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Abstract 

Background:  The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement 
organ with compatible living donors. Ideally many medical institutions should participate in a matching program to 
increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated 
policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing 
secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements 
for highly sensitive personal health information while simultaneously reducing the regulatory burdens.

Results:  We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP 
protocol which computes a locally optimal solution by finding matching donor–recipient pairs in a graph structure. 
SPIKE matches 40 pairs in cycles of length 2 in less than 4 min and outperforms the previous state-of-the-art protocol 
by a factor of 400× in runtime while providing medically more robust solutions.

Conclusions:  We show how to solve the KEP in a robust and privacy-preserving manner achieving significantly more 
practical performance than the current state-of-the-art (Breuer et al., WPES’20 and CODASPY’22). The usage of MPC 
techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to 
directly participate in a kidney exchange with reduced legal processes. As sensitive data are not leaving the institu-
tions’ network boundaries, the patient data underlie a higher level of protection than in the currently employed (cen-
tralized) systems. Furthermore, due to reduced legal barriers, the proposed decentralized system might be simpler to 
implement in a transnational, intereuropean setting with mixed (national) data protecion laws.
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Introduction
Around 7% of U.S. adults are affected by chronic kidney 
disease [1]. With the increasing age of the population 
in most countries, end-stage renal disease constitutes a 
rapidly increasing challenge for health care systems [2]. 
Humans are able to live a normal life with at least one 
functioning kidney [3]. However, when both kidneys of 
a person are malfunctioning, this person requires kidney 

replacement therapy to survive, i.e., either dialysis or the 
donation of a functioning kidney.

Transplantations of deceased donor organs unfortu-
nately imply long waiting times, as transplant waiting lists 
grow, given that the number of donations significantly 
exceed supply [4]. The other option is to find a living 
person that is willing to donate one of their kidneys. In 
general, living donor donations result in shorter waiting 
times and tend to have better long term outcomes com-
pared to deceased donor donations [5]. Unfortunately, 
finding a willing, living donor does not guarantee (medi-
cal) compatibility with the recipient. Hence, the living 
donor exchange system was introduced in 1991 [6], which 
allows recipients with incompatible living donors, in the 
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following referenced as pairs, to exchange their donors, 
such that ideally each recipient can receive a compat-
ible kidney donation. In most European kidney exchange 
programs the kidney transplantations of an exchange are 
executed simultaneously. Simultaneous operations limit 
the length of exchange cycles due to scarcity of medical 
staff. Additionally, exchanges of an exchange cycle that 
were initially deemed compatible in SPIKE can still be 
deemed incompatible after the required further assess-
ment done by medical professionals. In case of longer 
exchange cycles, this leads to more pairs not receiving 
a kidney due to the failing of the whole exchange cycle. 
For these reasons, many European countries with kidney 
exchange programs limit the length of cycles to L = 3 or 
even L = 2 , ensuring a practical feasibility [7]. In order 
for SPIKE to be applicable in European kidney exchange 
programs1, we decided to limit the maximum length of 
cycles to L = 3.

In this work, we consider a scenario, in which several 
pairs exchange their donors in a cyclic fashion, so that 
each donating pair receives a compatible kidney. These 
cycles are called exchange cycles [7].

As a first step for finding possible exchange cycles, we 
have to evaluate the donors’ and recipients’ medical data 
to determine compatibility between pairs. Afterwards, 
we have to identify possible exchange cycles. This prob-
lem is known as the kidney exchange problem (KEP) 
[7] and can be described as finding cycles in a directed 
graph, where each vertex represents a pair and a directed 
edge describes the compatibility between two pairs. A 
schematic view of the protocol can be seen in Fig. 1.

The process requires the analysis of highly sensitive 
medical health data, which makes it crucial that no infor-
mation is leaked accidentally or to unauthorized person-
nel. Thus, the KEP requires the implementation of strong 
privacy-preserving solutions, where the plaintext health 
information remains locally at each medical institution 
and the analysis is only run on “encrypted” data, which is 
leaking no sensitive data beyond the output: an exchange 
cycle with high transplantation success likelihood.2 Note 
that such a distributed solution also enhances security 
against data breaches, as having to attack multiple par-
ties is significantly harder than a single target. Similarly, 
it also simplifies the compliance with regulatory require-
ments potentially complicating or even prohibiting data 
sharing among facilities.

Contributions and outline
In this work, we provide the following contributions:

•	 Efficient Privacy-Preserving Kidney Exchange proto-
col: We design and implement SPIKE, a distributed, 
privacy-preserving protocol for solving the kid-
ney exchange problem in the semi-honest security 
model. In contrast to the current state-of-the-art [9, 
10], SPIKE improves efficiency as well as the medical 
compatibility matching by considering additional fac-
tors, namely, age, sex, human leukocyte antigens, and 
weight, that significantly affect compatibility between 
potential donors and recipients and is, thus, more 
robust than previous solutions by reducing the risk of 
failing procedures.

•	 Comprehensive Empirical Evaluation: We implement 
and extensively benchmark SPIKE and show that it 
significantly improves runtimes and communication 
costs compared to the state-of-the-art. We achieve 
about 30000× speedup over [9] and 400× over [10] 
thanks to our carefully optimized hybrid secure 
multi-party computation (MPC) protocols. Further, 
we provide additional (micro-) benchmarks and net-
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SPIKE – Privacy-Preserving Kidney Exchange Protocol
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Fig. 1  Overview of our privacy-preserving kidney exchange protocol 
SPIKE. The best set of exchange cycles are calculated, while the 
patients’ data remain strictly private

1  For example, France and Sweden only accept a cycle Length of L = 2 , while 
Spain, the Netherlands, and the United Kingdom accept longer cycles but pre-
fer L = 2 . For details see [8] and [7].
2  This cycle still requires a final check by medical experts.
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work settings to further demonstrate scalability and 
practicality of SPIKE.

•	 Open-source Implementation: SPIKE is available 
under the GNU LGPL v3 license3 here: https://​encry​
pto.​de/​code/​PPKE.

Related work
In this section, we summarize the related work on the 
Kidney Exchange Problem (KEP) with and without con-
sidering data privacy.

Robust KEP solutions
One major issue in kidney exchange programs is the 
potential cancellation of transplantations after hav-
ing already determined exchange cycles of compatible 
donors and recipients. Reasons for such cancellations 
are manifold, e.g., a donor withdraws his consent, as his 
non-compatible relative has already received a kidney via 
the waiting list from a deceased donor in the meantime 
[11]. These issues call for robust solutions to the KEP, i.e., 
flexibility for recipient/donor dropouts and including as 
much as possible medical factors that can be algorithmi-
cally evaluated.

Carvalho et al. [12] propose three policies that are able 
to cope with dropouts within an kidney exchange cycle. 
One takes the costs (or missed gains) of planned trans-
plants that do not proceed into account to find a solution 
with high probability of being successfully executed. The 
other two policies investigate strategies for recovering 
exchange cycles after dropouts. The plaintext algorithms 
in [12] are computationally expensive and, thus, cannot 
be trivially realized as secure computation protocols.

Ashby et  al. [13] introduce a calculator for determin-
ing compatibility in kidney exchange, which they use 
to evaluate the importance of various medical factors, 
such as age, sex, obesity, weight, height, human leuko-
cyte antigen (HLA) mismatches and ABO blood groups 
(see “Medical Background” Section). In our work, we 
increase the robustness of our privacy-preserving kidney 
exchange protocol by including the additional impor-
tant biomedical factors from [13]. Furthermore, we rec-
ommend to use cycle sizes of two or three to reduce the 
impact of withdrawals [11]. The size is also beneficial for 
practical considerations with respect to medical staff and 
other resources needed for transplantations, as all opera-
tions of one exchange cycle should ideally be executed 
simultaneously. This recommendation reflects current 
best practices [14].

Privacy‑preserving linear programming
Most currently used KEP solutions are based on Integer 
Linear Programming (ILP) formulations of the optimi-
zation problem. However, due to its superpolynomial 
complexity this is a largely unsolved space in the domain 
of privacy-preserving protocols. While multiple works 
considered secure linear programming using MPC (e.g., 
[15–17]), to our knowledge no results considering inte-
ger linear programming where some or all variables are 
not elements of a continuous field but must be integers. 
This research gap exsists for a good reason: Most exact 
ILP solving algorithms are based on “Branch and Bound” 
methods [18–20]. These methods find hyperplanes in the 
parameter space enclosing possible solutions, thus, prun-
ing large sections of the parameter space. Unfortunately, 
a direct translation into the privacy-preserving realm 
would be vulnearble to timing attacks, hence insecure. 
Circuit-based MPC methods must exhibit deterministic 
runtimes, regardles of the specific inputs. Unfortunately, 
this disqualifies the privacy-preserving ILP approach for 
this work, as the presented algorithms inherently contain 
integer values in boundary conditions (e.g., encoding the 
graph structure).

Privacy‑preserving KEP protocols
Just two works, both by Breuer et al. [9, 10], investigate 
how to solve the kidney exchange problem in a decentral-
ized privacy-preserving manner. Both consider the semi-
honest security model.

Privacy‑preserving KEP protocol with HE
The first protocol [9] uses homomorphic encryption 
(concretely, a threshold variant of the Paillier cryptosys-
tem [21]). It instantiates a computing party for each pair 
of a non-compatible donor and recipient at the providing 
hospital, thus, effectively creating a multi-party computa-
tion (MPC) protocol.

The protocol first pre-computes a set of all possi-
ble exchange constellations independent of any input 
data. Cycles of all lengths up to 3 are computed (but an 
arbitrary value could be chosen). Next, the pairs jointly 
compute an adjacency matrix with the pair-wise com-
patibility based on HLA crossmatching and ABO blood 
groups. Combining the results with the exchange constel-
lations, the graph with the maximal size is delivered as 
the output. The protocol’s runtime scales exponentially 
with the number of pairs: starting with a runtime of 14 

3  https://​www.​gnu.​org/​licen​ses/​lgpl-3.0

https://encrypto.de/code/PPKE
https://encrypto.de/code/PPKE
https://www.gnu.org/licenses/lgpl-3.0
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seconds for two pairs it increases to 13 h for nine pairs. 
Unfortunately, such runtimes are prohibitive for practical 
deployment.

Privacy‑preserving KEP protocol with Shamir’s secret 
sharing
In a concurrent work to ours, Breuer et  al. [10] intro-
duced a privacy-preserving KEP protocol for crosso-
ver kidney exchanges with polynomial computation 
complexity. “Crossover” hereby means that the kidney 
exchange is done among two pairs, i.e., the exchange 
cycle size is limited to two in contrast to [9]. This limita-
tion, however, enables a significant efficiency improve-
ment for matchings with more than 13 pairs. For 
example, with 15 pairs it reduces the runtime of the old 
protocol [9] from 8.5 h to 30 min. Additionally, the new 
protocol enables a dynamic setting, where donor-recip-
ient pairs can be added/removed from the exchange 
graph at any point in time. On the technical side, the 
authors replace HE and fully rely on a MPC-tech-
nique called Shamir’s Secret Sharing (SSS) [22] imple-
mented with the MP-SPDZ framework [23]. Beyond the 
dynamic setting and the change to MPC, the new pro-
tocol employs the graph matching algorithm by Pape 
and Conradt [24] for better efficiency in the matching 
between compatible donors and recipients.

Our privacy-preserving KEP protocol SPIKE offers 
significantly improved runtimes for real-world deploy-
ment. Our runtimes outperform the measured runt-
imes of previous works [9, 10], e.g., by a factor of 
hundreds/thousands for 9 recipient-donor pairs with a 
cycle length of 2. This is due to an efficient symbiosis 
of three MPC techniques and protocol optimizations 
that we will detail in the next section. Furthermore, 
we improve the robustness of SPIKE by including four 
additional biological factors notably impacting the 
transplantation success rate [13]. Thus, our protocol 
focuses on high medical quality rather than pure size, 
while also significantly improving efficiency.

Background
In this work, we present a privacy-preserving solution 
to the kidney exchange problem (KEP). We interpret the 
KEP as an optimization problem, specifically finding 
cycles with a maximal coverage of nodes on a compati-
bility graph and a maximal aggregated edge weight. The 
graph is constructed according to medical compatibil-
ity factors. This section gives the required background 
information to understand the underlying aspects of 
biomedicine, graph theory, as well as the used privacy-
preservation techniques of secure multi-party compu-
tation (MPC).

Medical background
In the following, we introduce the medical background, 
i.e., biological factors used in our protocol that cause 
general immunological incompatibility or influence 
success likelihood for a kidney transplantation.

General immunological compatibility
While many medical factors are involved in the definite 
assessment of donor-recipient compatibility, some can be 
algorithmically determined. For example, one key factor 
in avoiding allograft rejection—immunological compati-
bility—can be evaluated following evidence-based guide-
lines. Our kidney exchange protocol uses a specific form 
of immunological compatibility, the HLA crossmatch, as 
a transplant prohibiting factor.

Human leukocyte antigens crossmatch
The human immune system is responsible for the protec-
tion of the organism against potentially harmful invad-
ers (called pathogens). Antigens are molecular structures 
often found on the surface of pathogens, but also natu-
rally occurring in the body. Antibodies can attach to 
those structures, preventing the pathogens from docking, 
thus inhibiting their harmful effect. One important group 
of endogenous antigens, which occur in varying numbers 
in every human, forming the immunological “fingerprint” 
the immune system recognizes as normal, are the human 
leukocyte antigens. Out of the three classes of HLA [25], 
only classes I and II are of interest in this work.

With a HLA crossmatch general compatibility between 
recipient and donor can be determined: The human 

Table 1  HLA split antigens assessed for biomedical donor – 
recipient compatibility testing in SPIKE

Class I Class II

HLA-A HLA-B HLA-DR HLA-DQ

A23 B38 B60 DR11 DQ5

A24 B39 B61 DR12 DQ6

A25 B44 B62 DR13 DQ7

A26 B45 B63 DR14 DQ8

A29 B49 B64 DR15 DQ9

A31 B50 B65 DR16

A32 B51 B71 DR17

A33 B52 B72 DR18

A34 B54 B75

A66 B55 B76

A68 B56 B77

A69 B57

A74 B58
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leukocyte antigens of a donor are matched against exist-
ing human leukocyte antibodies of a possible recipient 
[26]. HLA crossmatch positive kidney transplants carry 
a significantly higher risk of antibody-mediated rejection 
or allograft rejection due to already existing antibodies 
[27, 28]. Modern immunosupressants might make such a 
procedure possible [29], but those cases require special-
ized, in-depth medical assessment and are out of scope of 
a general, algorithmic evaluation.

Following Eurotransplant’s guidelines [26], we consider 
HLA groups, which are also most frequently screened 
in preparation for kidney replacement therapy [30]: the 
HLA encoded at HLA-A, -B, and -DR loci. Addition-
ally, we consider the HLA-DQ coded antigens, which 
are related to some cases of antibody-mediated rejection 
[31]. The full list of HLA considered in SPIKE can be seen 
in Table 1.

Match quality estimation
Additionally to the previously introduced procedure that 
prevents immunological incompatibility, we strive to 
find the medically best/most robust solution to the kid-
ney exchange problem – that includes maximal survival 
probability. For that, we calculate a match quality index, 
based on the following additional medical factors: 

(i)	HLA match

	 Additionally to the HLA crossmatch, HLAs influ-
ence the probability of a successful transplantation. 
Concretely, it increases if the donor has a subset 
or the same HLA as the recipient. The number of 
“mismatches” is associated with increased allograft 
rejection rates, as the probability that a recipient 
develops antibodies to those mismatched antigens 
increases [32]. HLA mismatches do not consti-
tute exclusion criteria, as immunosupressants can 
reduce the rejection probability. The use of immu-
nosupressants, however, is itself linked to higher 
rejection rates [32–34]. Special importance comes 
to the HLA-DQ group, as mismatches of it are 
strongly linked to antibody-mediated rejections 
[31].

	 Each person can inherit up to two types of HLA per 
group. Hence, at most two mismatches can occur 
per group [35]. The impact of HLA mismatches can 
be categorized in four bins: having no mismatch, a 
very rare case and mostly occurring in twin donor-
recipient pairs, having 1–2 mismatches, having 3–4 
mismatches, and, worst of all, having more than 
5 mismatches [32]. The last group shows a more 
than 6% cumulative risk for death with a function-

ing graft during the first year. We weight HLA mis-
matches according to those four categories.

(ii)	 ABO blood type
	 The ABO blood type system is based on the presence 

or absence of two types of antigens on the surface 
of the red blood cells [36]. The absence of both type 
A and type B antigens mark blood type O, the pres-
ence of both mark blood type AB, and the presence 
of only one mark blood type A and B, respectively. 
Receiving blood with an incompatible blood type 
leads to blood clumping due to an immune reaction 
and a possibly failed procedure. Compatible pair-
ings are given in Table 2.

	 By pre-processing the donor organ, grafts from ABO 
incompatible donors are possible [37], although 
linked to severe adversary reactions during the first 
year post transplantation. These reactions include a 
higher risk of allograft loss, severe viral infections, 
antibody-mediated rejections, and postoperative 
bleeding. After this first year, however, the long-
term survival rate is comparable to ABO compat-
ible transplants [37].

(iii)	Age
	 According to Waiser et  al. [38], also age disparity 

influences allograft survival post transplant. The 
authors examined the role of age of the donor and 
recipient using two categories: junior participants 
aged below 55 years and seniors participants older 
than 55 years. The results show that intra-categori-
cal transplants show the best outcomes, followed by 
pairings of junior donors and senior recipients. The 
worst outcomes were observed for pairings with 
senior donors and junior recipients.

(iv)	Sex
	 As shown by Zhou et  al. [39], the combination of 

donor-recipient sexes impact the transplant suc-
cess probability. The worst allograft survival rates 
were observed in male recipients for female donor 
organs, while same-sex pairs performed slightly 
better than female recipients for male donor organs.

(v)	 Weight
	 Recipients, who received a kidney from a donor, who 

weighs less, have higher chances of allograft loss 
than other recipients [40]. El-Agroudy et  al. [41] 

Table 2  ABO compatibility [36]

Blood group Can receive from Can donate to

O O O, A, B, AB

A O, A A, AB

B O, B B, AB

AB O, A, B, AB AB



Page 6 of 21Birka et al. BMC Medical Informatics and Decision Making          (2022) 22:253 

reason that the allograft loss for recipients with kid-
neys from lighter donors might be caused by the 
kidney being unable to support the body functions 
of a heavier recipient.

Graph theory
We represent the structure of the kidney exchange prob-
lem (KEP), as a (bipartite) graph problem. A graph G con-
sists of a set of vertices V and an edge set E connecting 
the vertices. Technically, we deal with a bipartite graph, 
i.e., consisting of two different sets of vertices (donors 
and recipients), but as those register pairwise for the 
kidney exchange, we can “collapse” each donor-recipient 
pair into one vertex in V . If two vertices v,u ∈ V are con-
nected by an edge, then (v,u) ∈ E . We consider a directed 
graph with directed edges from v to u. Furthermore, we 
use weighted edges by associating a scalar weight to each 
edge, according to its “importance” in the network. The 
weights represent the degree of medical compatibility. 
We only allow positive edge weights.

Our goal is to find all cycles within the graph. A cycle 
c is a list of vertices {v1, v2, ..., vm} , where an edge exists 
from vertex vi to vi+1 for i ∈ {1, ...,m− 1} and, to close the 
“loop”, from vertex vm back to vertex v1 . In a vertex dis-
joint cycle, each vertex appears at most once within the 
cycle. We define the length of a cycle as the number of 
edges that are used to form that cycle.

One representation of a (weighted) graph structure is 
the adjacency matrix, a square matrix A with one row/
column for each vertex. If an edge exists between vertices 
i and j, then, the entry aij = w , with w > 0 being the edge 
weight and aij = 0 otherwise. This work uses the fact that 
by raising the adjacency matrix to the ℓ th power, one can 
quickly compute the number of paths between two verti-
ces with a given length ℓ . That means, that vertices i and 
j are connected by (Aℓ)ij paths of length ℓ . The diagonal 
elements give the number of cycles of length ℓ by finding 
paths starting and ending on the same vertex.

Secure computation
Secure computation techniques enable multiple parties 
to securely evaluate an arbitrary function on their pri-
vate inputs. Ideally nothing is leaked beyond what can be 
inferred from the output. A secure computation protocol 
must be able to realize this functionality without rely-
ing on a trusted party. To verify its security, it is typically 
compared to the so-called ideal functionality, which is a 
trusted third party that runs the computation on behalf 
of the data owners.

Privacy research has mainly worked on two para-
digms for secure computation: Homomorphic Encryp-
tion  (HE) and Secure Multi-Party Computation (MPC). 
HE schemes are special public-key encryption schemes 

that allow to realize (some limited) mathematical opera-
tions under encryption. However, they tend to be com-
puting intensive making them (yet) often unsuitable for 
real-world applications. In contrast, MPC techniques 
are typically more efficient with respect to computation, 
as they are mainly based on efficient symmetric encryp-
tion and secret sharing. Additionally, MPC protocols 
can compute arbitrary functions. They are typically split 
into a setup and an online phase, where the setup phase 
is independent of the input data and, thus, can be pre-
computed. This separation enables to significantly speed 
up the time-critical online phase as pre-computation can 
be done in idle times when input data is not yet available. 
However, MPC involves two or more parties, who jointly 
evaluate the desired function in a secure manner, hence, 
it requires communication among the parties. Both para-
digms have already been used in the context of privacy-
preserving genome-wide association studies [42–44], as 
well as other applications in the health care area [45–48].

To have provably secure privacy guarantees while 
achieving practical efficiency, SPIKE efficiently combines 
multiple MPC techniques, which we introduce in the 
following.

Secure multi‑party computation (MPC)
Introduced by Andrew Yao’s seminarial work “How to 
Generate and Exchange Secrets” [49] in 1986, secure 
Multi-Party Computation (MPC) was considered a theo-
retical field first. MPC are cryptographic protocols that 
can securely compute an arbitrary function among two 
or more parties on their private inputs. Enabled by the 
rapid development of computer hardware and the devel-
opment of the first MPC compiler “Fairplay” [50], first 
practical uses were demonstrated around the year 2004. 
Since then, MPC is a flourishing research field and due 
to novel protocols and optimizations, such as “Free XOR ” 
[51] or “Halfgates” [52], practical applications in many 
fields were shown [45, 53, 54].

In this work, we rely on three well established secure 
two-party computation techniques, i.e., the secure com-
putation protocols are run among exactly two parties: 
Arithmetic Secret Sharing ( A ), Boolean Sharing ( B ), 
both based on [55], and Yao’s Garbled Circuits (Y), origi-
nally introduced in [49]. Each technique differs in how it 
creates (shares) and reconstructs secrets, but also how 
(efficiently) certain types of operations can be realized.

Secure outsourcing
Although we use two-party MPC to perform the com-
putation, any number of parties can provide input data. 
This method of secure outsourcing [56] works by all data 
owners secret sharing their data and sending one share 
to each of the two non-colluding computation servers. 
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Secret sharing, thereby, means that the sensitive data is 
split into two random looking shares and each of the two 
computation servers receives only one of those. Specifi-
cally, a single computing server cannot infer any informa-
tion about the secret input data from its share. Instead, 
the sensitive information can only be obtained when 
the secret shares of both servers are combined. The two 
computing servers, then, perform the actual secure com-
putation on behalf of the data owners on the random 
looking secret shares, while not being able to learn any-
thing about the private input data. To summarize, in the 
outsourcing scenario an arbitrary number of data owners 
can participate without leaking/uploading any sensitive 
information to an external party.

This scenario has three main benefits:

•	 The communication of N-party MPC scales at least 
linearly, often quadratic in the number of participat-
ing parties [57]. By outsourcing the N-party compu-
tation to M ≪ N  parties, here M = 2 , the complex-
ity is improved substantially.

•	 As the input owners do not participate in the compu-
tation itself, the outsourced protocol provides secu-
rity against malicious data owners [56]. At most they 
can corrupt the correctness of the calculation, but 
not the privacy.

•	 The location of the computation servers can be 
chosen pragmatically, e.g., two locations with high 
bandwidth and low latency network connection. Of 
course, the computation servers are assumed to not 
collude.

•	 Compared to N-party MPC setups, two-party MPC 
requires to trust exactly one computation server. A 
data owner can also run one himself. Using N > 2 
non-colluding parties can be more efficient [58, 59], 
but ensuring the non-collusion among all N parties is 
more challenging/might not be realistic. Full thresh-
old N-party MPC schemes [60], i.e., where all but 
one party can be compromised, significantly reduces 
efficiency/increase communication.4 To summarize, 
outsourcing to two non-colluding servers offers a 
good trade-off between efficiency and security.

Security model
In our work, we consider the semi-honest security model, 
where the two computation servers are assumed to be 
honestly following the protocol, while trying to learn as 
much information as possible. By “honestly following 
the protocol” we, thereby, mean that they adhere to the 
specifications of the protocol, e.g., they do not manipu-
late local calculations or provide inconsistent data. 
Additionally, the two computation servers are assumed 
to not collude. This security model provides protection 
against curious personnel or accidental data leakage and 
the omission of a trusted third party further reduces the 
impact of a potential data breach. Although weaker than 
the malicious security model, where the parties might 
arbitrarily deviate from the protocol, the semi-honest 
security model is sufficient for our use case, as hospitals 
are generally trusted, but legally not allowed to simply 
share the data among each other. Furthermore, the semi-
honest security model enables significantly more effi-
cient computation than the malicious model and, hence, 
provides a good efficiency-privacy trade-off. While the 
European Data Protection Board recommends security 
against malicious adversaries when performing joint 
calculations with parties under jurisdiction of insecure 
countries [62], the semi-honest security model is the 
predominant model in data protection concepts for fed-
erated medical research5. Hence, it is a valuable security 
model in our application scenario. Previous works on 
privacy-preserving KEP protocols [9, 10] are also in the 
semi-honest security model.

Notation
In the following, 〈x〉si denotes a secret share of x shared 
using MPC technique s ∈ {A,B,Y } and held by party Pi , 
where i ∈ {0, 1}.

Yao’s garbled circuits
(Y)

Yao’s Garbled Circuits enable two parties, called the 
garbler and the evaluator, to securely evaluate a function 
f represented as Boolean circuit, i.e., a directed acyclic 

Table 3  Garbled AND gate

Input w0 Input w1 Output w2 Garbled value
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1
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4  As mentioned above, the communication of MPC protocols generally 
scales quadratically in the number of parties, thus, more parties significantly 
increase communication cost. When considering full threshold security, 
runtimes significantly increase as well. The state-of-the-art MPC framework 
MOTION [60] which offers full threshold security provides several bench-
marks comparing to the two-party MPC framework ABY [61]. In a LAN set-
ting, it takes ABY less than 0.1 seconds (online runtime) to securely compute 
an AES-128 circuit with two parties while MOTION requires at least twice 
(resp. four times) the time with three (resp. five) parties. 5  For examples see [63] and [64] (in German language).
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graph, where the nodes are logic gates and the edges 
(called wires) are the Boolean in- and outputs. For func-
tional completeness AND and XOR gates are sufficient. 
The garbler generates random keys for each possible state 
of each wire kw0 , k

w
1 ∈ {0, 1}κ , where κ is the symmetric 

security parameter (set to κ = 128 in our implementa-
tion) and w is the respective wire. For all input combina-
tions of each gate in the circuit, it uses the input keys to 
encrypt the corresponding output key (cf.  Table  3). The 
order of the four ciphertexts is then permuted randomly 
and the garbled circuit is sent to the evaluator together 
with the keys associated to the garbler’s input. As those 
keys look random, the evaluator cannot extract any infor-
mation about the input of the garbler. Next, the evalu-
ator engages in an oblivious transfer [65, 66] to receive 
the keys for his input without revealing it to the garbler. 
Equipped with all keys, it evaluates the garbled circuit 
to receive the circuit’s output keys, which the parties 
jointly decode. Thanks to several optimizations, e.g., [51, 
52, 67], Y requires no communication for the evaluation 
of an XOR gate and only 1.5κ bits of communication for 
AND gates. Y needs a constant number of communication 
rounds independent of the circuit depth.

Boolean and arithmetic secret sharing
(B/A)

In Additive Arithmetic Secret Sharing ( A ) operations 
on ℓ-bit inputs are done in an algebraic ring Z2ℓ , where ℓ 
is the bit length. Although the technique can also be used 
among an arbitrary number of parties [68], we focus here 
on the two party setting as introduced by Goldreich et al. 
[55].

To share a secret value x, party Pi , i ∈ {0, 1} , gener-
ates a random value r ∈R Zp and sets its arithmetic 
share to �x�Ai = r . Then, Pi also determines party P1−i ’s 
share �x�A1−i = x − r mod 2ℓ and sends it to P1−i . To 
reconstruct the secret, one needs to know both shares 
and compute x = �x�A0 + �x�A1 mod 2ℓ . Boolean Secret 
Sharing ( B ) describes the special case, where ℓ = 1 , viz. 
Z2 = {0, 1}.

Note that a share 〈x〉Ai  (resp. 〈x〉Bi  ) is random and does 
not leak anything about the secret x. Secure addition 
(respectively, XORing in B ) can be executed locally, that 
is without communication between the parties. Secure 
multiplication (respectively, AND in B ) is done in an inter-
active protocol among the two parties using so-called 
multiplication triples [61, 69, 70]. Using only addition 
and multiplication (similarly, AND and XOR ) arbitrary 
functions can be calculated.

ABY framework
All three MPC techniques are implemented in the state-
of-the-art secure two-party computation framework ABY 

[61], which we use in our experiments6. Additionally, 
ABY also contains efficient conversions between them 
and supports Single Instruction Multiple Data (SIMD) 
operations to parallelize identical operations on different 
data, while reducing memory usage and runtime. Arith-
metic Secret Sharing in ABY is performed on the ring 
Z2ℓ , that is with 2ℓ elements, where ℓ is the bitlength of 
the data type (most often ℓ = 32bit ). A recent work by 
Patra et al. [53] improves [61] by making the online com-
munication of scalar multiplication independent of the 
vector dimensions and reducing online communication 
for AND gates with two inputs in B by a factor of 2. Unfor-
tunately, these protocols have been implemented only 
very recently in MOTION2NX [72], which is why we use 
[61] in our implementation.

Methods
In this section, we first define the privacy-preserving 
Kidney Exchange problem (KEP) and its requirements. 
Then, we present our solution, which we name SPIKE, 
consisting of tailored modular secure MPC protocols and 
include a complexity analysis.

Problem statement
Figure 2 shows the ideal functionality for solving the pri-
vacy-preserving KEP in a provably secure way. Assum-
ing the (not realistic) availability of a trusted third party 
(TTP), hospitals send the data of recipients and donors 
to the TTP, which calculates cycles of pairs of recipients 
and donors with the highest probability to be compatible. 

IDs Ideal TTP

IDs
IDs

IDs

Fig. 2  Ideal functionality for a secure privacy-preserving protocol 
solving the kidney exchange problem (KEP)

6  Note that our protocols in Section “Methods” can also be instantiated with 
other MPC frameworks. For example, an instantiation with MP-SPDZ would 
also enable the switch to a malicious security model but at the costs of sig-
nificantly reduced efficiency [71]. However, considering the security and effi-
ciency requirements discussed in the Subsections “Outsourcing Data-Model” 
and “Security Model”, 2-party MPC with the ABY framework offers the best 
trade-off.
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Then, the TTP returns for each recipient the information 
about his/her donor to the respective hospital. Note that 
a final evaluation must still be done by medical experts. A 
privacy-preserving KEP protocol is meant for automatiz-
ing and, thus, accelerating, the process of the creation of 
the kidney exchange cycles.

Requirements We define the following requirements for 
a secure privacy-preserving KEP protocol:

•	 Privacy The privacy-preserving KEP protocol must 
realize the same functionality as described in the 
ideal functionality, while removing the problem-
atic assumption of a TTP, i.e., it must leak nothing 
beyond what can be inferred from the output.

•	 Efficiency The privacy-preserving KEP protocol must 
be efficient in terms of communication and compu-
tation, such that it can be run in reasonable time on 
standard server hardware.

•	 Decentralization The privacy-preserving KEP pro-
tocol must be decentralized, i.e., the highly sensitive 
medical information of donors and patients must 
remain locally at the respective medial institution 
(inherently being compliant with the data minimisa-
tion principle).

•	 Adaptability for Medical Experts The priva-cy-
preserving KEP protocol must be flexibly adaptable 
for medical experts with respect to the selection of 
biological factors for the algorithmic evaluation of 
compatibility. They must be able to adjust the weight-
ing between the included factors and cycle lengths 
according to state-of-the-art medical advancements. 
The protocol must be easily extendable to new fac-
tors and additional HLA groups.

SPIKE: a MPC‑based privacy‑preserving KEP protocol
In this section, we provide the building blocks for our 
Secure and Private Investigation of the Kidney Exchange 
problem: SPIKE. It fulfills above requirements (see also 
the overview of the phases in Fig. 1).

First, we explain the matching phase, which analyzes 
the compatibility between donors and recipients using 
six biological factors presented in the "Background" sec-
tion. Then, we continue with the determination of the 
number of potential exchange cycles given a cycle length. 
The third phase computes the probability of a success-
ful transplantation based on the matching results for all 
potential exchange cycles. In the final phase, we output 
a robust set of disjoint exchange cycles, i.e., with a high 
probability for compatibility. The final result contains a 
combination of disjoint exchange cycles that maximizes 
the likelihood of as many transplantation as possible 
being successful. The weight of a cycle c is denoted by 

wc where a higher value indicates a higher likelihood of a 
transplantation being successful. Thus, the weight of a set 
of disjoint cycles C , i.e., the likelihood for as many trans-
plantation being successful in the set, can be described 
as the sum of all cycles wci for i ∈ {1, . . . , |C|} in the set. 
The weight of a cycle is determined by the sum over all 
edge weights we in the cycle. Finally, the weight of an edge 
is determined by the sum over the results of all match-
ing criterion which are multiplied by a weight which can 
be assigned by medical experts to highlight certain bio-
medical factors. Note that we write this computation as a 
dot product between a vector �p(k , l) and �w where �p(k , l) 
contains the results of the matching between pair k and l 
in vector form and �w the respective weights of each crite-
rion. Equation  (1) describes the previous conditions. To 
achieve the described result, we greedily select disjoint 
cycles in decreasing priority according to the weight of 
each individual cycle.

Note that our solution is a local optimum which is com-
puted with a greedy algorithm while the solutions by 
Breuer et  al. [9, 10] are globally optimal. We argue that 
a locally optimal solution is sufficient in our application 
scenario for two reasons: First, we assume that the locally 
optimal results are in close proximity of the global opti-
mum, as real world data sets will likely show sparse com-
patibility and the additional medical compatibility factors 
considered by SPIKE will increase the solution quality. 
Second, the additional expert evaluation following the 
algorithmic matching will most likely introduce a much 
higher variance in the chosen solution. The empirical 
evaluation of those two claims are interesting points for 
further research requiring real-world kidney exchange 
data sets. The protocol presented by Breuer et  al. [10] 
enables usage in a dynamic setting, i.e., a setting in which 
donor-recipient pairs are put together in a pool where 
pairs come and go over time. They run their matching 
protocol on a subset of the pairs of the pool and, after-
wards, evaluate the resulting compatibility graph. By 
design, SPIKE enables usage in a dynamic setting, too, 
since each part of the protocol can be executed indepen-
dently of the others parts as long as they receive the out-
put of the previous parts. Such a dynamic setting can also 
be adapted to an outsourcing scenario. Each input party 
has their own pool of donor-recipient pairs where they 
can select a random subset of pairs and send them to the 
computing parties.

(1)max

|C|

i=1

:=wci

|cLen|

j=1

�p(k , l) · �w
j

:=wej i
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Notation
We use Boolean operators to concisely present our MPC 
protocols: ∧ is AND , ∨ is OR , ¬ is Not , and ⊕ is XOR . 0/1 
are False/True. |x| indicates the length of a vector x, i.e., 
the number of elements. Non trivial variable names in 
protocols are written in sans serif , function names (and 
calls) monospaced . Branching, implemented with MUX 
(multiplexer) Gates, is displayed using ternary notation: 
condition ? true statement : false statement.

Compatibility matching
The first phase of SPIKE is called compatibility matching. 
In this phase, we compare the pair-wise general compat-
ibility and match quality of all donors and recipients with 
respect to human leukocyte antibodies and antigens, 
ABO blood group compatibility, age, sex, and weight. The 
output of this phase is a weighted compatibility graph, 
where the edge weights indicate the probability of com-
patibility for each pair.

We present the main protocols for the compatibility 
assessment in the following. The subprotocols for assess-
ing the individual matching criteria HLA mismatches, 
ABO blood type, age, sex, and weight are given as Addi-
tional file 1: Tables S1–S6 in the Appendix.

The HLA crossmatch subprotocol is shown in Table 4. 
It tests whether the human leukocyte antigens of the 
donor are unsuitable to the human leukocyte antibodies 
of the recipient rendering them incompatible.

The subprotocol takes a vector with the antigens 
of a donor hlad and a vector with the antibodies of the 
recipient ahlar as input. The number of observed HLA, 
denoted by |HLA| , is publicly known. A vector comp 
stores whether the recipient possesses an antibody 
against any of the donor’s HLA (cf. Line 3). For enhanced 
efficiency, we parallelize this comparison as Single 
Instruction, Multiple Data (SIMD) operation, such that 
all HLA matches of one patient are computed in just one 
step. Afterwards, the overall compatibility (i.e., no anti-
gen-antibody mismatch was found) is computed with 
OR gates in a tree structure, to reduce the (multiplica-
tive) dephts of the circuit from |HLA| to log2(|HLA|) . To 
prepare for further processing, we invert combined and 
return it as result of the HLA crossmatching in Line 6.

In Table 5, we present our MPC protocol that combines 
the results of the evaluated six medical criteria influenc-
ing the compatibility of a kidney donation into a weighted 

adjacency matrix indicating the donor-recipient compat-
ibility, named compG.

It takes a vector pairs containing all possible pairs 
of donors and recipients and a vector w with a weight 
for each criteria (i.e., how much it influences the over-
all probability for good compatibility compared to the 
other factors) as input. Lines  4 to  6 additively combine 
the computed weighted probability of each compatibility 
criterion and assign it to the respective edge represent-
ing the donor of the i-th pair and the patient of the j-th 
pair, where i  = j and i, j ∈ {0, . . . , |pairs| − 1} . In Line 7, 
we additionally check whether the i-th donor and the 
j-th patient exhibit general immunological compatibil-
ity using the HLA crossmatch subprotocol (cf. Table 4). 
If this is the case, we store the result of the edge weight 
at the respective index, otherwise, we store the secret 
shared constant 0.

MPC Cost. The two sections in Table 4 evaluate |HLA| 
AND gates (as SIMD) and log2(|HLA|) OR

7 gates, respec-
tively. Finally, we invert combined once. This results in 
a circuit depth of log2(|HLA|)+ 1 and a total number of 
AND gates of 2× |HLA| . Boolean sharing ( B ) is used in 
this protocol, as Boolean operations are performed and 
the circuit depths is low, thanks to the SIMD vectoriza-
tion [61].

To fully assess the matching quality (Table  5), all cri-
teria have to be evaluated for each recipient, i.e., Table 4 
and Additional file  1: Tables  S1,  S2, S4, and  S6 are run 
|pairs|2 times. Then, in Table  5, we additionally evalu-
ate five multiplications, five additions, one comparison, 
one AND gate, and one MUX gate. Due to the arithmetic 
operations in this protocol, the results of the compat-
ibility evaluation protocols must be converted between 
B  and A.

Table 4  matchHLA(〈hlad〉B : vector, 〈ahlar〉B : vector) → int Table 5  computeCompatibilityGraph(〈pairs〉B : vector, 〈w〉A : 
vector) → weighted adjacency matrix

7 
A ∨ B = 1⊕ ((1⊕ A) ∧ (1⊕ B))
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Cycle computation
The second phase of SPIKE computes the number of pos-
sible kidney exchange cycles given a concrete input cycle 
length8 from the compatible donors and recipients that 
were output by the compatibility matching. Our MPC 
protocol for this part is shown in Table 6.

Table  6 takes the secret shared weighted compatibil-
ity graph compG as input. The desired length of cycles 
cLen is public. We first compute the unweighted adja-
cency matrix in Line 2 (cf. Additional file 1: Table S7, in 
the Appendix). For the unweighted matrix, we compute 
the cLen-th power using a naïve implementation9. The 
entries in this resulting matrix indicate how many paths 
of length cLen start at vertex i and end at vertex j. For 
cycles, the entries are on the diagonal, as start- and end-
vertex are identical. Following this thought, the sum of 
the entries of the diagonal is the total number of cycles 
with the given cycle length cLen . Note that this number 
contains duplicates, namely, “congruent” cycles that are 
the same, but were found via a different start/end ver-
tex.10 We remove the duplicates later in Additional file 1: 
Table S9 (described in the Appendix).

MPC Cost. Table  6 contains mostly arithmetic opera-
tions ( |pairs|3 multiplications and (|pairs|3 − |pairs|2 
additions), however, the computation of the unweighted 
adjacency matrix is most efficiently performed in  B 
|pairs|2 comparisons and MUX gates). For that reason we 
convert compG from A to B (cf.  Line  1) and back (in 
Additional file 1: S7).

Cycle evaluation
The third phase of SPIKE then identifies the most likely 
successful unique exchange cycles consisting of com-
patible pairs of donors and recipients and sorts them in 
descending order with respect to their weight.

Our first subprotocol for this phase, shown in Table 7, 
finds all exchange cycles of the desired length (includ-
ing duplicates) and computes the weight of each cycle. 
This weight is the sum of all included weighted edges. 
As mentioned before, the weight associated with an 
exchange cycle indicates the probability of the transplan-
tation being successfully carried out, i.e., its robustness.

The subprotocol takes the secret shared compatibility 
graph compG output by Table 5, the currently analyzed 
exchange cycle cCycle , its secret shared weight weight , 
a secret shared counter valid , which tracks the number 
of edges in cCycle , and a vector of secret shared tuples 
allCycles , which will be consecutively filled with all 
possible exchange cycles and the corresponding sum of 
weights. In a recursive execution of Subprotocol  7, this 
vector is filled, as explained in detail in the following. 
The desired output cycle length cLen and the number of 
recipient-donor pairs |pairs| are public. Contrary to the 
protocols in [9, 10], the output number of cycles |cycles| 
found in  Table  6 is revealed for efficiency reasons. We 
consider this leakage as acceptable since it leaks only a 
very high-level aggregate property, generally not allow-
ing the inference of the compatibility graph’s topology11. 

Table 6  determineNumberCycles(〈compG〉
A : matrix) → 

number of cycles
Table 7  findCycles(〈compG〉

Y : matrix, cCycle : vector, 
〈allCycles〉Y : vector, 〈weight〉Y : int, 〈valid〉Y : int) → vector of tuples

8  As discussed in the Related Work, we recommend 2 to 3 to foster robust-
ness.
9  Even though exhibiting a cubic runtime complexity, this part’s perfor-
mance is negligible compared to the following parts (cf. Fig.  4), hence, an 
optimization is not vital.
10  Cycle (A, B, C) and cycle (B, C, A) are duplicates, but cycle (C, B, A) is 
not.

11  Exceptions are fully connected and unconnected graphs, as well as for 
|cycles| = 1 at pathological graph topologies. The first topologies have no 
security implication whatsoever and the later can, e.g., be easily avoided by 
introducing a check ensuring that the output is only revealed when more 
cycles have been found.
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In the legal sense, the revealed number is considered 
non-sensitive as well, as it is an aggregated, anonymized 
datum.

Table 7 first checks if the currently analyzed exchange 
cycle cCycle already has the desired length cLen . If this 
is the case, the weight of the last edge is added to the 
respective sum of this cycle’s weights in Line 2. Next, 
each valid cCycle is added to allCycles with its respec-
tive sum of weights. A cCycle is valid, if it is closed 
(cf. Lines 3–4). An invalid cycle is associated with weight 
zero (cf. Line 5). Note that a weight of zero does not con-
tribute to the solution, hence a cycle with weight zero 
is never considered for a solution. In Line 8, the opera-
tions done in Lines 2–3 are reverted to restore the state 
of cCycle before the last edge was added, i.e., the weight 
of the last edge is subtracted from weight and valid is 
decreased by 0 (no edge) or 1 (edge).

Cycles that do not have the desired length yet are han-
dled in Lines 10–21. For these exchange cycles, the sub-
protocol checks whether they are already part of cCycle , 
as each vertex may only appear at most once (cf. Line 11). 
If it is not included, the weight of the edge from the pre-
vious to the new vertex is added by increasing cCycle ’s 
weight and counter 〈valid〉Y , and the new vertex is added 
to cCycle (cf. Lines 14–16). Afterwards, Table 7 is recur-
sively called again with the newly added vertex. Once the 
function returns, we revert the operations done before to 
be able to analyze the next cycle (cf. Lines 18–19).

The second subprotocol of the cycle evaluation 
(cf. Additional file 1: Table S9 in the Appendix) removes 
duplicates from the exchange cycles set. It extracts 
#unique = ⌊

#cycles
cLen ⌋ cycles and returns the k cycles with 

the highest probability for a successful transplantation.
Table  8 combines the previously discussed subproto-

cols. It first calculates the sum of weights for each cycle 
with Table 7 (findCycles) and sorts the result using Addi-
tional file  1: Table  S8 (kNNSort), such that only the k 
cycles with the largest weight are output. Those are all 

valid cycles, possibly including duplicates. Afterwards, 
the protocol removes all duplicates within the k cycles.

MPC Cost. The complexity of Subprotocol  7 depends 
on the number of pairs |pairs| , cLen , and the number 
of possible cycles |allCycles| . It is most efficient in Y ,  
as the MUX gates are not independent, thus, creating a 
deep circuit of depth O(|allCycles| × |cycles| × cLen) . 
For removing duplicates and extracting the 
most robust k exchange circuits, we evaluate 
#cycles× (#unique+

∑#cycles
i=0 (cLen× (cLen− 1))   ) 

comparisons, #cycles × 
∑#cycles

i=0 ((cLen× (cLen− 1))) 
AND gates, #cycles × 

∑#cycles
i=0 (cLen− 1) OR gates, 

#cycles ×#unique× (1+ cLen)+ #cycles MUX gates. 
This step is most efficient with Y , as the circuit is very deep. 
Thus, the complete cycle evaluation routine is most efficient 
in Y , as each of our subroutines is most efficient in Y.

Solution evaluation
The fourth phase of SPIKE determines the final output, 
a set of disjoint exchange cycles exhibiting the highest 
probability for a successful transplantation. As a pair of 
donor and recipient can only be involved in one exchange 
cycle, the output sets must be vertex disjoint. Thus, the 
resulting set contains a combination of disjoint exchange 
cycles that greedily maximizes the number of exchanges 
with respect to the likelihood of the transplantation being 

Table 8  evaluateCycles(〈compG〉
Y : matrix) → vector of 

tuples
Table 9  evalSolution(〈filteredCycles〉Y : vector of tuples) → 
tuple(int, vector of vectors)
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successful. Note that we find a locally optimal solution, 
which might differ from the globally optimal solution12. 
The locally optimal solution is computed using a greedy 
algorithm. This last part of SPIKE is shown in Table 9.

Table  9 takes a secret shared vector of tuples 
filteredCycles with all valid unique cycles and their 
respective weights, the number of valid cycles |unique| , 
and the cycle length cLen as input. The number of pairs 
|pairs| is a public variable as before.

It checks each valid cycle cCycle whether it is disjoint 
from all other previously analyzed cycles in tempSet . 
The MPC subprotocol for testing the disjointness is 
given in Additional file  1:  S11 in the Appendix. If it is 
disjoint, cCycle is added to the set of potential solutions 
(Lines 16–22). Finally, the set with the highest weight is 
returned. Details of the corresponding MPC protocol can 
be found in Additional file 1: Table S12 in the Appendix.

MPC Cost. In total, we evaluate |unique|2 ADD 
gates, |unique|2 × cLen2 + |unique| comparisons, 
4 × |unique|2 + |unique| MUX , and |unique|2 × cLen2 
OR gates. The solution evaluation is most efficient in Y 
, as there are only few arithmetic operations and mostly 
comparisons.

Complexity assessment
In Table  10, the asymptotic complexities for the four 
phases of SPIKE are given.

The most important parameters of the first part, the 
Compatibility Matching shown in the first section of the 
table, are the number of HLA (cf. Background) |HLA| 
and the number of pairs |pairs| . In the default con-
figuration, |HLA| is 50. For the second phase, the domi-
nant parameter is the number of pairs |pairs| . In the 
third section of Table  10, the asymptotic complexity 
for the Cycle Evaluation is given. The relevant param-
eters here are the number of pairs |pairs| , the total num-
ber of cycles |allCycles| = |pairs|cLen , the number of 
existing cycles |cycles| , the number of unique cycles 
|unique| = ⌊

|cycles|
cLen ⌋ , the length of cycles cLen , and the 

factor k (i.e, the number of cycles with highest prob-
ability for successful transplantation), and the number of 
elements in cyclesSet, |cyclesSet| of Table 8. The most 
important parameters of the last phase, the Solution 
Evaluation, are the number of unique cycles |cycles| , and 
the length of cycles cLen.

Overall, the asymptotic complexity of SPIKE is:

The most most important parameters are the number of 
pairs |pairs| , the number of considered HLA |HLA| , the 
length of cycles cLen , and the number of unique cycles 
|cycles|.

O(|pairs|2 × |HLA| + cLen× |pairs|3 + |cycles|3 × cLen2).

Table 10  Complexity assessment

Phase Name Protocol Time complexity

Part 1 Compatibility matching Table 4 O(|HLA|)

Additional file 1: Table S1 O(|HLA|)

Additional file 1: Table S2 O(1)

Additional file 1: Table S4 O(1)

Additional file 1: Table S5 O(1)

Additional file 1: Table S6 O(1)

Table 5 O(|pairs|2 × |HLA|)

Part 2 Cycle computation Additional file 1: Table S7 O(|pairs|2)

Table 6 O(cLen× |pairs|3)

Part 3 Cycle evaluation Additional file 1: Table S10 O(1)

Table 7 O(|pairs|cLen)

Additional file 1: Table S8 O(|cyclesSet| × k × cLen)

Additional file 1: Table S9 O(|cycles|2)

Table 8 O(|pairs|cLen)

Part 4 Solution evaluation Additional file 1: Table S11 O(|cycles| × cLen)

Additional file 1: Table S12 O(cycles|2)

Table 9 O(|cycles|3 × cLen2)

12  Calculation of a global solution is provably a NP-hard problem [73].
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Results
All benchmarks were run on two servers equipped with 
Intel Core i9-7960X processors and 128 GB RAM. They 
are connected via 10Gb/s LAN with a median latency of 
1.3ms. All benchmarks are averaged over 10 runs.

Network setups
To provide meaningful performance benchmarks for a 
variety of real-world settings, we envision two network 
settings for the privacy-preserving KEP protocol that we 
describe in the following. In addition, for the compari-
son to the works of Breuer at al. [9, 10], we replicated 
their network setting with 1Gb/s bandwidth and 1ms 
of latency.

LAN
The high-bandwidth, low latency network scenario, here 
referred to as LAN, is the most relevant real-world sce-
nario for our application. In Germany, most (larger) 
medical institutions utilize high-bandwidth Internet 
connections. In the case of most university hospitals the 
German Research Network (“Deutsches Forschungsnetz” 
DFN13) provides dedicated, high bandwidth communi-
cation networks. Our LAN benchmarks are performed 
using a 10Gb/s connection with an average latency of 
1.3ms.

WAN
One benefit of a MPC-based privacy-preserving KEP 
solution could be reduced legal and regulatory data pro-
tection requirements, due to the high security level of 
the computation itself. This would allow smaller, local 
hospitals and medical practices to directly participate in 
the kidney exchange. Those institutions might be con-
nected via residential Internet access. For that scenario, 
we benchmarked SPIKE in a reduced-bandwidth, high 
latency network. A bandwidth restriction to 100Mb/s 
with added latency of 100ms was implemented using the 
tc14 command to simulate the WAN network. The high 
latency was chosen to take packet loss due to unreliable 
connections into account.

Performance benchmarks
Figure  3 shows the total runtime of SPIKE for vary-
ing numbers of pairs, both network settings, and cycle 
lengths L = 2 and L = 3 . The full results are in the Addi-
tional file 1: Tables S13–S20 in the Appendix.

During the evaluation of longer cycles ( L ≥ 3 ) RAM 
utilization proved itself to be a bottleneck for execu-
tion. For those scenarios, we benchmarked up to RAM 
exhaustion and extrapolated the runtimes according to 
the underlying power-law complexity. The extrapola-
tion is shown with a dashed line. The sudden increase in 
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Fig. 3  Overall runtime of SPIKE for cycle lengths L = 2 and L = 3 in both network scenarios. The dashed line shows the extrapolated power 
function for L = 3

13  https://​dfn.​de/ 14  https://​man7.​org/​linux/​man-​pages/​man8/​tc.8.​html

https://dfn.de/
https://man7.org/linux/man-pages/man8/tc.8.html
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runtime for L = 3 between 12 and 13 pairs occurs due to 
swapping.

As a general result, the expected polynomial relation-
ship between the number of pairs and the overall runtime 
can be observed, reflected in the power-law develop-
ment in the semilog graphs. For L = 2 , we achieve a total 
runtime of under 4min for 40 pairs, thus, demonstrat-
ing real-world applicable performance. The WAN set-
ting increases the overall runtime by less than an order 
of magnitude. Calculation times under 20min for 40 pairs 
in this setting render the participation feasible for phy-
sicians with residential Internet connections. To find a 
solution for larger cycle lengths, the exponent in the time 
complexity increases, increasing the runtimes signifi-
cantly. But even then 25 pairs are computable in around 
1 h. Extrapolated to data set sizes of 100 pairs, SPIKE is 

able to finish the calculation for cycle length L = 2 in just 
over 2 h15.

Figure 4 shows the runtimes of the individual parts of 
the algorithm ( L = 2 ). It is clearly visible, that the medi-
cal compatibility testing and graph creation, as well as the 
cycle computation quickly become negligible compared 
to the runtimes of cycle evaluation and the evaluation 
of the global solution. The duration of online and offline 
phases are in the same order of magnitude. By execut-
ing the phases separately, a 134% performance increase 
in the online execution can be achieved, compared to the 
accumulated runtime (cf. Fig. 3).
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Fig. 4  Runtime of SPIKE for L = 2 separated by algorithmic parts, protocol phase, and network setting

15  Based on a power function f (x) = a · xb + c fit with the parameters 
a = 0.003563, b = 4.673 and c = 1005 giving the runtime in milliseconds.
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Comparison to state‑of‑the‑art
In Fig.  5, we compare the runtime of our implementa-
tion for L = 2 and L = 3 with two implementations 
from Breuer et  al. [9, 10]. The first implementation [9] 
uses a Threshold Homomorphic Encryption scheme 
and enables to solve the privacy-preserving KEP with 
arbitrary cycle length, as in SPIKE. The maximum cycle 
size is set to L = 3 in their benchmarks. The second one 
[10] is based on three-party honest majority Shamir’s 
Secret Sharing using the MP-SPDZ framework and lim-
its its cycle length to L = 2 . The performance data for 
both implementations is taken from the referenced 
publications.

Our implementation, as well as the MP-SPDZ based 
state-of-the-art [10], shows a polynomial-bound power-
law graph. The Homomorphic Encryption-based 
implementation shows clearly an exponential runtime 
development, increasing rapidly. For 9 pairs, the maxi-
mum number of pairs benchmarked in the original 
publication [9], our implementation achieves a 29828× 
speedup. For L = 2 , our implementation performs 414× 
better than the MP-SPDZ-based implementation [10].

To improve the medical quality of the donor-recipient 
matching, we implemented additional matching criteria, 
as described in the “Background” section. As we have 
seen in Fig.  4, the performance impact of the compat-
ibility matching algorithm is negligible compared to the 
runtime of the remaining algorithmic parts. However, 
in Fig. 6 we compare the performance difference between 
the reduced set of medical matching criteria and the full 
set. For small number of pairs there is a transient phase, 

where the runtime of the full set rises faster. After this 
transient phase, both curves assume nearly the same 
slope. In the plots for the WAN network model, the 
latency-induced “baseline” runtime can be observed.

A comparison of communication size between SPIKE 
and [9, 10] for cycle lengths L = 3 and L = 2 is included 
in the appendix in Additional file 1: Tables S16 and S17. 
For L = 2 and 40 pairs, SPIKE requires 40× less commu-
nication than [10]. For L = 3 and 9 pairs (the maximum 
number of pairs evaluated by [9]), SPIKE require 104.1× 
less communication than [9].

Discussion
Security guarantees
Our privacy-preserving kidney exchange protocol, 
SPIKE, is implemented using the ABY [61] MPC frame-
work, guaranteeing computational semi-honest secu-
rity in a two-party setting. An adversary A can corrupt 
at most one of the two computing parties. A is assumed 
to follow the protocol specification and gets access to 
all messages of the corrupted party (sent and received), 
while trying to extract private information. This security 
model is standard in the privacy research community and 
protects against two security concerns: (1) inadvertent 
disclosure of sensitive data and (2) full data disclosure 
in case of a breach in one of the parties (in comparison 
to a centralized computation). The latter concern is a 
detriment of all centralized or trusted third party based 
approaches. This coupled with complex legal barriers 
are the driving forces behind the German Medical Infor-
matics Initiative’s16,17 decision to promote decentralized 
data holding and processing. In the outsourcing scenario 
with two computation parties and an arbitrary number of 
data sources, both computation parties must not collude. 
However, an arbitrary number of data sources is allowed 
to collude or behave maliciously, without breaking the 
security guarantees. Note, that MPC only gives privacy 
guarantees for the computation, whereas maliciously 
formed inputs might lead to incorrect outputs. For a 
“holistic” data privacy perspective, please see [74].

While this adversarial model is not sufficient for all 
applications, e.g., computations with parties in different 
jurisdictions [62], it suits our setting, namely the joint 
computation among large, intra-national or intra-Euro-
pean medical institutions. Both semi-honest behaviour, 
as well as the non-collusion assumption, can be enforced 
by legal and regulatory means and build the predominant 
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16  https://​www.​mediz​ininf​ormat​ik-​initi​ative.​de/
17  The German Medical Informatics Initiative is the federal research initia-
tive to enable medical data sharing and secondary use between all university 
medical centers in Germany.

https://www.medizininformatik-initiative.de/
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basis for data protection concepts in (German) federated 
medical research networks.

Furthermore, several real-world industry projects dem-
onstrate that the non-collusion assumption of MPC is 
practical. For example, Mozilla Firefox starts to deploy 
MPC-based privacy-preserving collection for Telemetry 
data [75, 76] and Bosch is developing a MPC platform 
for smart homes and anonymous driving [77, 78]. Many 
more examples can be found in the MPC alliance18 which 
is a consortium of industry peers working on MPC. Even 
in the German medical informatics realm employed 
MPC solutions are able to work in a (non-colluding) two-
party setting [79].

For a full description of the cryptographic assumptions 
and guarantees inherited by the primitives used in ABY, 

we refer to the respective section in the Appendix and 
the original ABY publication [61].

While all data, including the association to the various 
data sources are considered to be private data and are 
protected by the aforementioned guarantees, we consider 
the number of donor-recipient pairs, as well as the maxi-
mum number of cycles in the graph, as public informa-
tion. This choice has important performance impacts, 
however, if the numbers of pairs are to be considered pri-
vate as well, the real numbers can be hidden by padding 
each input array to a fixed length with dummy entries.

Real‑world deployability
This work introduces a protocol for finding a solution 
for the kidney exchange problem in a privacy-preserving 
fashion. As demonstrated in the performance bench-
marks and the security discussion, it meets all initially 
determined requirements for a secure privacy-preserving 
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18  https://​www.​mpcal​liance.​org/
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solution to the KEP w.r.t privacy, efficiency, decentraliza-
tion, and adaptability for medical experts.

Concretely, it enables real-world periodic batch-pro-
cessing for a significantly larger number of donor-recip-
ient pairs and a practical cycle length of L = 2 and L = 3 
compared to previous work [9, 10], even in residential 
network settings. This allows even residential nephrology 
experts to participate in kidney exchanges, hence, pro-
viding a better medical care for their patients. However, 
SPIKE requires a significant amount of communication, 
thus, it is not yet ready for the usage of metered or cell 
data connections in a two-party computation protocol, 
which might be an interesting direction for future work. 
In contrast, SPIKE is already practical for an outsourcing 
scenario, where mobile clients secret share their data of 
100 donor-recipient pairs among two non-colluding serv-
ers or cloud entities. But we also point out that larger sets 
of, e.g., 300 pairs are not practical yet due to the, although 
improved, but still limited scalability of our protocol. To 
run SPIKE on even larger datasets, two strategies are 
possible: (1) reducing the interval of calculation, hence, 
effectively reducing the participating pairs, or (2) parti-
tioning on less sensitive features, such as “blood type” 
and running the computation on smaller data chunks in 
parallel. The first approach, however, results in a smaller 
set of pairs considered in the matching while the second 
change likely increases the number of mismatches that 
will not pass the final check by medical experts.

By using state-of-the-art provably secure cryptographic 
techniques, the privacy of sensitive medical informa-
tion of donors and recipients is fully protected by clearly 
defined hardness assumptions of mathematical prob-
lems. Furthermore, by pursuing a completely decentral-
ized approach without a trusted third party, the risk of 
data leakages in case of a data security incident at one 
participating facility is significantly reduced, compared 
to a breach in a central computation node or repository. 
This is especially important for quasi-identifying medical 
fields19. Often times, quasi-identifiers are not anonymiz-
able, as they loose too much utility in the process. 
Hence, secure decentral storage and processing of non-
anonymized data is increasingly important especially 
considering current efforts of simplified international 
data usage, such as the proposed European Health Data 
Space (EHDS) [80].

Allowing medical professionals to choose many param-
eters of the algorithm to adapt to new evidence-based 
guidelines or specific situational constraints ensures 

flexibility and maintainability for future application. 
The compatibility matching algorithm is configurable 
by choosing the considered HLA, as well as the weights 
of the chosen medical factors. This explicitly allows the 
deactivation of chosen comparisons. Due to the clear 
architecture boundaries in the open source imple-
mentation, additional checks and criteria can easily be 
included. Many hierarchically ordered optimization goals 
employed in current KEP solutions [7] can be included in 
SPIKE via a more involved weight calculation. One open 
research question is to quantify a possible transplanta-
tion success rate difference between globally optimal KEP 
solvers and our locally optimal solution. We argue, that 
the medical uncertainty, that can not easily be evaluated 
via algorithms, e.g., number and positions of renal arter-
ies [81], might be larger than the uncertainty introduced 
by our local solution. To answer this highly relevant 
question a cross-examination of followed-up real world 
kidney-exchanges would be required and is left as future 
work.

While meeting all formal requirements, SPIKE falls 
short in two aspects: First, we observe a high memory 
consumption during the computation. This is expected, 
as this protocol was optimized for runtime performance. 
The reason is that hardware costs are typically not a 
prohibiting factor for meeting data protection regula-
tions. Note that we use only standard hardware for our 
benchmarks. For a real-world deployment, it is realistic 
to assume a deployment on servers with significantly 
higher capacity. Thus, we argue that this aspect does not 
jeopardize the adoption in the intended use cases. How-
ever, improvements in this regard are still desirable. For 
example, developing internal batch processing of graph 
clusters and the employment of space-optimized data 
structures might be worthwhile opportunities for further 
research. An interesting direction for future work can 
be to explore the compatibility with recent advances in 
MPC-based graph analysis for breadth-first search [82] 
scaling linearly in the number of vertices. Second, the 
developed software components are research artifacts 
and fulfil a prototypical function. For real-world adoption 
the implementation of widespread medical standards, 
e.g., HL7 FHIR R420, audit- and authentication capabili-
ties, integration in medical research pipelines, creation of 
deployment packages, and lastly full (legal) documenta-
tion must be pursued. This is, however, not in the scope 
of this work.

20  https://​www.​hl7.​org/​fhir/​R4/

19  Quasi-Identifier are groups of fields, that do not include the traditional 
fields of identifying data, such as names and birth dates. Nevertheless, the 
combination of fields in a quasi-identifier is rare enough to identify individual 
patients.

https://www.hl7.org/fhir/R4/
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Conclusion
In this work, we introduced SPIKE, the currently most 
efficient privacy-preserving Kidney Exchange Problem 
(KEP) protocol. Using provably secure cryptographic 
techniques, SPIKE provides highest data protection guar-
antees for patients’ sensitive medical data without relying 
on a trusted third party, while allowing a decentralized 
computation of a locally optimal solution to the kidney 
exchange problem. In the absence of privacy-preserving 
Integer Linear Programming (ILP) solving algorithms, we 
implement approximate, adaptable medical compatibility 
matching algorithms, giving medical professionals the 
flexibility to accommodate updated guidelines and the 
specific situational constraints.

Our optimized protocols achieve a 30000× and 400× 
speedup compared to the current state-of-the-art [9, 10] 
for cycle lengths of L = 3 and L = 2 , respectively. With 
a total runtime of under 4min for 40 pairs at L = 2 and 
around 1 h for 25 pairs at L = 3 , we demonstrate suffi-
cient performance for deploying it for some real-world 
applications.

However, we note that kidney exchange programs 
typically consider up to 300 pairs per run [83] which 
is not yet feasible for SPIKE since our protocol does 
not scale sufficiently well in the number of participat-
ing donor-recipient pairs leading to unsatisfactory 
runtimes beyond 170 pairs (for L = 2 ). Additionally, 
memory usage is another aspect that needs more future 
work. To summarize, SPIKE is not yet a routine solution 
ready for deployment for large scale kidney exchange 
programs, however, it offers the most efficient state-of-
the-art solution to the problem. In this sense, it makes 
an important contribution towards moving into the 
direction of practical large-scale privacy-preserving 
solutions.

We also hope that the advancements in privacy protec-
tion and application performance will already allow more 
medical facilities to participate in kidney exchanges on a 
smaller scale, thus increasing the recipients’ chances for 
timely and potentially live-saving surgery.
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