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Abstract 

Background:  Urinary incontinence (UI) is the inability to completely control the process of releasing urine. UI pre-
sents a social, medical, and mental issue with financial consequences.

Objective:  This paper proposes a framework based on machine learning for predicting urination time, which can 
benefit people with various degrees of UI.

Method:  A total of 850 data points were self-recorded by 51 participants to investigate how different factors impact 
urination time. The participants were instructed to record input data (such as the time of consumption and the 
number of drinks) and output data (i.e., the time the individual urinated). Other factors, such as age and BMI, were also 
considered. The study was conducted in two phases: (1) data was prepared for modeling, including missing values, 
data encoding, and scaling; and (2) a classification model was designed with four output classes of the next urina-
tion time: <  = 30 min, 31–60 min, 61–90 min, > 90 min. The model was built in two steps: (1) feature selection and 
(2) model training and testing. Feature selection methods such as lasso regression, decision tree, random forest, and 
chi-square were used to select the best features, which were then used to train an extreme gradient boosting (XGB) 
algorithm model to predict the class of the next urination time.

Result:  The feature selection steps resulted in nine features considered the most important features affecting UI. The 
accuracy, precision, recall, and F1 score of the XGB predictive model are 0.70, 0.73, 0.70, and 0.71, respectively.

Conclusion:  This research is the first step in developing a machine learning model to predict when a person will 
need to urinate. A precise predictive instrument can enable healthcare providers and caregivers to assist people with 
various forms of UI in reliable, prompted voiding. The insights from this predictive model can allow future apps to go 
beyond current UI-related apps by predicting the time of urination using the most relevant factors that impact void-
ing frequency.
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Introduction
Urinary incontinence (UI) is the inability to control the 
process of releasing urine. There are five forms of UI: (1) 
stress type, which describes the leaking of urine during 

intensive pelvic activities, such as coughing or sneez-
ing; (2) urge type, which involves sudden urges followed 
by involuntary urination; (3) functional type, related 
to physical or mental impairments that mean using the 
toilet requires assistance; (4) overflow type, or the ina-
bility to completely void one’s bladder; and (5) mixed 
type, which is a combination of types that makes hold-
ing one’s bladder harder or impossible to control [1, 2]. 
Studies have shown that about 25% of the U.S. popula-
tion suffers from urinary incontinence [1, 2]. More than 
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25 million people in the United States experience bladder 
leakage every day, and around 33 million have overactive 
bladders, which increases the risk of UI [1, 3]. The actual 
number could be larger because adults may not report 
the issue or seek treatment [1, 3].

UI is a socially embarrassing and psychologically dis-
tressing disorder [4]. The fear of wetting oneself in pub-
lic can influence the ability of a UI patient to interact in 
social and professional situations. As a result, UI can 
interfere with a patient’s work, schooling, social life, and 
family stability [4]. UI also presents immediate safety and 
medical concerns. The lack of certainty about when the 
next urination will occur can increase the risk of injuries 
in rushing to the bathroom [5]. Additionally, aging people 
have a higher likelihood of experiencing adverse events 
like falling while going to the restroom; they also have a 
higher chance of developing harmful urinary conditions, 
such as urinary tract infections or voiding dysfunction 
[4]. Due to the mental, social, and medical impacts of 
uncontrolled urination, there is a need to develop a tool 
that can help predict the time an individual is expected to 
urinate [6–8].

Predictive models are crucial in optimizing the pro-
cess of prompted voiding for individuals and caregivers 
of individuals with UI [6–8]. Prompted voiding involves 
a person with a compromising urinary or bladder condi-
tion being assisted to the bathroom in anticipation of a 
full bladder [4]. Without a predictive tool, it is imprac-
tical and nearly impossible to provide reliable prompted 
voiding assistance for someone with a form of UI [6–8]. 
Machine learning (ML) techniques can improve urination 
prediction for people with UI by bypassing physics-based 
modeling and formulating complex relationships related 
to intake and output frequency in a data-driven manner 
[6–8]. ML can also allow future apps to go beyond cur-
rent UI-related apps by predicting when someone will 
need to urinate and determining which factors are essen-
tial to predict the next urination. However, proper feature 
selection and ML functions must be determined to pre-
dict urination.

This paper proposes a comprehensive framework for 
developing a ML model to predict the next urination 
times for individuals with UI. A total of 51 individuals 
with UI conditions were recruited and monitored for five 
days. Different data points were collected from the sub-
jects, such as the amount of liquid intake, and the types 
of drinks consumed. The time a subject needed to uri-
nate after doing certain activities or drinking was also 
recorded. Next, the data were modeled to build a pre-
dictive model, which was conducted in two phases: data 
preprocessing and data modeling. Different data preproc-
essing steps were conducted, including feature encoding, 
scaling, and missing data treatment. The output feature, 

which is the time the individual urinated, was converted 
into three categories: short, medium, and long. The mod-
eling phase involved both training and testing an XGB 
model. The model was evaluated using five performance 
measures: accuracy, recall, precision, and F1 score. The 
contributions of this study are as follows:

•	 This is the first study that proposes a model to miti-
gate UI based on predictive analytics.

•	 This study determines the most important factors 
associated with urination prediction.

•	 An interpretation of the factors that affect UI is pro-
vided.

•	 The proposed model is practical and can be turned 
into a smartphone application that can help individu-
als with UI conditions.

Literature review
Different studies have been conducted to investigate the 
factors associated with UI and how they can be used to 
assist individuals with UI. Asklund et  al. [9] conducted a 
study to evaluate a treatment of stress type UI (SUI). They 
conducted a randomized controlled trial comprising over 
100 Swedish female subjects with SUI. The subjects used 
a mobile app that included pelvic floor muscle training 
(PFMT) exercises to treat SUI. Half (50%) of the women 
used the app, while the rest did not. The results showed 
that the women who had access to the PFMT app had 
lower symptom severity than the women without the app. 
Nyström et al. [10] provided a follow-up study that used the 
data published by Asklund et al. [9] to determine the factors 
associated with successful treatment (i.e., lower SUI symp-
tom severity). Nyström et al. [10] suggested that monitor-
ing the weight control of an individual and PFMT exercises 
helped to mitigate the effect of SUI. However, their study 
did not provide a comprehensive approach when evaluat-
ing which foods affected urination the most [9, 10].

Nowadays, systems store large datasets that provide 
insightful information when using data analytics meth-
ods. ML can detect hidden insights and trends in large 
amounts of data helping to predict and classify certain 
events. This capability is helpful in healthcare when 
diagnosing heterogeneous data, especially for less expe-
rienced physicians [11]. Thus, these techniques can sup-
port physician to improve their accuracy and efficiency 
in prognosis, diagnosis, treatment, and clinical workflows 
[12]. For example, these techniques have been used to 
diagnose heart and diabetic diseases, breast cancer, and 
thyroid disorders, offering accuracies above 75% [13]. In 
the context of this research, there are no conventional 
methods to predict the time a person needs to urinate. 
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Moreover, finding insights without data analytics tech-
niques could result in unsuccessful results due to data 
structure. Thus, ML can provide this information to help 
address undesirable events for people with UI.

Multiple mobile applications have been developed to 
mitigate UI problems. The Sit or Squat application was 
developed to help users find the nearest public restroom 
anywhere in the United States [14, 15]. BladderPal and 
UroBladderDiary mobile applications help track urina-
tion and consumption [14–16]. Kegel Trainer PFM and 
Tät help to encourage and instruct users to conduct 
PFMT [9, 10, 17], and Tät provides additional resources 
aside from PFMT instructions, such as remedies to 
help address UI symptoms [18]. While these apps aid 
in addressing UI, none directly address the uncertainty 
associated with the likelihood that an individual, particu-
larly one with a form of UI, will have access to a restroom 
when they need one after drinking or performing physi-
cal activity. The literature on current UI and urination 
apps suggests an increasing need for time management 
technology to help people with UI anticipate when they 
will need to urinate [9, 10, 17–21]. Because of the indi-
vidual factors related to consumption and the presence of 
comorbidities that influence urination, predictive mod-
eling is necessary to determine the likelihood that urina-
tion will occur.

Fechner et al. [6] proposed a prediction model to deter-
mine bladder filling levels based on user-tracked fluid 
intake. The authors used a Gaussian curve-fitting algo-
rithm to predict the filling levels of males without bladder 
conditions between the ages of 20 and 30. Taku et al. [7] 
used a mathematical model and linear regression analy-
sis to predict bladder volume in an experimental setting. 
Tantin et  al. [22] used linear discriminant analysis to 
forecast bladder voiding. The authors used a model based 
on linear discriminant analysis in lab rats. Raw pressure 
curves and their corresponding power bands were used 
as inputs for a linear discriminant analysis classifier.

One of the underlying issues among these studies is 
their lack of examination of real-world environmen-
tal factors that influence human factors in urination. 
Fechner et  al. [6] provided an experimental design that 
restricted the consumption of alcoholic substances. Stud-
ies suggest that certain products, such as alcohol, caf-
feinated beverages, carbonated drinks, and citrus drinks, 
are bladder irritants and diuretics, which increase the 
urgency of urination and thereby worsen UI conditions 
[23]. As alcohol is found to influence bladder control and 
the time it takes to fill, a prediction model that does not 
account for alcohol consumption has little use outside of 
clinical testing. A design that considers the characteris-
tics of liquids consumed is needed to improve the accu-
racy of future prediction models and better understand 

the extent to which the type of liquid consumed impacts 
urination [6, 24].

One of the disadvantages of prediction models in the 
literature is that the data used for building models are 
limited. For example, the models proposed by Tantin 
et al. [22] did not examine human bladder voiding. Fech-
ner et  al.’s [6] prediction model is based on data that 
only included males between 20 and 30  years old. The 
purposes of these studies were to address and treat the 
effects that UI and bladder dysfunction have on the abil-
ity of an individual to control their urination. However, 
the data used in previous studies are insufficient to prop-
erly determine the most important factors that affect uri-
nation for the broader population.

Research framework
The research framework of this study consists of two 
phases (see Fig.  1). Phase I began after data collection 
and involved multiple data preprocessing steps applied 
to prepare the data for modeling. Phase II included the 
modeling steps, such as feature selection, model training, 
and testing. Four performance measures were used to 
evaluate the proposed predictive model: accuracy, preci-
sion, recall, and F1 score.

Data collection and feature generation
This study was approved by the Ethics Committee of 
Auburn University in accordance with the Declaration of 
Helsinki (IRB protocol reference: 17-527 EP 1802). Par-
ticipants were notified about the aims of the project and 
the data collection process and time. Consent forms were 
signed by the participants or by their guardians. Par-
ticipants were notified that no identifiable information 
would be collected and compensated for their time ($20).

We collected self-recorded information that might 
impact urination time from 51 participants over five days. 
The participants were recruited through flyers in medi-
cal clinics in Auburn, AL using advertisement boards in 
town and on-campus and social media platforms. The 
sample collected reflects a diverse group of people from 
different demographic groups with diverse diets and life-
styles. Table 1 shows the demographic information of the 
participants.

Each day, the participants recorded two types of infor-
mation related to drinking and urination: input and out-
put. The input information consisted of liquid volume, 
type of drink, number of drinks, and time of consump-
tion. The output data consisted of the urination time 
(e.g., when urination occurred; Table  2). Other features 
were defined and extracted from the self-recorded infor-
mation. For instance, Fig. 2 shows the event timeline of a 
participant for one day with three drinks and five urina-
tions. We can define and extract (1) inter-release time ti 
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Fig. 1  Research framework

Table 1  Demographic information of participants by age group

Gender Age group No Age (years) Weight (kg) Height (m) BMI ( kg
m2 )

Average SD Average SD Average SD Average SD

Male Children 2 7.5 3.5 26.0 7.1 1.5 0.2 11.5 0.1

Youth 13 19.2 1.7 85.2 13.2 1.8 0.2 26.0 3.6

Adults 12 34.2 10.3 76.1 11.8 1.7 0.1 26.1 2.4

Seniors 1 71.0 n/a 55.0 n/a 1.6 n/a 21.5 n/a

Female Children 5 7.6 1.3 25.3 1.6 1.5 0.1 11.9 0.8

Youth 1 17.0 n/a 99.0 n/a 1.6 n/a 37.3 n/a

Adults 16 43.5 12.1 77.5 16.4 1.7 0.1 28.2 4.3

Seniors 1 70.0 n/a 80.0 n/a 1.6 n/a 31.3 n/a

Total 51 30.7 17.3 72.0 23.2 1.7 0.1 25.0 6.5

Table 2  Potential features from participants’ self-records for the machine learning model

Input data Type of drinks Demographic data Number of drinks Output data

Liquid volume Alcohol Age Exercise level Urination time

Number of drinks Coffee Youth/adult/senior Exercise per week

Time of consumption Juice Gender

Milk Weight

Soda Height

Water BMI
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as the time between two urination events; and (2) cumu-
lative volume, which is the sum of all drink volumes dur-
ing the inter-release time. Demographic data, such as age, 
gender, weight, height, employment status, exercise level, 
alcohol consumption, smoking habits, allergies, preexist-
ing conditions, medications, and eating habits, were also 
collected. The recorded information from the partici-
pants generated about 900 data points.

The inter-release time is related to the next urination 
time, so it is the target variable that needs to be predicted 
to mitigate UI. Since inter-release time is a numerical 
variable and we have only 900 data points, it is difficult 
to develop a model that can predict the exact time of uri-
nation. Therefore, we converted the output feature (e.g., 
inter-release time) into four classes: Class 0: <  = 30 min, 
Class 1: 31–60  min, Class 2: 61–90  min, and Class 
3: > 90 min. Then, a classification model was developed to 
predict the four classes. Whenever the proposed model is 
run, it can help the subject know when they will need to 
urinate within one of the four classes.

Data preprocessing
The initial dataset from 51 participants had around 955 
records and 28 features. The dataset included several 
outliers that were misspelled in the features, such as the 
number of drinks and liquid volume. We removed the 
records with values above the 95th percentile of these 
features. Additionally, data records with unusually large 
values in the target variable (e.g., inter-release time) were 
deleted with a threshold of 300 min (5 h). Target variable 
larger than 600 min (10 h) implied a person did not uri-
nate during the day. Lastly, data records containing a tar-
get variable with 0 were removed.

Moreover, since the resulting data had several miss-
ing values (see Table 3), three steps were implemented 
to handle them. In the first step, the feature “Exercise 
per week” was dropped since it had a high percentage 
of missing values. Second, k-nearest neighbor (KNN) 
was utilized as an imputation tool to fill in the missing 
data for only the numerical features. Data imputation 
was performed to avoid removing valuable information 
since the dataset was not large. The KNN imputer is 
used to determine the number of k neighbors based on 
Euclidean distances, and the missing values are filled 
with the average of the k neighbors. After filling in the 

missing values of the numerical features, the rows with 
missing values among the categorical features were 
removed. Moreover, data scaling was also conducted. 
The resulting dataset contains 925 entries and 25 fea-
tures. Figure 3 shows the output classes after removing 
the missing data. Notice that the data are significantly 
imbalanced: Class 4 has the largest number of observa-
tions, while Class 1 has the smallest number. In order 
to mitigate imbalance issues, the training set was over-
sampled using the Synthetic Minority Oversampling 
Technique (SMOTE) oversampling method after split-
ting the dataset into training and testing sets.

Fig. 2  An illustration of an events timeline for a participant in a day

Table 3  Percentage of missing values

Features No. of missing values % of 
missing 
values

Exercise per week 150 15.7

Volume 35 3.7

Employment 31 3.2

Vol Inp 9 0.9

Weight 9 0.9

Height 9 0.9

BMI 9 0.9

Fig. 3  The distribution data in four output classes, showing 
imbalances in the data
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Model development
Model development involves two main steps: feature 
selection and model training and testing. Two main 
search methods are used to select the most important 
features: recursive feature elimination (RFE) and select 
from model (SFM). The RFE and SFM methods are 
greedy search methods that select features recursively. 
In the SFM model, a threshold is set, and then any fea-
ture below the threshold is removed from the model. 
In the RFE, a model starts with all features and keeps 
removing less important features. Both SFM and RFE 
are conducted with a ML algorithm. In this study, the 
two methods are implemented using two algorithms: 
decision tree (DT) and Random Forest (RF). DT is a 
non-parametric supervised learning method used for 
classification [25], regression [26], and feature selec-
tion [27]. RF is like DT except that many trees are con-
ducted, then a class with major votes is considered as 
the correct class. The feature importance in both DT 
and RF are decided based on the Gini index (Eq. 1) [28], 
where pj is the percentage of the samples labeled with 
class j in the sample set D.

A data group can result from the DT and SFM search 
method with the Gini index. This applies to the other 
data groups that resulted from RF and RFE, and DT 
and RFE. The features obtained from the feature selec-
tion step are used to build a classification model based 
on XGB, a gradient boosting machine method. XGB is 
ensemble learning that can be used for classification [29], 
regression [30], and feature selection [31]. This algorithm 
builds learners in parallel and trains the models based 
on residual errors from a previous learner. In XGB, trees 
are generated iteratively, in which information from a 
previous tree is used to enhance the quality of the cur-
rent tree. A higher weight is given to the misclassified 
instances from previous trees. Hence, XGB trains weak 
learners. XGB has many parameters, including learning 
rate, maximum depth, number of estimators, and regu-
larization parameters. To fine-tune XGB parameters, the 
grid search (GS) approach is used. In GS, different val-
ues for XGB’s parameters are set and then XGB is trained 
and tested based on the combination of all values of the 
parameters. Four performance measures are used to eval-
uate the XGB model: accuracy, precision, recall, and F1 
score. To avoid overfitting, the data is split into training 
and testing sets. The training set is used to train the XGB 
model using cross-validation. The performance of the 
cross-validation is compared with the performance of the 
model on the testing set.

(1)Gini(D) = 1−

n

j=1

p2j

Experimental results
The results of this section were performed using the 
libraries XGBoost and scikit-learn coded in Python 3.8. 
Seven data groups result from the feature selection step. 
Each data group is used to train and test prediction mod-
els based on XGB. Also, all features are used to build a 
model. Table 4 presents the feature selection results. To 
perform the feature selection, we used SFM and RFE 
with Lasso regression (Lasso_SFM, Lasso_RFE), DT 
(DT_SFM, DT_RFE), and RF (RF_SFM, RF_RFE). Chi-
square with kbest selection (chi_SKB) was also used. The 
check mark means that a feature selection step selects a 
feature. Models that use RFE selected more features as 
well as chi_SKB. Each data group is split into training and 
testing groups. K-fold validation is used on the training 
test to check over-fitting. Regarding accuracy, precision, 
recall, and F1 score, XGB with “chi_SKB” and “RF_RFE” 
performed the best with values above 70%. The valida-
tion accuracy is within 10% of the testing accuracy (77%), 
which means that our proposed XHB model did not have 
overfitting. Thus, these results suggest that the proposed 
model can be considered an acceptable prediction model 
for urination time predictions.

We analyzed the effect of the selected features on the 
model outcome using the Shapley additive explanations 
(SHAP) value. SHAP is an approach based on game 
theory to explain the impact of a feature’s value on the 
response variable being either positive or negative [32]. 
Figure 4a shows the effects of the model features selected 
for Class 0. The volume had the highest impact on the 
next urination time, and alcohol had the lowest effect on 
this class. The volume feature is inversely proportional 
to Class 0. Thus, a small volume increases the chances 
of being classified as Class 0. The volume feature must 
be analyzed along with age. It is known that a person 
with low age, i.e., children, can hold urination in less 
time. Moreover, it is known that they consume less vol-
ume. Thus, people of low age are assigned to this class. 
The above is confirmed with the BMI. A higher BMI 
decreases the chance of being classified as Class 0.

Figure  4b shows the effects of the model features 
selected in Class 1. The results for Class 1 suggest that 
the number of drinks had the highest impact on the 
response variable, followed by alcohol and BMI. When 
drinking fewer drinks that include alcohol, the subject is 
likely to be assigned as Class 1. The above is confirmed 
with the feature age. Aging increases the chances of being 
classified as Class 1. It is known that since alcohol acts as 
a diuretic drink, fewer alcohol drinks decrease the time 
between urination. Moreover, adults are generally people 
that drink alcohol.

Figure  4c shows the effects of the model features 
selected in Class 2. The results for Class 2 suggest 
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that age affects the response variable positively. Aging 
increases the chances of being classified in this class. 
As in the previous cases, people of more age can hold 
longer. Thus, it is very likely to be assigned to this class. 
Even though the variable water has a negative impact 

on this class, it is known that water does not act as a 
diuretic as other drinks such as coffee or alcohol.

Figure  4d shows the effects of the model features 
selected in Class 3. The results for Class 3 suggest that 
water had the highest positive impact, with the most 

Table 4  Feature selection results

Feature Lasso_SFM DT_SFM RF_SFM chi_SKB DT_RFE RF_RFE Lasso_RFE Total

Water √ √ √ √ √ 5

Volume √ √ √ √ √ 5

VolInp-V of 1st drink √ √ √ √ √ 5

TimeInp-1st output and 
2st drink/time

√ √ √ √ √ 5

BMI √ √ √ √ √ 5

Age √ √ √ √ √ 5

Alcohol √ √ √ √ 4

Tea √ √ √ 3

Ndrinks √ √ √ 3

Alcoholic √ √ √ 3

Soda √ √ 2

Smoking √ √ 2

Level_exercise √ √ 2

Juice √ √ 2

Gender √ √ 2

Employment √ √ 2

Coffee √ √ 2

Milk √ 1

Fig. 4  SHAP values for all four classes
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significant feature value among the selected characteris-
tics. The number of drinks was the second most impor-
tant determinant and positively impacted the model 
output. Water intake and the number of drinks have 
the greatest impact in increasing the chance of being 
assigned to this class. Aging is also found to increase the 
chance of being assigned to this class. People who drink 
more extend their consumption over a long time and, as a 
result, urinate more frequently.

Comparison of methods
We compared the XGB model with all combinations 
of models and feature selection methods to other ML 
algorithms such as Naïve Bayes (NB), Support Vec-
tor Machine (SVM), KNN, and Neural Network (NN). 
Table  5 shows the precision, recall, f1-score, and accu-
racy results of each ML model with each feature selection 
step. Moreover, we performed experiments consider-
ing all features (X_all). Notice that the values are filled 
with colors, where a green color means a higher value, 
and red color means a low value. XGB performs the best 
compared to other algorithms when observing the per-
formance metrics such as recall, f1-score, and accuracy. 
Even though KNN shows 0.76 precision, the rest of the 
metrics show values below 0.4. Table 5 also supports that 
considering all the features and the chi-square method 
provided the best results.

In the context of this problem, it is essential to decrease 
the rate of mistakenly classifying an individual in higher 
classes when they belong to the lower class. For instance, 
classify a person as class 3 when they belong to class 0. 
Making that error could result in an embarrassing and 
disturbing event for the patient and their caregiver.

Conclusion, limitations, and future work
This study developed a ML model based on XGB to pre-
dict urination times and determine important factors 
in the prediction model. It is modeled as a classifica-
tion problem. This model could contribute to mitigating 
long-lasting UI problems in a data-driven manner. Using 
several methods for feature selection and ML, this study 
predicted the next urination time as a classification prob-
lem, reaching 70% accuracy. The features selected for the 
four classes suggest that volume and age were the most 
significant within the first 30  min of consuming liquids 
as negative impacts on urination. However, as more time 
persists, factors such as the number of drinks, and the 
volume of alcohol and water consumed become more 
useful as determinants in predicting the next urina-
tion. This study’s findings suggest that factors such as a 
child’s bladder size or an older adult’s UI can significantly 
impact the prediction of the next urination, which is con-
sistent with previous research [6, 7, 24]. These results are 

in line with the literature finding that age can affect how 
much and how long a person can hold their urine [4, 6, 7, 
23, 24].

This study is the first step in developing a forecast 
model using a feature selection algorithm and ML 
approaches to predict a person’s need to urinate. There 
were notable limitations to this research design that 

Table 5  Testing and validation results for different models

Model Feature selection Precision Recall F1-score Accuracy

NB Lasso_SFM 0.68 0.52 0.59 0.52

DT_SFM 0.63 0.64 0.63 0.64

RF_SFM 0.63 0.64 0.63 0.64

chi_SKB 0.67 0.63 0.64 0.63

DT_RFE 0.67 0.65 0.65 0.65

RF_RFE 0.66 0.65 0.65 0.65

Lasso_RFE 0.66 0.61 0.63 0.61

X_all 0.69 0.63 0.65 0.63

SVM Lasso_SFM 0.68 0.55 0.60 0.55

DT_SFM 0.65 0.40 0.48 0.40

RF_SFM 0.67 0.54 0.59 0.54

chi_SKB 0.66 0.45 0.52 0.45

DT_RFE 0.67 0.56 0.61 0.56

RF_RFE 0.66 0.51 0.57 0.51

Lasso_RFE 0.67 0.56 0.61 0.56

X_all 0.66 0.54 0.58 0.54

KNN Lasso_SFM 0.76 0.29 0.38 0.29

DT_SFM 0.65 0.54 0.58 0.54

RF_SFM 0.65 0.53 0.58 0.53

chi_SKB 0.65 0.54 0.58 0.54

DT_RFE 0.67 0.57 0.61 0.57

RF_RFE 0.66 0.55 0.59 0.55

Lasso_RFE 0.60 0.63 0.61 0.63

X_all 0.65 0.51 0.56 0.51

NN Lasso_SFM 0.68 0.51 0.57 0.51

DT_SFM 0.63 0.64 0.63 0.64

RF_SFM 0.63 0.64 0.63 0.64

chi_SKB 0.63 0.64 0.63 0.64

DT_RFE 0.63 0.64 0.63 0.64

RF_RFE 0.63 0.64 0.63 0.64

Lasso_RFE 0.65 0.60 0.62 0.60

X_all 0.63 0.64 0.63 0.64

XGB Lasso_SFM 0.71 0.67 0.68 0.67

DT_SFM 0.68 0.65 0.66 0.65

RF_SFM 0.68 0.67 0.67 0.67

chi_SKB 0.70 0.70 0.70 0.70

DT_RFE 0.67 0.71 0.69 0.71

RF_RFE 0.69 0.71 0.70 0.71

Lasso_RFE 0.66 0.65 0.65 0.65

X_all 0.70 0.70 0.70 0.70
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should be addressed in future studies. The current 
research design could have benefited from a larger sam-
ple, as more training data improves the overall accuracy 
of a ML predictive model. For example, although the 
number of participants is similar for each gender (28 
males and 23 females), there is only one youth female 
participant in this study, which can affect the applica-
bility of the outcome study to this demographic sector. 
Moreover, this study was performed in a specific area in 
Alabama, United States. Therefore, we acknowledge that 
the applicability of the ML model may misinterpret data 
from other regions from people that do not reside in the 
region of the study. Nevertheless, this can be fixed by col-
lecting more data from other regions to generate a more 
robust model.

Additionally, replications of this study will likely lead 
to errors related to the accuracy of self-reported con-
sumption and bladder voiding data. This study found 
that numerous participants did not accurately record 
their consumption and urination. These errors were more 
common among the child participants. Due to potential 
literacy or developmental gaps, children may have been 
less capable of accurately recording or conveying their 
own inputs and outputs to their parents. Future research 
should consider using electronic monitoring devices that 
can detect and record urination and consumption.

This study’s future work and testing will lead to a more 
precise ML model to serve as a real-time forecasting sys-
tem based on an individual’s consumption pattern. This 
system will use the inputs of consumption and physi-
cal activities to predict the output of urination time and 
volume. This system could be implemented in a mobile 
application to make it easy for parents, patients, and 
caregivers to track expected urination times by entering 
what, when, and how much a person has been drinking. 
The goal of the app is to notify users when it is almost 
time to go to the bathroom based on previous input and 
output data.
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