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Abstract 

Objectives:  This paper developed federated solutions based on two approximation algorithms to achieve federated 
generalized linear mixed effect models (GLMM). The paper also proposed a solution for numerical errors and singu-
larity issues. And showed the two proposed methods can perform well in revealing the significance of parameter in 
distributed datasets, comparing to a centralized GLMM algorithm from R package (‘lme4’) as the baseline model.

Methods:  The log-likelihood function of GLMM is approximated by two numerical methods (Laplace approximation 
and Gaussian Hermite approximation, abbreviated as LA and GH), which supports federated decomposition of GLMM 
to bring computation to data. To solve the numerical errors and singularity issues, the loss-less estimation of log-
sum-exponential trick and the adaptive regularization strategy was used to tackle the problems caused by federated 
settings.

Results:  Our proposed method can handle GLMM to accommodate hierarchical data with multiple non-independ-
ent levels of observations in a federated setting. The experiment results demonstrate comparable (LA) and superior 
(GH) performances with simulated and real-world data.

Conclusion:  We modified and compared federated GLMMs with different approximations, which can support 
researchers in analyzing versatile biomedical data to accommodate mixed effects and address non-independence 
due to hierarchical structures (i.e., institutes, region, country, etc.).
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Introduction
Background
There is an increasing surge of interest in analyzing bio-
medical data to improve health [1]. Biostatisticians and 
machine learning researchers are keen to access per-
sonal health information for a deeper understanding of 

diagnostics, disease development, and potential preven-
tive or treatment options [2].

In the US, healthcare and clinical data are often col-
lected by local institutions. For many situations, com-
bining these datasets would increase statistical power 
in hypothesis testing and provide better means to 
investigate regional differences and subpopulation bias 
(e.g., due to differences in disease prevalence or social 
determinants). However, such an information harmoni-
zation process needs to respect the privacy of individu-
als, as healthcare data contain sensitive information 
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about personal characteristics and health conditions. 
As a minimum requirement [3], HIPAA (Health Insur-
ance Portability and Accountability Act) [4] specifies 
PHIs (protected health information) and regulations to 
de-identify the sensitive information (i.e., safe harbor 
mechanism). But HIPAA compliance does not mean 
full protection of the data, as several studies demon-
strated re-identifiability of HIPAA de-identified data 
[5–7]. Ethical healthcare data sharing and analysis 
should also respect the “minimum necessary” principle 
to reduce the unnecessary risk of potential data leak-
age, which might increase the likelihood of information 
leakage.

The recent development of federated learning, which 
intends to build a shared global model without moving 
local data from their host institutions (Fig.  1), shows 
good promise in addressing the challenge in data shar-
ing mentioned above. Despite the exciting progress 
[8–11], there is still an important limitation as exist-
ing models cannot effectively handle mixed-effects (i.e., 
both fixed and random effects), which is very important 
to analyzing non-independent, multilevel/hierarchical, 
longitudinal, or correlated data [12]. Also, due to the 
sampling errors (i.e., smaller sample size in local sites), 
variances from these local statistics are larger than 
those of the global model. These issues, if not addressed 
appropriately, would lead to failure in global optimi-
zation. The goal of this paper is to improve existing 
techniques and provide practical solutions with open-
source implementation and to allow ordinary biomedi-
cal/healthcare researchers to build federated mixed 
effect learning models for their studies.

Related work
Federated learning for healthcare data analysis is not a 
new topic, and there have been many previous studies in 
biomedical field. For example, predicting outcomes from 
distributed clinical notes and Electronic Health Record 
(EHR) data [13, 14], federated Natural Language Pro-
cessing models [15], Internet of medical Things [16], and 
many predictive machine learning models [17–19]. How-
ever, many of the existing methods assume the observa-
tions are independent and identically distributed, such 
as GLORE [20] and FL-QSAR [21]. In the presence of 
non-independence due to hierarchical structures (e.g., 
due to institutional or regional differences), existing fed-
erated models have strong limitations in ignoring the 
regional differences. The generalized linear mixed model 
(GLMM), which takes the heterogeneous factors into 
consideration, is more amenable to accommodate the 
heterogeneity across healthcare systems. There have been 
very few studies in this area and one relevant work is a 
privacy-preserving Bayesian GLMM model [22], which 
proposed an Expectation-Maximization (EM) algorithm 
to fit the model collaboratively on horizontally parti-
tioned data. The convergence process is relatively slow 
(due to the Metropolis-Hastings sampling in the E-step) 
and it is also not very stable (likely to be trapped in local 
optima [23] in high-dimensional data). In the experi-
ment, a loose threshold (i.e., 0.08) was used as a con-
vergence condition [22] while typical federated learning 
algorithms [20] in healthcare use much stringent conver-
gence threshold (i.e., 10−6).

Another related work to fit GLMM in a federated man-
ner is the distributed penalized quasi-likelihood (dPQL) 
algorithm [24]. This algorithm reduces the computational 
complexity by considering the target function of penal-
ized quasi-likelihood, which is motivated from Laplacian 
approximation. The model has communication efficiency 
over the EM approach and can converge in a few shots. 
However, the target function PQL can have first order 
asymptotic bias [25] due to the Laplacian approximation 
(LA) of the integrated likelihood.

There is an alternative strategy, Gauss–Hermite 
(GH), which supports high-order approximation. It is 
computationally more intensive and requires special 
techniques to handle the numerical instability of the 
logSumExp operation (due to the overflow issue when 
the dimensionality grows in the sum of the exponen-
tial terms). The difference between GH and LA is that 
GH approximates the model using a higher degree of 
polynomials, which makes GH more accurate but less 
efficient. But, when the number of federated nodes 
increases, the LA can accomplish the same task more 
than three-times faster.

Fig. 1  Schema of federated learning model in multiple 
geographically distributed healthcare institutions. The local 
institutions periodically exchange intermediate statistics and update 
the convergence situation of the global model
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In this paper, we proposed new approaches to sup-
port federated GLMM with LA and GH approximation. 
We also addressed the optimization challenges with new 
methods due to the federated computation and compare 
their performance on simulated and real-world data to 
demonstrate the practicability of our proposed models.

Methods
In this section, we will discuss the statistic model along 
with challenges to be tackled. A high-level schema of the 
method is shown in algorithm 1.

Notation
Before we introduce the formation of GLMM, let us 
define some notations.

i Index of sites li Log-likelihood func-
tion for site i

j Index of patients in a 
specific site

β Parameters of fixed 
effect

k Index of Hermite 
polynomial

µi Parameters of random 
effect in site i

K Order of Hermite 
polynomial

τ Hyper-parameters

m Number of sites θ Parameter space (β , τ)

ni Number of patients 
in site i

Xij A vector represents 
the data of j-th patient 
in i-th site

Li Likelihood function 
for site i

yij The outcome of 
patient j from site i

� The parameter of 
regularization term

p Number of variables

Fitting GLMM with quasi‑likelihood
Let us provide the formation of the GLMM. Define P is 
the distribution of interest and depending on patient-
level data Xij , yij . Define φ as the distribution of ran-
dom effects. We can compose the joint distribution as 
following

Now we have the log-likelihood function of the joint 
distribution:

ni

j=1

P(θ |Xij , yij)φ(µi; τ )

(1)

log{L(θ)} =
m
�

i=1

log







�

µi





ni
�

j=1

P(θ |Xij , yij)



φ(µi; τ )dµi







From the log-likelihood function Eq. (1), one can see that 
it does not support direct linear decomposition. In order 
to support federated learning, we will leverage approxi-
mation strategies to make the objective linearly decom-
posable with simple summary statistics.

We will compare Laplace approximation and Gauss–
Hermite approximation in the following sections.

Laplace (LA) approximation
With the help of Laplace approximation, the integration 
from Eq. (1) can be approximated by an exponential fam-
ily expression.

After the deduction in Additional file 1: Appendix proofs 
A.1, the intractable problem is solved and the objective 
is to maximize the following formula with respect to θ , 
where g is an exponential family function defined above 
(Eq.(2))

, for which the terms are linearly decomposable from 
local sites. Site i needs to calculate the following aggre-
gated data:

•	 p× p matrix: 

•	 p - dim vector: 

•	 scalar of random effect: µ̂i and first order derivative 
of τ by 

where ω̂ =
√

− 1

gµµ(µ̂i0)

Gauss–Hermite (GH) approximation
Gauss–Hermite approximation [26] implements Hermite 
interpolation concerning Eq. (2). And after the deduction 

(2)

∫

µi

fθ (µi)dµi =
∫

µi

elog fθ (µi)dµi �

∫

µi

eg(µi ,θ)dµi

ni
∑

i=1

(

g(µ̂i, θ)−
ni

2
log

(

gµµ(µ̂i, θ)
)

)

)

(3)

ω̂ββω̂ − ˆωβω̂β

ω̂2
+ µ̂ββgµ + µ̂β(µ̂βgµµ + gµβ)+ µ̂βgµβ + gββ

(4)
ω̂β

ω̂
+ ω̂2gµβ(µ̂i)gµ + gβ

ω̂τ

ω̂
+ ω̂2gµτ (µ̂i)gµ + gτ
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in Additional file 1: Appendix  proofs A.2, notice that when 
the order of Hermite polynomial K = 1 , the objective func-
tion is identical to the method with Laplace approximation. 
Because GH is more generalizable, we will describe the dis-
tributed federated learning model on the GLMM problem 
with the formation of Gauss–Hermite approximation in 
Additional file 1: Appendix  proofs A.2 Eq. (2). For each site 
i, the followings need to calculate and transmit:

•	 p× p matrix: 

•	 p - dim vector: 

•	 scalar of random effect: µ̂i and first order derivative 
of τ by 

Training Penalization GLMM with GH approximation
The convergence of the approximation of the likelihood 
function may be compromised due to over-fitting. Also, 
for those spatially correlated data, the convergence of 
them may lead to a complex model. Hence, L2 regu-
larization is added to the local log-likelihood function 
of Gauss–Hermite approximation form, and as shown 
below

note that when K = 1 , it is represented as regular-
ized Laplace approximation to the problem. To evalu-
ate and find the optimum � , we steadily increased the 
value of � in range [0, 10] by 1. Set �opt as the optimized 

(5)

ω̂ββω̂ − ˆωβω̂β

ω̂2
+ 1

∑K
k=1 fk

K
∑

k=1

∂

∂β
(fkµµ̂β + fkω ω̂β + fkβ )

− 1

(
∑K

k=1 fk)
2
�

l
∑

k=1

(fkµµ̂β + fkω ω̂β + fkβ )�22

(6)
ω̂β

ω̂
+ 1

∑K
k=1 fk

K
∑

k=1

(fkµµ̂β + fkω ω̂β + fkβ )

ω̂τ

ω̂
+ 1

∑K
k=1 fk

K
∑

k=1

(fkµµ̂τ + fkω ω̂τ + fkτ )

(7)li = logLi = log

(√
2π

ˆ
ω
∑

K

k=1
hk exp

{

g(µ̂i +
√
2πω̂xk; θ)+ x2k

}

)

− ��β�22

regularization term with largest 
∑m

i li . And choose β̂opt 
as the optimized estimator for β.

Due to the limited computation digits, computers are 
not able to calculate the correct results of the local log-
likelihood function li of the Gauss–Hermite approxima-
tion form as stated above. Such problem is also known 
as the Log-Sum-Exponential problem and can be solved 
by shifting the center of the exponential sum for easier 
computation,

where a is an arbitrary number.
Thus, the global problem of maximizing 

∑m
i li can be 

divided into several local maximization problems Eq. 
(7). Each local site i will update the regression inter-
mediates, and they will be combined to update the 
iteration status. Specifically, in each iteration of the 
federated GLMM algorithm, the following statistics are 
exchanged from each site to contribute aggregated data 
through Federated Averaging (FedAvg) for the global 
model

LA GH

Number of variables p Number of variables p

p× p matrix (Eq. (3)) p× p matrix (Eq. (5))

p - dim vector (Eq. (4)) p - dim vector (Eq. (6))

p - dim vector β p - dim vector β

Scalar � Scalar �

Scalar µ̂i Scalar µ̂i

Scalar first order derivative τ Scalar first order derivative τ

Scalar K

Detailed derivatives with the logistic regression set-
ting of the optimization are presented in the Additional 
file 1: Appendix  proofs A.3.

log

K
∑

k=1

exp
{

g(µ̂i +
√
2πω̂xk; θ)+ x2k

}

= a+ log

K
∑

k=1

exp
{

g(µ̂i +
√
2πω̂xk ; θ)+ x2k − a

}
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The valuation experiments were conducted among fed-
erated GLMM with Laplace approximation, federated 
GLMM with Gauss–Hermite approximation, and central-
ized GLMM (all of the data stored in single host) in the 
R package. And the stress test will be run in 160 different 
datasets in 8 different settings as mentioned in Table 1. All 
of the data in different settings were randomly separated 
into training sets and validation sets with a ratio of 7:3. 
And we trained the federated learning model on train-
ing data sets, then by slowly increasing the regularization 

Table 1  The summary of data in each setting

Setting Number of sites Sample size in 
eachsite

Variance

1 2 500 Small

2 2 500 Large

3 10 500 Small

4 10 500 Large

5 2 30 Small

6 2 30 Large

7 10 30 Small

8 10 30 Large

Results
Our algorithm is developed in Python with packages 
pandas, numpy, scipy, and the benchmark algorithm is 
glmer function in R package ‘lme4’.

Benchmarking the methods using synthetic data
To test the performance of our proposed methods, we 
first designed a stress test based on a group of synthetic 
data, which include 8 different settings (Table  1), and 
each set contains 20 datasets. In each dataset, it consists 
of 4 categorical variables with value in {0, 1} ; 6 categori-
cal variables with value in range [−1, 1.5] ∈ R ; 1 outcome 
variable with value in {0, 1} ; Site ID, represents the id of 
which site the entry belongs to; Site sample size, repre-
sents the number of samples in this specific setting; Log-
odds ratio for each sample; Number of true positive, true 
negative, true positive, false positive, false negative.

To evaluate which method can reach better perfor-
mance, we proposed the following evaluation measure-
ments: discrimination of the estimated coefficients β̂ , 
the test power of each coefficient, and the precision and 
recall of the number of significant coefficients.
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term � , we chose the optimum model with the best Akaike 
information criterion and Bayesian information criterion 
performance on the validation sets. All testing was per-
formed on 2017 iMac with 16 GB memory, CPU (4.2 GHz 
Quad-Core Intel Core i7), macOS Big Sur version 11.6, 
Python 3.8, and R version 3.5.0.

Although we tested the data sets with the state-of-
art benchmark algorithm for centralized GLMM in R, 
the regression is not perfect for the ground truth coef-
ficients we used to generate the data (Fig.  2). So, it is 
also important to have the p values of variables into 
consideration when interpreting the model. Thus, We 

Fig. 2  The difference from coefficients to the true parameters that are used to generate data. (Left) The distributed GLMM with Laplace 
approximation; (Middle) The distributed GLMM with 2-degree Gauss–Hermite approximation. Reminds that X1 is the intercept; (Right) The 
benchmark of centralized GLMM in R package

Fig. 3  The comparison of performances between centralized GLM and federated GH models. (Left) The centralized GLM with Logistic Regression; 
(Right) The federated GLMM with 2-degree GH approximation. All methods are applied to all 8 settings of synthetic data that pooled together. 
Method “centralized GLM”is done with R packages “lm” in a centralized settings
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made comparisons among centralized GLM, centralized 
GLMM, federated Laplace (LA) method, and federated 
Gauss–Hermite (GH) method concerning the p values of 
coefficients. Additional file 1: Tables 1, 2, 3 in the Appen-
dix B captured the performance of different methods.

First, we show the increase of performance using mixed 
effect models in heterogeneous data. Figure 3 shows we 

can train models with mixed-effects estimation (cen-
tralized GLMM and federated GH) to outperform the 
model with fixed-effects-only estimation (GLM). Because 
GLMM can handle the site-wise bias by estimating ran-
dom-effects, GLMM-based methods performed better 
than GLM method in federated settings (local data gen-
eration/collection process naturally includes random 

Fig. 4  The precision and recall in variable-wise among centralized, Laplace, and Gauss–Hermite method under significance level α = 0.05 . (Left) 
The precision of the test compared to the true value. (Right) The recall of the test compared to the true value

Fig. 5  The accuracy in 8 different data settings among centralized, Laplace, and Gauss–Hermite method under significance level α = 0.05 . The 
performance of models in different number of nodes (2 vs 10), sample size (500 vs 30), and variance (large vs small)
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effects. Figure 4 shows the precision and recall results in 
variables-wise of centralized, Laplace, and Gauss–Her-
mite methods. Noted that we set our Gauss–Hermite 
approximation to 2-degree, thus GH method can achieve 
higher accuracy and better performance in estimating 
the significance of variables due to the higher-degree 
approximation.

The simulation results showed the federated Gauss–
Hermite approximation performed better than the 
method based on Laplace approximation on every varia-
ble. Also, the federated Gauss–Hermite method achieved 
higher test power (Fig.  6). From the result (Fig.  5), we 
can see that the federated GH method outperformed the 
Centralized LA and the federated LA methods, thanks to 
its better approximation using higher-degree functions. 
Here, we use the true parameters and their p values set 
during the data the synthetic data generation process as 
the golden standard. The accuracy means the alignment 
ratio of three different methods against the gold stand-
ard. As illustrated by the table and figure below, we com-
pare the results (Settings 1, 2 vs. Settings 3, 4). One can 
tell that when the number of nodes/sites increases, the 
performance in estimating the significance of parameters 
becomes better because of the increase in total sample 
size (1000 total samples in Settings 1, 2 and 5000 total 

samples in Settings 3, 4). If the sample size in each node/
site is too small, considering the comparison pair (Set-
tings 5, 6 vs Settings 7, 8), the increases in the number 
of nodes/sites will largely decrease the performance of 
all three models. Because the estimation of the random 
effects in such a small sample size is limited, adding more 
nodes/sites to the federated network will decrease the 
performance of the fixed effect parameter significance 
estimation. We also measured the impact of heterogene-
ity on these methods considering random effects. Seeing 
the pairs (Setting 1 vs. Setting 2), (Setting 3 vs. Setting 4), 
(Setting 5 vs. Setting 6), and (Setting 7 vs. Setting 8), the 
heterogeneity of nodes/sites did not affect the three mod-
els obviously. Since the Centralized GLMM, federated 
LA, and federated GH methods all consider the random 
effects in the model, they can decently handle the impact 
of data heterogeneity across nodes/sites. This is not the 
case for generalized linear model (GLM), which does not 
consider the random effects across sites . When consid-
ering the convergence rates between the two approxima-
tion methods, both showed less convergence efficiency 
in Setting 7 and 8 (Table  2). The result Indicates that 
more local sites and smaller sample sizes will make the 
federated GLMM more inefficient to converge. Also, GH 
approximation method will required more computation 

Fig. 6  The curve of test power among centralized, Laplace, and Gauss–Hermite methods. (Left) The power of the test of the Laplace method. 
(Middle) The power of the test of the 2-degree Gauss–Hermite method. (Right) The power of the test of the Centralized method. Power was 
calculated as the two-sided t-test on p values among different methods
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time compared with LA approximation. In sum, one-
degree increase of the approximation function in LA with 
our developed GH method, GH outperformed LA meth-
ods for federated GLMM implementation.

Mixed‑effects logistic regression on mortality for patients 
with COVID‑19
We analyzed the data of COVID-19 electronic health 
records collected by Optum� from February 2020 to 
January 28, 2021, from a network of healthcare provid-
ers. The dataset has been de-identified and based on 
HIPAA statistical de-identification rules and managed 
by Optum� customer data user agreement. In this data-
base, there are 56,898 unique positive tested COVID-19 
patients. After removing the patients with missing data, 
the final cohort contains 4,531 patients who died and the 
rest population (41,781) survived. The database contains 
a regional variable with five levels (Midwest, Northwest, 
South, West, Others/unknown) to provide privacy-pre-
serving area information to indicate where the samples 
were collected.

We have conducted a GLMM model (considering 
region-distinct random effect) using this dataset with the 
following predictors: age, gender, race, ethnicity, Chronic 
obstructive pulmonary disease (COPD), Congestive heart 
failure (CHF), Chronic kidney disease (CKD), Multiple 
sclerosis (MS), Rheumatoid arthritis (RA), LU (other lung 
diseases), High blood pressure (HTN), ischemic heart 
disease (IHD), diabetes (DIAB), Asthma (ASTH), obesity 

(Obese). Our proposed method with GH approximation 
performed the best with both the smallest Akaike infor-
mation criterion (AIC) and Bayesian information crite-
rion (BIC) according to the table of the goodness of fit 
(Table 3). And the performance of different methods can 
be shown in (Table 4).

We also compared the ROC curves (Fig.  7) between 
our proposed GH method and centralized method to 
check their performance. And the result showed that GH 
approximation (AUC=0.72) outperforms the centralized 
method without regularization (AUC=0.68). Indicating 
GH-based GLMM method has better classification per-
formance than the GLMM based on LA approximation. 
In our proposed model, it showed variables: Unknown 
race, Chronic kidney disease (CKD), Multiple sclerosis 

Table 2  The convergence rates on approximation methods LA and GH. (Both LA and GH held the same convergence threshold 10−3 . 
The mean values and standard deviations (in parentheses) were given)

Setting LA GH

Steps Runtime (s) Steps Runtime (s)

1 22.875 (21.623) 47.953 (20.513) 34.850 (9.213) 104.460 (10.614)

2 21.500 (21.977) 40.947 (36.466) 35.000 (8.711) 100.940 (19.940)

3 29.867 (31.719) 108.931 (65.486) 34.900 (6.138) 1259.285 (231.956)

4 27.846 (24.034) 84.343 (76.502) 36.650 (6.310) 1342.695 (250.603)

5 59.722 (42.057) 10.631 (3.945) 33.750 (10.146) 12.568 (2.116)

6 67.188 (48.994) 10.499 (4.054) 31.400 (11.081) 11.430 (3.064)

7 96.286 (53.635) 96.501 (38.632) 37.450 (3.818) 369.165 (41.998)

8 116.083 (46.479) 91.304 (62.410) 37.150 (4.295) 309.693 (36.621)

Table 3  Statistics of goodness of fit among different methods

Log-likelihood AIC BIC

R 13562.9 27165.9 27340.8

LA − 13695.0 27428.0 27594.1

GH −  11.8 61.6 227.7

Fig. 7  The ROC curve with Area Under Curve (AUC) among 
centralized, Laplace, and Gauss–Hermite methods. The orange ROC 
curve is the centralized method without regularization and the 
Laplace approximation(i.e., R implementation in the ‘lme4’ package, 
which does not have an option for including regularization). AUC 
values are also included, a higher AUC value implicates better 
performance of the model. The green ROC curve is the 2-degree 
Gauss–Hermite method with regularization
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(MS), and other lung diseases (LU) are not significant to 
the mortality of COVID-19. The result of the regression 
is in the Additional file 1: Appendix B (Tables 4, 5, 6).

Conclusion
In this paper, we developed solutions to address the lim-
ited digit problem (i.e., overflow issue of fixed-length 
object types due to extremely large numbers in local 
estimation) using an alternative loss-less estimation of 
log-sum-exponential term, and the singularity issue 
(involved in Newton optimization) with an adaptive reg-
ularization strategy to avoid inverting low-rank matrices 
without imposing too much unnecessary smoothness.

We further compared two federated GLMM algo-
rithms with our developed federated solutions (LA vs. 
GH) and demonstrated the performance of the feder-
ated GLMM based on the GH method surpassed the 
method based on LA in terms of the accuracy of esti-
mation, power of tests, and AUC. Although the GH 
method is requiring slightly more computations than 
the LA method, it is still acceptable for more accurate 
results. For example, in the prediction of COVID-19 
mortality rates, the accuracy of prediction will be more 
reliable, as we have shown in the previous section.

Discussion
Notice there is a trade-off between the accuracy and 
scalability of federated learning models. On the one 
hand, the GH model has high accuracy because of the 
better approximation through high-order statistics. On 
the other hand, deploying heavier models can be dif-
ficult and time-consuming, in these cases, a simpler 
linear approximation like LA has more advantages. It 
is important to consider these factors when selecting a 
model for federated learning.

So, for those federated learning tasks that require 
high-accuracy p values estimation on parameters and 
have a relatively small group of training nodes, the GH 
method is considered better than the LA method. For 
example, cross-silo genes association test within several 

cohorts. This example study aims to determine the risk 
genes from logistic regression models on genetic and 
phenotype data. Since such an example study is accu-
racy-sensitive to the significance of target genes and 
gene data repositories are often at a smaller scale, the 
GH method will suit well under this scenario.

On the other hand, the LA method should fit better 
in those federated learning tasks with a large number 
of training nodes and high-efficiency requirements. For 
example, the risk factors analysis of worldwide pan-
demic disease (i.e., COVID-19). Since the outbreak of 
worldwide pandemic is normally rapid and vast, it is 
crucial to gather as much information as possible in a 
short time and to take appropriate actions. By adopting 
our proposed LA method, one can deploy a privacy-
preserving factor analysis model with high efficiency.

During the optimization iterations, we noticed that 
some sites have already achieved convergence in very 
few steps. If those sites stop communicating with the 
central server, they can be released from extra compu-
tations. We would investigate more efficient algorithms 
based on such a strategy of ‘lazy regression’ for mini-
mizing communication for federated learning models. 
Also, we will include different federated aggregation 
strategies to our future works. Since sending inter-
mediate information can not protect the training pro-
cess intact (i.e. poison attack by malicious user with 
designed information sent to the aggregator), further 
investigation and implementation in secure multi-party 
computation technique like SecAgg [27] and Light-
SecAgg [28] is our next step.

Another limitation of the proposed federated GLMM 
model is not yet differentially private and iterative 
summary statistics exchange can lead to incremental 
information disclosure, which might increase the re-
identification risk over time. There are several strategies 
to improve the model based on secure operations like 
homomorphic encryption and differential privacy, which 
we have previously studied in GLM models [29]. Finally, 
in practice, there can be extra heterogeneity that cannot 
be explained by random intercepts only, it is of interest 

Table 4  Statistics of performances among different methods (95% CIs were generated by Wilson Score interval)

Precision Recall F1-score AUC​ threshold

Centralized method with LA Value 0.1507 0.6204 0.2425 0.6789 0.0900

Lower bound (0.95) 0.1474 0.6160 0.2386 0.6700

Upper bound (0.95) 0.1539 0.6248 0.2464 0.6878

GH with regularization Value 0.1705 0.6546 0.2705 0.7178 0.0108

Lower bound (0.95) 0.1670 0.6503 0.2664 0.7091

Upper bound (0.95) 0.1739 0.6589 0.2745 0.7265
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to further develop our algorithms toward GLMM that 
allows multiple random effects including random coeffi-
cients in the regression models.
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