgrow the size at 
which diffusion can provide an adequate supply of 
oxygen, leading to tumor hypoxia and the transition 
to glycolysis. Hypoxia-inducible transcription factor 
1α (HIF-1α) is responsible for this switch, resulting in 
up-regulation of several genes to avoid hypoxic stress 
and activate pyruvate dehydrogenase kinase (PDK) to 
inhibit mitochondrial metabolism [46, 47]. In COAD, 
HIF1α expression is associated with cancer-specific 
death, recurrence, vascular invasion and chemoresist-
ance [48]. In addition, the mitochondrial pyruvate car-
rier (MPC), consisting of MPC1 and MPC2 subunits, 
becomes another pivotal factor in determining the 
metabolic fate of COAD [49]. Since MPC is responsible 

(See figure on next page.)
Fig. 7  Univariate and multivariate Cox regression, nomogram, and ROC curve regarding OS in the TCGA cohort. A Univariate Cox regression 
analyses regarding OS in the TCGA cohort. B Multivariate Cox regression analyses regarding OS in the TCGA cohort. C Nomogram for predicting OS 
probabilities in 1-, 3- and 5-year of TCGA-COAD patients. The point scale was used to arrange points to these variables. The sum of points arranged 
to each variable was rescaled to a range from 1 to 100. The points of the variables were accumulated and recorded as the total scores. The 1-, 3-, and 
5-year survival probabilities of COAD patients were determined by drawing a vertical line directly from the total score axis down to the outcome 
axis. D The ROC curve for predicting 1-, 3- and 5-year OS of the nomogram in the TCGA-COAD cohort. E–G The ROC curve for predicting 1-, 3- and 
5-year OS of the nomogram compared between this risk score model and other clinical characteristics in the TCGA-COAD cohort, including age, 
gender, stage, T stage, M stage and N stage
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for mitochondrial pyruvate uptake, it causes oxidation 
in the tricarboxylic acid (TCA) cycle subsequently. 
MPC1 and MPC2 deletion or downregulation has been 

reported in COAD, which is associated with poor prog-
nosis [50]. In addition, variety of studies have identified 
the effect of mitochondrial oxidative phosphorylation 

Fig. 7  (See legend on previous page.)
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(OXPHOS) in COAD. Increased mitochondrial DNA 
copy number in COAD correlates with increased pro-
liferation and apoptosis inhibition by mitochondrial 
OXPHOS [51]. With the in-depth understanding of 
these metabolic processes and mitochondrial genes, 
recent studies targeting cancer metabolism have been 
focusing on the mitochondrial TCA and OXPHOS to 
block the aerobic glycolysis in tumor cells. Numerous 
drugs targeting mitochondria and mitochondrial func-
tion are being investigated, such as 3-bromopyruvate, 

metformin or 2-deoxyglucose [44, 45]. Notably, the 
majority of studies have centered on a single mito-
chondrial-related gene or signaling pathway in tumor 
formation, progression and its association with cancer 
survival. The complex biological process of mitochon-
dria has been considered in our work, and the utiliza-
tion of nuclear mitochondria-related gene sets will be 
more reliable and can effectively estimate the survival 
status of COAD.

Fig. 8  The validation of prognostic value for the mitochondrial-related gene signature model in GSE39582 cohort. A: Kaplan–Meier OS curves for 
patients with high- and low-risk score group in GSE39582 cohort. B: The ROC curve for predicting 1-, 3- and 5-year OS in GSE39582 cohort. C The 
distribution and median value of the risk scores in GSE39582 cohort. D The risk distribution curve of OS status, OS and risk score in TCGA-COAD 
cohort
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Many prognostic patterns according to mitochon-
drial-related genes have been clarified for certain can-
cers, including bladder, prostate, liver, and lung cancer 
[52–55]. However, no research has been reported in 
COAD. At the beginning of our research, we conducted 
a gene signature prediction model according to mito-
chondrial-related genes in COAD. Several bioinformat-
ics instruments were used to analyze COAD sample 
transcriptome sequencing data. We discovered that 88 
genes were up-regulated and 99 were down-regulated 
in COAD tissue samples compared to normal tissue by 
leveraging the human mitochondria-related gene library 
MitoMiner V4.0 [33]. The identified DEGs are closely 
correlated with mitochondrial dysfunction and meta-
bolic processes during the development of COAD. GO 
enrichment analysis revealed genetic variations in nine 
biological pathways related to cancer, including ROS gen-
eration, nucleic acids, amino acid metabolism, and dicar-
boxylic acid metabolism [56]. These biological processes 
are consistent with the characteristics of tumor cells and 
are primarily associated with unrestricted cell prolifera-
tion [57], indicating that mitochondria-related genes is 

closely connected to the carcinogenesis of COAD. Dif-
ferential expression of mitochondria-related genes pri-
marily affects fatty acid metabolism and amino acid 
metabolism pathways, which are closely related to the 
metabolic adaptation of tumors and the metastasis of 
COAD [58], as indicated by the KEGG pathway maps. 
These metabolic changes are essential for tumor growth 
in an unfavorable tumor microenvironment and for the 
development and maintenance of cancer cell metasta-
sis [59]. Numerous studies have recently proposed the 
"lipolytic phenotype" of cancer; fatty acid metabolism is 
also reprogrammed in cancer-related immune cells [60], 
contributing to immune suppression and promoting the 
tumor microenvironment, making it a potential target of 
immunotherapy [61].

In our present study, differentially expressed mito-
chondria-related genes and prognostic correlation analy-
sis were utilized to develop a prediction model for eight 
key genes. We discovered that the prediction model was 
able to effectively stratify patients based on survival, with 
high-risk group exhibiting worse OS than low-risk group. 
ROC and independent prognosis analysis suggested that 

Fig. 9  Association between risk score and clinicopathological characteristics (P < 0.05). A–D The statistical analyses between T, N, stage, and tumor 
status between high- and low-risk score group
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Fig. 10  Correlation analysis between risk score and immunological status. A–D The correlation between risk score and immune cell infiltration, 
including CD4 memory resting T cells, CD4 memory activated T cells, M0 macrophages and resting NK cells. E–H The correlation between risk score 
and immune checkpoint expression, including CD274, HAVCR2, CTLA4 and IDO1
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the predictive pattern could be applied as an independent 
risk factor for patient prognosis and had a high predic-
tive value for patient prognosis. Clinical staging, TNM 
staging, and histological grading continue to be the most 
frequently used tools for prognostic prediction and treat-
ment strategies in COAD patients [62] at present. How-
ever, the heterogeneity of COAD makes it challenging to 
improve the treatment efficacy of COAD and make deci-
sions for doctors regarding the therapy of COAD patients 
[29]. A prognostic nomogram was developed in the 
present study, which had the advantage of overcoming 
COAD heterogeneity, and may lead to inaccurate prog-
nosis prediction in COAD patients. In contrast, OS had 
greater AUC values at 1, 3, and 5  years, indicating that 
the newly constructed nomogram was credible. Through 
gene correlation analysis, it was discovered that CDC25C 
and P4HA1 may be key genes to target in COAD patients 
[63–66], as they are associated with the metabolism, cell 
cycle, and progression of tumors. Therefore, CDC25C 
and P4HA1 have the potential to serve as biomarkers for 
COAD patients and contribute to the decision-making 
process regarding colon cancer treatment. The novel 
genes including KCNJ11 NOL3, P4HA1, and QSOX2 
were overlooked in COAD in the past; the correlation 
among these genes and COAD prognosis has been inad-
equately defined and requires further investigation. Our 
findings demonstrate the pioneering prognostic value of 
our model and offer a novel pathogenesis and prognostic 
mechanism for COAD.

Our study still has certain limitations. Even though 
we validated our signature model based on public GEO 
datasets, it is worth further validating with prospective 
clinical samples and local cohort data in the future. Addi-
tionally, although our study demonstrated a potential 
association between risk scores and tumor microenviron-
ment or clinical characteristics that may influence clini-
cal management decisions in patients with COAD, the 
validation of immune checkpoint inhibitors and patient-
targeted therapies requires further research. The poten-
tial regulatory mechanisms in vivo or in vitro also need 
further research to explore in depth.

Conclusion
This study represents the first effort to discover poly-
genic markers of mitochondrial-related genes assess 
potential function of these genes during the carcino-
genesis of COAD patients. In addition, a robust risk 
score tool based on the expression profile of mitochon-
drial-related genes was developed to prompt COAD 
patients’ prognosis. Furthermore, the prognostic 
nomogram and mitochondrial-related gene signature 
were shown to have clinical applicability. In addition, 

the analysis of clinical and histopathological features, 
which bodes well for patient-specific treatment and 
medical decision-making in the future.
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