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Abstract
Background  Efficient exploration of knowledge for the treatment of recurrent glioblastoma (GBM) is critical for both 
clinicians and researchers. However, due to the large number of clinical trials and published articles, searching for this 
knowledge is very labor-intensive. In the current study, using natural language processing (NLP), we analyzed medical 
research corpora related to recurrent glioblastoma to find potential targets and treatments.

Methods  We fine-tuned the ‘SAPBERT’, which was pretrained on biomedical ontologies, to perform question/
answering (QA) and name entity recognition (NER) tasks for medical corpora. The model was fine-tuned with the 
SQUAD2 dataset and multiple NER datasets designed for QA task and NER task, respectively. Corpora were collected 
by searching the terms “recurrent glioblastoma” and “drug target”, published from 2000 to 2020 in the Web of science 
(N = 288 articles). Also, clinical trial corpora were collected from ‘clinicaltrial.gov’ using the searching term of ‘recurrent 
glioblastoma” (N = 587 studies).

Results  For the QA task, the model showed an F1 score of 0.79. For the NER task, the model showed F1 scores 
of 0.90 and 0.76 for drug and gene name recognition, respectively. When asked what the molecular targets were 
promising for recurrent glioblastoma, the model answered that RTK inhibitors or LPA-1 antagonists were promising. 
From collected clinical trials, the model summarized them in the order of bevacizumab, temozolomide, lomustine, 
and nivolumab. Based on published articles, the model found the many drug-gene pairs with the NER task, and we 
presented them with a circus plot and related summarization (https://github.com/bigwiz83/NLP_rGBM).

Conclusion  Using NLP deep learning models, we could explore potential targets and treatments based on 
medical research and clinical trial corpora. The knowledge found by the models may be used for treating recurrent 
glioblastoma.
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Background
Machine learning or rule-based natural language pro-
cessing (NLP) models have been used to extract clinical 
information in clinical oncology. Gupta et al. [1] dem-
onstrated that feature-engineered NLP model achieved 
promising accuracy in classifying immune-related 
adverse event from clinical notes of electronic health 
records. Alkaitis et al. [2] developed the logistic regres-
sion and convolutional neural network NLP models to 
identify treatment discontinuation within a cohort of 
6,115 patients with early-stage and 701 patients with 
metastatic breast cancer. More recently, in the advent 
of modern deep learning-based NLP models such as the 
Bidirectional Encoder Representations from Transform-
ers (BERT), application of NLP models in critical or novel 
medical domains has emerged. For example, Esteva et al. 
[3] established the coronavirus disease of 2019 (COVID-
19) information retrieval system that includes semantic 
search, question answering, and abstractive summariza-
tion. The system was based on Siamese-BERT [4] with 
the COVID-19 open research dataset.

Glioblastoma (GBM) is one of the lethal tumors, which 
is mostly managed with a multimodality approach includ-
ing surgical resection, radiation therapy (RT), and adju-
vant chemotherapy [5]. A high rate of recurrence after 
initial treatment is commonly observed, and progressive 
or recurrent patients show poor median survival of less 
than 1 year [6]. Given that there is no standard treatment 
guideline for patients with recurrent GBM, a consider-
ation of salvage treatment is determined based on multi-
disciplinary approach. Though conventional approach 
with reoperation, reirradiation, or other chemotherapy is 
possible, additional treatment could increase treatment-
related morbidity or mortality in patients with recurrent 
GBM. Thus, novel approaches and therapeutics are an 
unmet need. Indeed, patients with recurrent GBM are 
often recommended to participate in clinical trials of 
new therapies [7]. Since various novel therapeutics are 
evolving and being tested, clinicians need to be aware of 
reasonable approaches based on recent results of trans-
lational studies or phase I/II trials. Also, researchers can 
start their own new study from the results of previous 
references. Thus, efficient exploration of knowledge for 
the treatment of recurrent GBM is pivotal for both cli-
nicians and researchers. A vast majority of medical cor-
pora, including the description of all currently activating 
clinical trials and published articles, can be handled by 
NLP algorithm.

Recently, modern deep learning-based NLP algorithms 
have emerged beyond rule-based NLP algorithms [8]. 
With the advent of transformer models such as the BERT 
[9], the performance of information extraction from 
corpora has significantly improved. BERT can perform 
several tasks, including name entity recognition (NER), 

question answering (QA), summarization, translation, 
text classification and text generation [10]. However, 
BERT is trained based on the general domain corpora. 
To capture complex semantic contexts in the biomedi-
cal domain, the BERT for biomedical domain models 
such as the BioBERT [11], the BlueBERT [12], or the 
PubMedBERT [13] have been developed based on the 
PubMed articles, and they demonstrated better per-
formance in terms of biomedical tasks, compared with 
BERT for general domain. In particular, the self-aligning 
pretrained BERT (SAPBERT) [14], which was pre-trained 
on the biomedical knowledge graph of the unified medi-
cal language system (UMLS) [15], outperformed the bio-
medical domain-specific BERT such as the BioBERT, the 
BlueBERT, or the PubMedBERT. We hypothesized that 
the SAPBERT had many advantages in recognition of 
domain-specific terminology, such as gene, target, drug, 
and other treatment modalities for recurrent GBM.

Thus, based on the SAPBERT model, we aimed for 
developing knowledge exploration platform for novel 
treatment, target, clinical trials in patients with recurrent 
GBM.

Methods
We developed two main models for NER and QA tasks 
by fine-tuning the previously published NLP model based 
on annotated biomedical corpora. Then, we processed 
medical corpora relevant to recurrent glioblastoma by 
developing models and outputs that were summarized 
and implemented in the user-platform.

Model selection, data preparation, and fine-tuning
Pretrained models were searched and fine-tuned with 
the transformer library [16]. We chose the SAPBERT 
(https://huggingface.co/cambridgeltl/SapBERT-from-
PubMedBERT-fulltext) as the base pretrained model. 
Downloading of the SAPBERT base model, training data 
preprocess, and fine-tuning was performed by the Trans-
formers library version 4.7.0 and its tutorial notebooks.

To collect research articles, we accessed the Web of 
Science on March 1, 2021, with the Endnote version 
20 programs. In search mode, we used several terms as 
search conditions as following: “Year: 2000–2020, Title: 
recurrent glioblastoma AND drug target”. Altogether 
288 open access research articles were found, and we 
retrieved them as a the PDF file format. Then, each PDF 
document was converted into the JSON file format as 
structured text by using the publicly available S2ORC 
software (https://github.com/allenai/s2orc-doc2json). 
We collected all body text part, composed of altogether 
9,950 paragraphs across references. For clinical trials, 
we found a total of 587 trials related to recurrent GBM 
from the clinical trial database (https://clinicaltrials.gov) 
on March 15, 2021. To download detail descriptions of 
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clinical trials, we used the expression term as “recur-
rent glioblastoma” in the application programming 
interface mode within the website. Detail information 
for 587 clinical trials was downloaded in the format of 
XML (Extensible Markup Language) file. We parsed the 
XML files and separated the ‘description’ part. For drug 
and gene NER tasks, we sought data corpora for the drug 
and gene name. In the public repository (https://github.
com/BaderLab/Biomedical-Corpora), we found multiple 
collections of annotated, freely distributable, biomedi-
cal corpora, and CoNLL-like corpora. Data corpora for 
the gene NER task includes followings: BC2GM_BIO, 
BioNLP09_BIO, BioNLP11EPI_BIO, BioNLP11ID_BIO, 
BioNLP13CG_BIO, BioNLP13GE_BIO, BioNLP13PC_
BIO, CRAFT_BIO, Ex-PTM_BIO, and JNLPNA_BIO. 
Meanwhile, data corpora for the drug NER task includes 
followings: BC4CHEMD_BIO, BC5CDR_BIO, BioNL-
P11ID_BIO, BioNLP13CG_BIO, and BioNLP13PC_BIO. 
Finally, we collected 32,258 and 41,043 entities for drug 
and gene name, respectively. Of those, training set was 
defined as the sum of the training and validation enti-
ties, and the testing set was defined as the original testing 
entities.

To fine-tune NER task, two NER task models fitted for 
gene and drug name were developed by following fine-
tuning parameters: Learning rate = 5e-5, batch size = 16, 
number of running epochs = 5, warm-up step = 500, 
weight decay = 0.1. To fine-tune QA task, we achieved 
the whole SQUAD2 dataset and divided it into training 
(N = 130,319) and testing sets (N = 11,873). Fine-tuning 
parameters included following: Batch size = 16, max 
length = 512, learning rate = 2e-5, number of running 
epochs = 4, weight decay = 0.01.

Implementation of knowledge platforms using trained 
models
To implement the platform from QA task models, we 
adopted a document retriever and summarizer. We used 
the Elasticsearch version 7.1.3 (https://www.elastic.co/
elasticsearch) as a document retriever that indexes and 
searches appropriate body texts by queries from research 
articles. The BM25 is the default similarity ranking algo-
rithm according to relevancy with queries in the Elastic-
search. Thus, we sorted selected body text according to 
the BM25 and used them as input for summarization 
model. We adopted the BART large CNN model (https://
huggingface.co/facebook/bart-large-cnn) as the docu-
ment summarizer. To summarize the collected answers 
and make the final answer, we used the following parame-
ters for the BART model: the number of beams = 5, length 
penalty = 1.2, max length = 256, minimum length = 128, 
and the number of repeat ingram sizes = 5.

To implement the platform from NER task models, we 
filtered and counted single sentence that contained both 

drug and gene name from research articles. Generated 
drug-gene pairs were presented as a circus plot. For clini-
cal trial text, we extracted drug names and sorted them. 
Given that one drug corresponded to multiple clinical 
trials, a summary of their descriptions was also provided 
by the BART model. All visualization and user-interface 
were organized using Microsoft Power BI Desktop ver-
sion 2.96 (http://app.powerbi.com).

Results
Fine-tuned model performance
The performance of fine-tuned model is summarized in 
Table 1. Overall, the drug NER model showed better per-
formance than the gene NER model. In terms of accuracy, 
both the drug and gene NER model demonstrated similar 
performance (0.993 vs. 0.968). However, there was a dif-
ference in precision between the two models (0.912 for 
drug NER vs. 0.715 for gene NER). This difference was 
linked to the difference in F1-score: 0.908 and 0.760 for 
drug and gene NER model, respectively. On SQUAD2 
test dataset, fine-tuned model for the QA task showed an 
F1-score of 0.792 and an exact match of 0.758.

Implementation of model
An overview of the NER task is depicted in Fig. 1. Drug 
NER model extracted the names of drugs from the 
descriptions of clinical trials. The relationship between 
the drug and the clinical trial was a one-to-many rela-
tionship. Then, we could summarize multiple descrip-
tions with the BART model. From research articles, both 
drug and gene NER models were used to extract drug-
gene pair. Since the relationship between drug-gene pair 
and research articles was a one-to-many relationship, 
we could provide an abstract summary from multiple 
articles that include a certain drug-gene pair by using the 
BART model.

The flow of the QA task is visualized in Fig. 2. Accord-
ing to the question, document retriever selects multiple 
potential answer paragraphs from indexed research 
article database. Then, fine-tuned QA task model finds 
a precise answer phrase in each graph. Multiple sen-
tences containing an answer phrase are summarized by 
the BART model to obtain the final answer. Based on this 
workflow, example questions that are clinically challenge-
able issues in recurrent GBM and their corresponding 
answers are listed in Table 2.

Table 1  Evaluation Results of Fine-tuned Models
Drug NER Gene NER QA task

Precision 0.912 0.715  N/A

Recall 0.904 0.811  N/A

Accuracy 0.993 0.968  N/A

F1 0.908 0.760 0.792

Exact Match N/A N/A 0.758

https://github.com/BaderLab/Biomedical-Corpora
https://github.com/BaderLab/Biomedical-Corpora
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-cnn
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NER model implementation platforms for clinical trials 
and research articles are visualized in Fig. 3. For clinical 
trial exploration, fine-tuned model extracted drug names 
from the descriptions of clinical trials. Then, we matched 
drug and relevant trials, and demonstrated their link in 
real-time manner. End-users can easily find the most 
cited drugs within clinical trials by accessing a tree map. 
Descriptions of multiple trials matched with each drug 
are summarized by the BART model, and their summa-
ries are provided to users (Fig. 3 A). For research article 
exploration, two fine-tuned models were employed to 
extract both the drug and gene name in parsed para-
graphs. We generated drug-gene pair when they exist in 
one sentence. Then, drug-gene pairs are presented as a 
circus plot (Fig. 3B). Relevant articles and their abstract 
summaries are displayed in real-time manner when click-
ing on a drug, which was mentioned more than 2 times 
among all drug-gene pairs.

Discussions
We constructed the platforms that can discover a recent 
medical knowledge about recurrent GBM. After fine-
tuning biomedical-specific BERT models for NER tasks, 
we extracted drug-gene pairs from research articles and 
clinical trials and could construct NER-based knowl-
edge platform. Following fine-tuning QA models, we 
also established QA-based knowledge platform. This 
work may help researchers easily find novel targets and 
clinicians make decisions or matching clinical trials for 
recurrent GBM patients. This study is the first to use 
fine-tuned NLP models for oncologists in the treatment 
of recurrent GBM.

In the current study, we fine-tuned the SABPERT [14] 
that was expected to suitable for information retrieval 
of potential biomarkers, treatment, and any relevant 
knowledge elicited by QA-based task for recurrent GBM. 
According to evaluation metrics, the model performance 
seems to follow the pretrained model performance well in 

Fig. 1  The overflow of NER-based knowledge exploration platform. NER, name entity recognition; SAPBERT, Self-aligning pretrained BERT.
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terms of the NER task. However, F1 score was only 0.79 
in the QA task, and there are several reasons to explain 
the relatively low performance. The SAPBERT was not 
validated in the QA task but demonstrated high accuracy 
in the NER task. Also, fine-tuning dataset for the QA task 
was the SQuAD dataset which was consisted of questions 
based on a set of Wikipedia articles. We speculate that 
the model performance for medical QA task might be 
improved when a biomedical-specific QA dataset such as 
BioASQ was used for fine-tuning. However, this process 
will accompany dataset conversion process, which would 
be labor-intensive. Although we could not demonstrate 
the data, we compared and benchmarked other BERT-
based models including the BioBERT and the BERT. The 
difference was not that significant, however, the SAP-
BERT demonstrated the slight superior performance.

For patients with recurrent GBM, clinical trials are the 
preferred options. Otherwise, the reuse of current thera-
pies is individualized according to the performance sta-
tus, quality of life, and overall prognosis [7]. Based on the 
expected median survival and relevant prognostic factors 
from each patient, radiation oncologists individualize 
prescription dose and fractions as long as reirradiation 
is possible. However, the prognostic and predictive fac-
tors for patients recurrent GBM is still obscured. From 
the clinical perspective of oncologists, these clinical 

issues may be elucidated with cumulating domain knowl-
edge. Regarding several clinical challenges for recurrent 
GBM, we could summarize the generated answers from 
the QA-based knowledge platform as follows: Although 
radiotherapy is the standard treatment for primary GBM, 
there is no standard care for recurrent GBM. When 
reirradiation is suggested, median dose of 30-36  Gy 
with fractionation is the common approach for recur-
rent GBM patients. The median overall survival is 7–9 
months with bevacizumab alone, and there are few in the 
U.S. The Food and Drug Administration approves drugs 
for recurrent GBM. The generated answer indicated that 
receptor tyrosine kinase (RTK) or Lysophosphatidic acid 
receptor-1 (LPA-1) is potential target for treating recur-
rent GBM. Indeed, re-irradiation for the recurrent glio-
blastoma was limited to a dose of 24 to 36 Gy with a daily 
fractional size of 1.8 to 6 Gy [17]. In a randomized trial 
comparing the regimen of systemic therapies in recurrent 
glioma [6], median overall survival was 9.1 months and 
8.6 months in the addition of bevacizumab to the lomus-
tine group and the bevacizumab alone group, respec-
tively. Also, cumulating literature [18–20] addressed that 
LPA-1 antagonist could be a promising approach since 
LPA-1 expression is high in GBM and promotes GBM 
proliferation and migration.

Fig. 2  The overflow of QA-based knowledge exploration platform. QA, question and answer; NER, name entity recognition; SAPBERT, Self-aligning pre-
trained BERT.
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Information about new agent such as immunother-
apy and novel targets is important for oncologists when 
encouraging the clinical trials for patients. Drugs that 
appeared frequently in clinical trials were bevacizumab, 
temozolomide, followed by lomustine. When focusing on 
immunotherapy, models revealed that nivolumab, anti-
PD-1 inhibitor, is the most mentioned drug in current 
clinical trials for recurrent GBM. However, immunother-
apy is not recommended routinely, based on the results 
of several immunotherapy trials such as the CheckMate 
143 [21]. Nevertheless, we should be noted that there are 
ongoing efforts to reveal patient subgroups that could 
show a good response to other immunotherapy agents 
with a combination with radiation [22]. Furthermore, 
the model revealed that, in clinical trials, temozolomide 
targeted relevant genes including Akt, CD133, the epi-
dermal growth factor receptor (EGFR), EGFR variant III 
(EGFRvIII), o6-methylguanine-dna methyltransferase 
(MGMT), and mammalian target of rapamycin (mTOR). 
Meanwhile, the most targeted gene was EGFR, which 
was mentioned altogether 79 times in the platform. 
Indeed,   the INTELLANCE 2/EORTC 1410 random-
ized phase II trial [20] showed that EGFR monoclonal 

antibody conjugated to a tubulin inhibitor and temozolo-
mide showed an improved survival compared to lomus-
tine or temozolomide alone (median overall survival 9.6 
month vs. 8.2 month), albeit which was not statistically 
significant.

There are several limitations in the current study. We 
could not address that fine-tuned NLP models under-
stood the meaning of medical terminology as like expert 
oncologists. Thus, generated answers and summaries 
shroud be cautiously interpreted, and relevant references 
should be verified. In terms of clinical trials, note that 
this study aimed to provide a brief of current or potential 
eligible trials efficiently. A review of many factors, such 
as patient eligibility criteria, should be considered by 
appropriate experts. The NLP modes used in the current 
study coud not discern abbreviations such as EGFR or 
epidermal growth factor receptor. To resolve this issue, 
hand-crafted or rule-based trimming may be needed. 
For fine-tuning task, the general domain QA dataset was 
used instead of biomedical-specific QA dataset such as 
BioASQ. Fine-tuning with a more specific type of dataset 
may show more improved performance.

Table 2  Example questions and their answers generated by models
Query Generated and Summarized Answer by Models
What is a reirradia-
tion dose/fractions 
for recurrent 
glioblastoma?

The most common approach involves the use of fractionated stereotactic radiotherapy with or without intensity modulation and 
a median total dose of 30–36 gy. Stereotactic radiosurgery (the administration of one single fraction), is rarely used in glioblas-
toma because of the poorly defined target volume. None of the reirradiation schedules has ever been looked at in a prospective 
or controlled fashion. The recent apg101 trial provided no sign of efficacy for reir Radiation at × 2 gy in recurrent glioma patients. 
temsirolimus administered weekly at the dose of mg / m 2 also did not show efficacy in children with high-grade gliomas.

What is median 
overall survival 
in patients with 
recurrent 
glioblastoma?

Bevacizumab alone had a median overall survival of about 7–10 months from recurrence, and this efficacy was comparable to 
lomustine monotherapy. For patients with recurrent glioblastoma, chemotherapy regimens are associated with overall response 
rates of 4–9%, 6-month progression-free survival (pfs) of 10–19%. Even with these treatments, median overall survival after recur-
rence is 6. 2 months. fda-approved treatment options remain few and the prognosis remains dismal with a median survival of 14. 
6 months and a 5-year-survival rate of 9.

Are immune 
checkpoint inhib-
tors are available 
for patients 
with recurrent 
glioblastoma?

There are many ongoing clinical trials with immune checkpoint inhibitors in patients with primary and recurrent glioma / 
glioblastoma. challenges in the design and conduct of clinical trials for immunotherapies are numerous, particularly in trials in-
volving patients with gliOBlastomas. different measures of response are required for checkpoint inhibitors, and the management 
of immune-related adverse events in the cns are a concern. as immunotherapy becomes more widely available, the potential 
increases for both synergies and adverse interactions between conventional gliobeastsoma therapies and immune checkpoint 
inhibitor. There are currently limited data on immune checkpoints in other types of gliomas such as oligodendroglioma.

What molecular 
targets are poten-
tially promising 
for recurrent 
glioblastoma?

Molecular therapies that targeted rtks are promising therapeutic strategies for glioblastoma tumors. Clinical trials have not 
shown promising combinational therapies of temsirolimus with bevacizumab (vegf inhibitor), sorafenib (raf inhibitor), erlotinib 
(egfr inhibitor), or radiation therapy. The molecular target expression status, as determined at the time of primary resection, may 
not necessarily present rational treatment clues for the care of recurrent gbm that occurs 6–9 months later. The lpa 1 antagonist 
ki16425 (kirin brewery co., takasaki, japan) effectively suppresses the lpa-induced motility of gliobeasts.

Is MGMT status as-
sociated with the 
incidence of recur-
rent glioblastoma?

Methylated mgmt status determined by msp was correlated with better outcome. The prognostic value of the mgMT status 
in patients with recurrent glioblastoma is not well defined. Future research will shed light on which patients should undergo a 
second resection or radiotherapy procedure. It will also shed light how to best use tmz and bevacizumab therapy, and the value 
of mgmt Status assessment in the recurrent setting. The study also found that mgmtstatus did not appear to change between 
primary and recurrent tumors. It is positively associated with gliOBlastoma sensitivity to alkylating agents, such as temozolomide.

What is the pattern 
of care in recurrent 
glioblastoma?

Radiotherapy remains an important part of the standard-of-care treatment for patients with malignant gliomas. Despite defini-
tive data, standard of care guidance for managing patients with recurrent or progressive glioblastoma is evolving. The diffusely 
infiltrative pattern of progression might be associated with a slower cause of the disease, as it has been suggested by radiologi-
cal patterns of recurrence of patients treated with bevacizumab. The 6-month pfs rate (pfs6) is the optimal end point for treat-
ment of recurrent gliOBlastoma. Participation in clinical trials is encouraged for the treatment of this type of cancer. The primary 
purpose of this paper is to discuss the role of second-line monotherapy and combination therapies.
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Conclusion
In conclusion, we established platforms for oncolo-
gists or researchers based on fine-tuned deep learning-
based NLP models to discover medical knowledge from 
recently published articles and ongoing clinical trials for 
recurrent GBM. This could help decision-making pro-
cess regarding the consideration of further treatment 
or encouraging clinical trials for patients with recurrent 
GBM.
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