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Abstract 

Cross-validation (CV) is a resampling approach to evaluate machine learning models when sample size is limited. 
The number of all possible combinations of folds for the training data, known as CV rounds, are often very small in 
leave-one-out CV. Alternatively, Monte Carlo cross-validation (MCCV) can be performed with a flexible number of 
simulations when computational resources are feasible for a study with limited sample size. We conduct extensive 
simulation studies to compare accuracy between MCCV and CV with the same number of simulations for a study 
with binary outcome (e.g., disease progression or not). Accuracy of MCCV is generally higher than CV although the 
gain is small. They have similar performance when sample size is large. Meanwhile, MCCV is going to provide reliable 
performance metrics as the number of simulations increases. Two real examples are used to illustrate the comparison 
between MCCV and CV.
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Introduction
Machine learning (ML) methods are increasingly applied 
to improve diagnostic classification in clinical research 
[5, 9]. For a study with categorical outcome whose classes 
are known beforehand, supervised ML methods can be 
used to predict outcomes for a separate data [18, 31]. 
Linear discriminant analysis (LDA) finds a linear com-
bination of features that separates two or more classes. 
Logistic regression is a special case of LDA for a two-
class classification problem. The k-nearest neighbors 
algorithm is a simple and easy method that assumes simi-
lar individuals being close to each other. Regression tree 
starts from root of a tree with all the features as nodes 
[28, 34, 36]. For every possible route from root to the end 
of a branch that does not split any further, a classification 
is made. Ensemble classification and boosting are two 
techniques to improve weak methods, such as stochastic 
gradient boosting [7]. Random forest achieves classifica-
tion via a majority voting from all decision trees [20, 21, 

26, 42]. Support vector machine (SVM) finds a decision 
function that maximizes the margin around the separat-
ing hyperplane by developing a mapping from features to 
classes as a combination of kernels [11]. SVMs are pref-
erable in many researches due to their high accuracy in 
model prediction [38].

Cross-validation (CV) procedure is traditionally 
applied to build ML models. To perform CV, data are 
split into k small folds (e.g., k = 10 ). The majority of 
these folds are used as the training data and the remain-
ing folds are the testing data. For leave-one-out CV with 
10 folds, there is a total of possible 10 CV rounds that 
is the number of all possible combinations of folds for 
the training data. When it is computationally intensive, 
researchers may only run one round in the model build-
ing, which could introduce a significant amount of bias 
in the model performance metrics. In light of this issue, 
researchers may run all CV rounds to reduce the estimate 
bias (e.g., 10 rounds in leave-one-out CV with 10 folds).

Alternatively, one may consider Monte Carlo cross-
validation (MCCV) that splits data into two subsets by 
sampling without replacement. MCCV is a simple and 
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effective approach in data science [37]. Xu et al. [40, 41] 
compared MCCV with leave-one-out CV for a linear 
regression model with continuous outcome, and found 
that MCCV has a better performance than leave-one-out 
CV with regards to mean squared error of prediction. 
Shao [37] pointed out that the traditional CV approach is 
asymptotically inconsistent which is a important statisti-
cal property of model selection. When the probability of 
selecting the model with the best predictive ability goes 
to 1 as the number of observations goes to +∞ . Shao [37] 
provided the asymptoticl consistent property of MCCV 
for linear models.

In many clinical studies, dichotomous outcome is the 
parameter of interest, such as disease progression or 
not in cancer trials [27, 33, 35], and amyloid-β status 
(either positive or negative) in Alzheimer’s disease (AD) 
research [2, 22, 29]. Amyloid-β is considered as one of 
the two pathologies for diagnosis of AD [14], and has 
been the target in many recent AD trials using disease 
modified therapies (DMTs) (e.g., the BAN2401 trial [15]). 
One important drug is Aducanumab that is an antibody 
drug to remove amyloid-β plaques for individuals at 
early stages of AD [16]. In that trial, a positive amyloid 
Positron Emission Tomography (PET) scan was one of 
the inclusion criteria. However, PET scan is very expen-
sive and it is often not covered by insurance. Effective 
ML methods have the potential to save costs and screen 
proper participants faster.

Methods
We are going to compare MCCV with CV for a study 
with binary outcome (e.g., disease progression or not). 
We use 10-fold leave-two-out CV to build a predic-
tive model by using 8 subsets as the testing data and the 
remaining 2 subsets as the testing data. There is a total 

of 45 CV rounds which are the number of combinations 
choosing 8 folds from a total of 10 folds. To perform 
MCCV, data are split into a training set (80%) and a test-
ing set (the remaining 20%) without replacement in each 
simulation. For a fair comparison between MCCV and 
CV, we use the same number of rounds as that in the CV: 
45 simulations in MCCV.

The following 12 supervised ML methods for binary 
outcome are studied: (1) linear discriminant analysis 
(LDA); (2) generalized linear model (GLM); (3) logis-
tic regression (LOG); (4) naive bayes (BAY); (5) bagged 
classification and regression tree (CART); (6) recursive 
partitioning and regression trees (TREE); (7) k-nearest 
neighbors (KNN); (8) random forest (RF); (9) learn-
ing vector quantization (LVQ); (10, 11) support vec-
tor machines with linear kernel (SVM-L) or polynomial 
kernel (SVM-P); and stochastic gradient boosting (SGB). 
We use the statistical package caret from R to imple-
ment these ML methods [10, 31], with the detailed func-
tion values in Table  1. In the statistical package caret, an 
inner CV with 10-fold is performed on the training set, 
also known as the nested CV.

Accuracy is one of the most common performance 
metrics to evaluate ML models, and it is calculated as the 
proportion of all samples from a testing data that are cor-
rectly predicted by using the predictive ML model built 
from a training data [18]. It is defined as:

where TP, FN, TN, and FP are the numbers of true posi-
tive, false negative, true negative, and false positive, 
respectively. It is easy to show that the total sample size 
is N =TP+TN+FP+FN. When comparing different 
ML methods, the one having the highest accuracy is 

Accuracy =
TP + TN

TP + TN + FP + FN
,

Table 1  Twelve supervised ML methods from the R package caret 

Method ML model Method value in R

LDA Linear discriminant analysis lda

GLM Generalized linear model glm

LOG Boosted logistic regression LogitBoost

BAY Naive Bayes Naive_bayes

CART​ Bagged CART​ Treebag

TREE Recursive partitioning and regression trees rpart

KNN k-Nearest neighbors knn

RF Random forest rf

LVQ Learning vector quantization lvq

SVM-L Support vector machines with linear kernel svmLinear

SVM-P Support vector machines with polynomial kernel svmPoly

SGB Stochastic gradient boosting gbm
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preferable. In this article, we focus on comparing accu-
racy between MCCV and CV instead of identifying opti-
mal ML methods.

Results
We first apply the aforementioned ML methods to pre-
dict amyloid-β positivity using two data sets: (1) Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI), and (2) 
Center for Neurodegeneration and Translational Neuro-
science (CNTN).

ADNI data
We first use data from the ADNI [39] to illustrate the 
application of the considered ML methods to predict 
amyloid-β positivity among individuals with significant 
memory concern (SMC). Individuals with SMC are at 
an early stage of dementia, and they become one of the 
target population in AD clinical trials to alter the dis-
ease progression by starting intervention earlier [16]. The 
SMC group was enrolled during the second phase and 
the third phase of the ADNI [1]. The ADNI study is a lon-
gitudinal study having one of the goals to accelerate the 
AD drug development by discovering new biomarkers.

In this example, let the outcome be the amyloid-β sta-
tus, which is defined by using a threshold of 1.11 from 
the computed standardized uptake value ratio (SUVR). 
The SUVR is an average of weighted four cortical reten-
tion means divided by the whole cerebellum SUVR. Four 
regions are: frontal, cingulate, parietal, and temporal 
regions [6, 12, 13]. The SUVR value is obtained from the 
baseline amyloid positron emission tomography (PET) 
scan.

The following 11 features are used in the ML models. 
APOE ε 4 gene is the well-known genetic risk factor for 
patients with AD. Additional one copy of APOE ε 4 gene 
would increase the risk of developing AD by 4-fold or 
more [8]. Six demographic features are: age, sex, race, 
years of eduction, hispanic ethnicity, and marital status. 
The neuropsychological scores from the following four 
tests are also included as features: (1) Clinical Dementia 
Rating-Sum of Boxes (CDR-SB), (2) Mini Mental State 
Exam (MMSE), (3) Montreal Cognitive Assessment 
(MoCA), and (4) the 13-item ADAS-cog (ADAS-cog13). 
Among these features, many of them are continuous 
measures, especially the cognitive tests.

The characteristics of the SMC individuals are pre-
sented in Table 2. Participates are elderly with the mean 
age of 71.85, and the majority of the participants are 
Whites (close to 90%). We also present the Pearson 

correlation coefficient of each feature with the amy-
loid-β status. The genetic risk factor of AD (APOE ε 4) 
and age are two features having significant correlations 
with the amyloid-β status. The other features do not 
have strong correlations with the outcome, while the 
marital status and sex have week correlations with the 
outcome.

We have 169 individuals with SMC in the database. 
We choose to randomly pick 150 individuals for 100 
times. For each selected data, we follow the aforemen-
tioned procedure to randomly split data into 10 folds in 
leave-two-out CV, with a total of 45 CV rounds. Simi-
larly, we run 45 simulations in MCCV, and compare 
its average accuracy with the average accuracy in CV. 
The value of d is the mean accuracy difference between 
MCCV and CV (MCCV-CV), t is the test statistics 
from a paired t-test, and p is the pvalue from the paired 
t-test to assess the difference between MCCV and CV. 
When d is positive, it suggests that MCCV has a higher 

Table 2  Patient characteristics of SMC individuals from the ADNI 
study

The last column is the Pearson correlation coefficient between each feature and 
the outcome (Amyloid-β)

N = 149 ρ (p value)

Amyloid-β positivity (%) 59 (35%)

APOE ε4 0.2670 (0.0004)

0 Copy 109 (64.50%)

1 Copy 54 (31.95%)

2 Copies 6 (3.55%)

Age 71.85 (6.11) 0.2255 (0.0032)

Edu 16.83 (2.54) 0.0136 (0.8606)

Sex 99 (58.58%) −0.1370 (0.0756)

Hispanic 6 (3.55%) −0.0064 (0.9347)

Race −0.0927 (0.2306)

Whites 152 (89.94%)

African American 10 (5.92%)

Other 7 (4.14%)

Marry status 0.1435 (0.0627)

Married 123 (72.78%)

Never married 10 (5.92%)

Divorced 18 (10.65 %)

Widowed 18 (10.65%)

ADAS-cog13 10.40 (4.53) 0.01239 (0.8734)

MoCA 25.93 (2.65) −0.07430 (0.3370)

CDR-SB 0.06 (0.17) 0.02516 (0.7454)

MMSE 29.07 (1.17) −0.05532 (0.4750)
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average accuracy than CV. In Fig. 1, we find that MCCV 
always has a higher average accuracy than CV in all 
the considered ML methods. In addition to accuracy, 
we also compare these two approaches with F1 score 
which takes into account of possible mis-classifications. 
We present the model comparison using F1 score in the 
model building in Fig. 2. It can be seen that MCCV has 
a better performance than CV with all the d values are 
positive for all the ML methods.

In Table 3, we present the detailed performance met-
rics (accuracy and F1) for each ML method. For this 
data set, it can be seen that MCCV has better perfor-
mance than CV. The accuracy and F1 values of MCCV 
are larger than those using CV. The p values for nor-
mality test based on the Shapiro Wilk’s test and equal 
variance test based on the Levene test are provided 
in this table. All these p values are above 0.05. We do 
not have sufficient evidence to the reject the normal-
ity assumption and the equal variance assumption. The 

Fig. 1  Data from the ADNI is used to compare MCCV and CV of the 12 ML methods with 100 simulations using accuracy as the performance metric 
in model building. Within each simulation, there are 45 rounds. When d is positive, MCCV has a better performance than CV
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Fig. 2  Data from the ADNI is used to compare MCCV and CV of the 12 ML methods with 100 simulations using F1 as the performance metric in model 
building. Within each simulation, there are 45 rounds. When d is positive, MCCV has a better performance than CV

Table 3  Comparison of the 12 ML methods with regards to performance metrics (accuracy and F1) and the statistical test with 
assumption check by using data from the ADNI study

Method Normality Levene test Paired t-test Accuracy F1

Test statistic p Value MCCV CV MCCV CV

LDA 0.102 0.962 0.009 0.000 0.649 0.639 0.654 0.648

GLM 0.798 0.443 0.009 0.000 0.651 0.642 0.658 0.651

LOG 0.898 0.129 0.005 0.002 0.606 0.600 0.612 0.605

BAY 0.249 0.457 0.008 0.000 0.667 0.659 0.669 0.665

CART​ 0.473 0.754 0.004 0.054 0.610 0.606 0.614 0.612

TREE 0.632 0.193 0.010 0.000 0.641 0.630 0.643 0.635

KNN 0.129 0.086 0.008 0.000 0.621 0.612 0.625 0.616

RF 0.733 0.475 0.011 0.000 0.635 0.624 0.639 0.633

LVQ 0.095 0.828 0.010 0.000 0.629 0.619 0.632 0.625

SVM-L 0.591 0.288 0.009 0.000 0.654 0.646 0.661 0.652

SVM-P 0.475 0.435 0.011 0.000 0.621 0.610 0.626 0.619

SGB 0.609 0.946 0.006 0.000 0.651 0.645 0.656 0.648



Page 6 of 15Shan ﻿BMC Medical Informatics and Decision Making          (2022) 22:270 

paired t-test is used to compare the accuracy difference 
between MCCV and CV. All ML methods show that 
MCCV has a statistically significant higher accuracy 
than CV. Although not presented here for the paired 
t-test for F1 in this table, the results are similar to the 
findings using accuracy as seen in Fig. 2.

CNTN data
We use another data from the CNTN study [3, 25] to 
compare CV and MCCV to predict amyloid-β posi-
tivity. In this dataset, we have 53 amyloid-β positivity 
cases from the total of 117 participants. The follow-
ing features are studied: age, race, ethnicity, education, 
gender, MoCA, MMSE, and CDR. For the last cogni-
tive measures, we only use their total scores. The ML 

Fig. 3  Data from the CNTN study is used to compare MCCV and CV of the 12 ML methods with 100 simulations using accuracy as the performance 
metric in model building. Within each simulation, there are 45 rounds. When d is positive, MCCV has a better performance than CV
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procedure settings are the same as those used in the 
ADNI example. MCCV is shown to have better perfor-
mance than CV when accuracy is used as the perfor-
mance metric in Fig. 3, and F1 score is the performance 
metric in Fig. 4.

For this example, the time to run all 12 models is 12.6 
s using MCCV as compared to 12.1 s with CV using a 
personal computer. If we run MCCV for 100 time, it 
will be 21 min. If we run CV only one time, the time 

would be much shorter, which is 12.1 s. When the total 
time is not too long, MCCV is recommended.

We conduct the variance analysis for the performance 
of MCCV and CV. These two methods have similar 
standard deviation (SD) of their accuracy values. In 
the ADNI data, the SD values are 0.292 and 0.301 for 
MCCV and CV respectively, and 0.312 and 0.291 for 
MCCV and CV in the CNTN data.

Fig. 4  Data from the CNTN study is used to compare MCCV and CV of the 12 ML methods with 100 simulations using F1 as the performance metric 
in model building. Within each simulation, there are 45 rounds. When d is positive, MCCV has a better performance than CV
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Numeric study
We conduct extensive simulation studies to compare 
the performance between MCCV and leave-two-out 
CV. We simulate data from normal distributions, multi-
nomial distributions, and binomial distributions for 20 
features, and a binominal distribution for the outcome 
(Y). The first feature ( X1 ) is simulated from 
N (0, sd = 2) , a normal distribution with mean of 0 and 
standard deviation (sd) of 2. The other 11 features fol-
low N (0, sd = σk) , where σk is a random value from 0.5 

to 20, and k = 2, 3, . . . , 12 . The next four features follow 
a multinomial distribution with the maximum possible 
outcome randomly chosen from 3 to 8, and the proba-
bility randomly selected from 0.1 to 0.9. The last four 
features follow a binomial distribution with the proba-
bility randomly selected from 0.1 to 0.9. The outcome Y 
is simulated from a binomial distribution with the 
probability as a function of the first feature: expβ0+β1X1

1+expβ0+β1X1
 , 

where β0 = −1.6 and β1 = 0.1 . The value of β1 captures 

Fig. 5  Accuracy between MCCV and CV when N = 100 and a medium correlation between Y and X1 ( β = 0.1 ). When d is positive, MCCV has a 
higher accuracy than CV



Page 9 of 15Shan ﻿BMC Medical Informatics and Decision Making          (2022) 22:270 	

the correlation between Y and X1 . A high value of β1 
represents a high correlation.

We present comparisons between MCCV and leave-
two-out CV with 100 simulations when sample size N 
is 100 in Fig.  5. In each simulation, average accuracy 
is calculated from 45 CV runs as described above. In 
each plot, there are 100 dots representing average accu-
racy of MCCV and that of CV from each simulation. It 
can be seen from the figure that MCCV generally has a 
higher accuracy than CV. As sample size N is increased 

to 200 (Fig.  6), 500 (Fig.  7), and 1200 (Fig.  8), MCCV 
outperforms CV when N is not very large. In the case 
when N = 1200 , their accuracies are close to each other 
although MCCV is slightly better than CV with regards 
to accuracy. We observe similar results when data are 
simulated with β1 = 0.05 in Fig. 9 when N = 200.

When sample size is large, CV and MCCV are almost 
the same. When a study’s sample size is 500 or below 
(e.g., Fig.  7), the performance gain using MCCV over 

Fig. 6  Accuracy between MCCV and CV when N = 200 and a medium correlation between Y and X1 ( β = 0.1 ). When d is positive, MCCV has a 
higher accuracy than CV
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CV is still substantial. When each simulation takes 
very short time, both approaches could be utilized, and 
MCCV often has better performance than CV.

In Fig.  10, we compare MCCV and CV as the num-
ber of features is increased from 6 to 20 for a study 
with N = 200 . In all the presented cases, MCCV has a 
higher accuracy than CV with the calculated d values 
being positive. The paired t test statistics are relatively 
large that leads to a small p value showing the signifi-
cant higher accuracy of MCCV as compared to CV. We 

do not find a clear trend of accuracy as the number of 
features goes up.

We also investigate the number of simulations, S, 
needed to have stable accuracy estimates in Fig. 11 with 
S from 200 to 12,000 when sample size N = 100, 300, and 
800. When N is small (e.g., 100), the number of simula-
tions has to be as large as S = 5000 in order to have a 
consistent accuracy. For a study with a large sample size 
(e.g., 800), it requires fewer simulations to have a stable 
estimate, such as S = 2000.

Fig. 7  Accuracy between MCCV and CV when N = 500 and a medium correlation between Y and X1 ( β = 0.1 ). When d is positive, MCCV has a 
higher accuracy than CV
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Discussion
We compare the performance between MCCV and CV 
based on popular ML methods when outcome is binary 
and sample size is limited. In simulation studies, we add 
a correlation between the outcome and one continuous 
feature. That pre-specified correlation has some effects 
on the model prediction. However, ML models are much 
more complicated than traditionally used statistical mod-
els (e.g., logistic regression model) with all features being 
used in the final predictive model through sophisticated 
mathematical algorithms (e.g., tree model, SVM). We do 

not observe a simple relationship between accuracy and 
that correlation. From simulation studies, we support 
the findings from this article that MCCV should be rec-
ommended for use in practice with a sufficient number 
of simulations: S = 3000 when N < 300 and S = 2000 
when N ≥ 300.

When N is small (e.g., 100), the number of simulations 
has to be as large as S = 5000 in order to have a consist-
ent accuracy. For a study with a large sample size (e.g., 
800), it requires fewer simulations to have a stable esti-
mate, such as S = 2000.

Fig. 8  Accuracy between MCCV and CV when N = 1200 and a medium correlation between Y and X1 ( β = 0.1 ). When d is positive, MCCV has a 
higher accuracy than CV
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Accuracy of ML models is used as the performance 
metric to compare MCCV with CV. Accuracy is a widely 
used performance metric in classification problems with 
known classes of the outcome. Other performance met-
rics may also be considered, such as sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), and the Matthews Correlation Coeffi-
cient (MCC). The MCC is equivalent to the Pearson 

correlation coefficient between the actual outcome and 
the predicted outcome [19, 23, 24, 32].

For the paired t-test to compare the performance 
of MCCV and CV, we check the normality assump-
tion of the paired data by using their difference based 
on Shapiro Wilk’s test [30] and the D’Agostino test [4], 
where the D’Agostino test is a goodness-of-fit measure 
based on the sample skewness and kurtosis. In a few 

Fig. 9  Accuracy between MCCV and CV when N = 200 and a medium correlation between Y and X1 ( β = 0.05 ). When d is positive, MCCV has a 
higher accuracy than CV
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configurations, the normality assumptions are not met. 
In such cases, the non-parametric Wilcoxon signed-
ranked test may be used to calculate p value [17]. For 
the ADNI example using accuracy as performance met-
ric, the average p value is 0.491 with the range from 
0.095 to 0.898 for the SW test. The D’Agostino test 
has the average p value of 0.496 with the range from 
0.084 to 0.904. The p values from the SW test and the 
D’Agostino test are often close to each other. For the 
CNTN data, the SW test has the mean p value of 0.460 
with the range from 0.014 to 0.927. The p value of the 
Wilcoxon test could be slightly larger than that of the 
t-test, but their difference is often very small.

The number of features in ML methods is an impor-
tant research topic. Xu et  al. [41] provided tables for 
the frequencies of all the possible selected features. 

When the most relevant features are included in the 
available features, the performance of MCCV and CV 
should be similar to their performances with all the fea-
tures included in the model.

In this article, we split data into 10 folds with 8 folds 
as the testing data in leave-two-out CV. In the tradi-
tional leave-one-out CV approach, we only need to 
run 10 rounds. With the leave-two-out approach, the 
number of runs is increased in order to reduce the 
variance of the model accuracy estimates. When the 
ML models are not that complicated and data are not 
extremely unbalanced, leave-t-out approach can be 
performed, where 3 ≤ t ≤ 9 . It is also true that leave-
t-out CV could be performed when more computa-
tional resources are available and sample sizes are large 
enough.

Fig. 10  Accuracy as a function of the number of features between MCCV and CV when N = 200 and a medium correlation between Y and X1 
( β = 0.1 ). When d is positive, MCCV has a higher accuracy than CV
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