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Abstract 

Background  Patient-reported outcome measurements (PROMs) are commonly used in clinical practice to support 
clinical decision making. However, few studies have investigated machine learning methods for predicting PROMs 
outcomes and thereby support clinical decision making.

Objective  This study investigates to what extent different machine learning methods, applied to two different 
PROMs datasets, can predict outcomes among patients with non-specific neck and/or low back pain.

Methods  Using two datasets consisting of PROMs from (1) care-seeking low back pain patients in primary care who 
participated in a randomized controlled trial, and (2) patients with neck and/or low back pain referred to multidiscipli-
nary biopsychosocial rehabilitation, we present data science methods for data prepossessing and evaluate selected 
regression and classification methods for predicting patient outcomes.

Results  The results show that there is a potential for machine learning to predict and classify PROMs. The predic-
tion models based on baseline measurements perform well, and the number of predictors can be reduced, which is 
an advantage for implementation in decision support scenarios. The classification task shows that the dataset does 
not contain all necessary predictors for the care type classification. Overall, the work presents generalizable machine 
learning pipelines that can be adapted to other PROMs datasets.

Conclusion  This study demonstrates the potential of PROMs in predicting short-term patient outcomes. Our results 
indicate that machine learning methods can be used to exploit the predictive value of PROMs and thereby support 
clinical decision making, given that the PROMs hold enough predictive power

Keywords  Machine learning, Low-back pain, Neck pain, Patient-reported outcomes, Self-reported measures, 
Outcome Prediction
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Introduction
While the application of machine learning (ML) meth-
ods is expanding into new clinical areas, both in medical 
research and clinical practice [1, 2], these methods have 
rarely been used on patient-reported outcome measure-
ments (PROMs). PROMs are used commonly for health 
conditions that are difficult to assess with objective meas-
urements, such as non-specific musculoskeletal pain 
and mental disorders. The predictive capabilities of ML 
methods, combined with clinical expertise, may increase 
the precision of clinical decision-making and thereby 
improve patient outcomes in these conditions [3]. To the 
best of our knowledge, no prognostic models based on 
ML methods are currently in clinical use for predicting 
outcomes among patients with non-specific musculo-
skeletal conditions, such as neck pain and low back pain. 
These conditions are among the leading causes of disabil-
ity worldwide [4] and improving the precision of clinical 
decision-making to improve patient outcomes will likely 
have a substantial impact on their disability burden.

Predicting outcomes from PROMs in patients with 
neck and/or low back pain (NLBP) is a challenging task 
owing to the subjective nature of the data. Nevertheless, 
some recent studies have shown promising results in 
applying ML methods. In a study by d’Hollosy et al. [5], 
binary classification models trained on PROMs data were 
used to predict whether low back pain patients should be 
referred to a Multidisciplinary biopsychosocial rehabili-
tation (MBR) program or undergo surgery. The authors 
concluded that the ML models show small to medium 
learning effects. Another study showed that a ML least 
shrinkage selection operator approach performs well 
in predicting pain-related disability at 2-year follow-up 
among older adults with NLBP [6].

The current study continues this line of research, 
intending to investigate to what extent different ML 
methods applied to PROMs data can identify predictors 
of outcomes and predict outcomes among patients with 
non-specific NLBP. The research question addressed 
in this work is: Can Machine Learning methods make 
predictions using patient-reported data to facilitate the 
shared decision-making process for patients with NLBP?

Background
Early and thorough assessment of non-specific low back 
pain is recommended to support a clinician’s treatment 
planning for patients at increased risk of poor outcome 
[7]. MBR is a commonly used treatment approach that 
targets biological, psychological, and social influences on 
low back pain [8]. However, this treatment approach is 
costly and time-consuming and the decision on whether a 
patient should start an MBR program is challenging. Sup-
ported self-management via web or mobile application is 

another alternative treatment approach that has gained 
popularity in recent years [9]. One such decision support 
system (DSS) delivered via mobile application has been 
implemented in the selfBACK project [10]. selfBACK 
DSS was developed to facilitate, improve, and reinforce 
self-management of non-specific LBP. The core idea is to 
empower patients to take control of their symptoms and 
treatment.

PROMs are a valuable source of information but few 
studies have exploited PROMs in the context of apply-
ing ML methods. Rahman et al. [11] performed a study, 
aimed at predicting pain volatility among users of a sup-
ported self-management delivered via a mobile applica-
tion (“Manage My Pain”). Unsupervised ML methods 
were used to cluster the users followed by supervised 
ML methods to predict pain volatility levels at 6-month 
follow-up using in-app PROMs (130 in total). The best 
accuracy was 70%, achieved using Random Forest. In a 
follow-up study, Rahman et  al. [12] addressed the topic 
of identifying the most important predictors of pain vola-
tility using different feature selection methods and found 
that similar prediction accuracy (68%) can be achieved 
using only a few predictors (9 features). In another study, 
Harris et  al. [13] compared the performance of four 
supervised ML models including Logistic, LASSO, Gra-
dient Boosting Machines, and Quadratic Discriminant 
Analysis for predicting whether or not a patient achieves 
a minimal clinically important difference (MCID) in sev-
eral pain and function related outcomes at 1-year post 
knee arthroplasty. Using preoperative PROMs as predic-
tors, they found that similar performance can be achieved 
across different models for various outcomes by varying 
the number of inputs. None of the models was found to 
be superior for all the outcomes. In contrast, Fontana 
et  al. [6] found that LASSO performs better than Gra-
dient Boosting Machines and Support Vector Machines 
in predicting MCID at 2-year follow-up among patients 
undergoing knee or hip arthroplasty. Similarly, Huber 
et al [14] compared the performance of eight supervised 
ML models for predicting MCID at six months among 
patients undergoing knee or hip replacement. Preop-
erative PROMs were used as predictors, and the results 
showed that Gradient Boosting machines yielded the 
most accurate prediction.

Datasets
In this section we describe the two datasets used in this 
work to build classification and regression models for 
PROMs.

Dataset 1
Dataset 1 consists of PROMs collected from LBP patients 
recruited in the intervention group of the selfBACK 
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randomised controlled trial (RCT),1 which aimed at facil-
itating self-management among patient with non-specific 
LBP.

Figure  1 shows the data collection in selfBACK. The 
data is categorised into Baseline, Tailoring and Follow-
Up (FU) data. Patients were recruited through the refer-
ral of their primary care clinician, followed by screening 
for eligibility based on a set criteria. Eligible patients 
who accepted to join the study answered questionnaires 
at different time points: (1) at the time of intake: Base-
line questionnaire (Baseline Data), (2) at the end of every 
week: Tailoring questionnaire (Tailoring Data), (3) at the 
end of 6-weeks, 3-months, 6-months, 9-months: Follow-
Up questionnaire ((FU Data)). The questionnaire meas-
ures are:

•	 Pain level
•	 Pain self-efficacy
•	 Physical activity
•	 Sleep quality
•	 Fear avoidance
•	 Functional ability
•	 Work-ability
•	 Mood

The baseline questionnaire also included demographics 
(education, employment and family). The tailoring and 
follow-up questions are subsets of the baseline questions. 
A comprehensive overview of the data collection can be 
found in Sandal et al. [15].

Based on the patients’ responses at baseline, the self-
BACK mobile application recommends an exercise plan 
and educational elements along with tracking their num-
ber of steps everyday from a wearable device (Xiaomi Mi 

Fig. 1  Overview of data collection in the selfBACK randomized controlled trial. The different data components are indicated by the orange boxes

1  https://​clini​caltr​ials.​gov/​ct2/​show/​NCT03​798288.

https://clinicaltrials.gov/ct2/show/NCT03798288
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Band 3). Exercise completion and educational readings 
were self-reported in the app. From this dataset, we only 
use the Baseline and FU-1 data for the experiments.

Target outcomes
The average pain (last week) and work-ability reported 
by the patients in the FU-1 dataset were chosen as tar-
get outcomes from dataset 1, referred to as PAf  and 
WAIf  respectively. Average pain is self-assessed using 
the Numerical Pain Rating Scale [16], ranging from 
0(no pain) to 10((disabling) severe pain). Pain rating 
scales are commonplace in the medical and healthcare 
context and are used widely in different medical envi-
ronments as a tool of communicating or expressing 
level of pain experienced by an individual. Work Abil-
ity Index (WAI) [17] is a self-assessment measure used 
in workplace and occupational health surveys and uses 
the Numerical Rating Scale ranging from 0(completely 
unable to work) to 10(workability at its best). It is widely 
used in occupational health and research to facilitate 
understanding different dimensions of a working indi-
vidual including their current ability to work compared 

with their lifetime best, self-prognosis of their work-
ability in the last two years, their ability to work with 
respect to the demands of the job, the number of sick 
leaves taken in the last year, among others.

The dataset for predicting PAf  contains completed data 
from 218 patients, while for predicting WAIf  contains 
data from 159 patients. The number of patients is less in 
WAIf  due to the exclusion of patients who did not answer 
the baseline WAI, among them are the retired patients 
as this measure does not apply to them. The final dataset 
comprises of 47 self-reported measures, which form the 
predictor variables.

Dataset 2
Data was collected by the Roessingh Center of Reha-
bilitation (RCR), Netherlands, between 2012–2019. The 
data consists of PROMs collected from NLBP patients 
referred to MBR using questionnaires administered at 
four time points: (1) before intake, (2) at the start, (3) at 
the end, and (4) after 3 months of pain rehabilitation, see 
Fig. 2. Patients gave consent to use their data for scientific 
research.

Fig. 2  Overview of the assessment moments with questionnaires at the pain rehabilitation centre RCR, Enschede, the Netherlands. MBR: 
Multidisciplinary Biopsychosocial Rehabilitation
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The questionnaires contain self-reported measures 
commonly used in pain rehabilitation,

•	 Hospital Anxiety and Depression Scale (HADS) [18]
•	 Multidimensional Pain Inventory (MPI) [19]
•	 Pain Disability Index (PDI) [20]
•	 Psychological Inflexibility in Pain Scale (PIPS) [21]
•	 Rand-36 Health Survey (RAND-36) [22]

The responses on the 121 questions were used to calcu-
late 23 scores, shown in table 1. These scores are used as 
features in the ML experiment.

Target outcome
The targets were the referral advice, which were given 
after the eligibility assessment (Fig. 2). The data set con-
tained 1040 patient records. These records were labelled 
according to 4 possible referral advises:

•	 Clinic RCR (n = 235): accepted for MBR at the RCR 
and advised to follow a clinical treatment path.

•	 Polyclinic RCR (n = 294): accepted for MBR at the 
RCR and advised to follow a polyclinical treatment 
path.

•	 Polyclinic RMCR (n = 140): referred to Roessingh 
Medinello Center of Rehabilitation (RMCR), which 
is similar to Polyclinic RCR but provides treatment 
paths for less complicated patients.

•	 Reject (n = 371): referred to the RCR from primary 
or secondary care, but rejected after intake by clini-
cian at RCR because they were not eligible.

This labelling resulted into an unbalanced dataset. The 
final dataset is shown in Table 2. The column ’# of cases’ 

shows the total number of cases (Class A + Class B) in 
Dataset 2 per combination.

Methods
This section describes the ML tasks and the steps under-
taken in the experiments. The ML pipeline used in this 
work is illustrated in Fig. 3. The usage and implementa-
tion of all the methods was done in accordance with the 
journal guidelines and regulations.

Regression
This task explores the application of different methods to 
determine which PROMs are optimal for predicting the 
target outcomes in dataset 1 and different supervised ML 
methods to determine the predictability of the outcomes 
and the best suited algorithm for this task.

Seven algorithms were used to estimate the target out-
comes: Linear Regression [23], Passive Aggressive Regres-
sion [24], Random Forest Regression [25], Stochastic 
Gradient Descent Regression [26], AdaBoost Regression 
[27], Support Vector Regression [28], XGBoost Regression 
[29]. The algorithms were chosen based on the existing 
literature applying machine learning methods on PROM 
datasets in a bid to predict patient-specific outcomes [11, 
12, 14] and a number of experiments carried out previ-
ously where several algorithms were evaluated for their 
ability to predict patient-reported outcomes, including 
the ones mentioned above along with Neural Networks, 
k-NN, Gradient Boosting Machines among others, on 
similar regression tasks. The evaluation resulted in the 
selection of the above-mentioned seven algorithms, iden-
tified as most suitable for this task.

Classification
We explored different ML methods to determine which 
PROMs are most useful for both referral of patients 
in- and to MBR using dataset 2. We used the clinician’s 
decision as ground truth. Two classifier algorithms: (1) 
Balanced Random Forest (RF) classifier [30] and (2) Ran-
dom Under-sampling Boosting classifier (RUSBoost) [31] 

Table 1  The PROMs included in Dataset 2

HADS

Anxiety Depression Total score

MPI

Pain severity Interference Life control

Affective distress Solicitous responses Distracting responses

Punishing responses Support Household chores

Outdoor work Social activities General activities

PDI

Total score

PIPS

Avoidance Cognitive fusion Total score

RAND-36

Physical functioning Role limitations Vitality

Mental health

Table 2  Referral combinations the classification algorithms were 
trained on

Model Class A Class B # of cases

1 Clinic RCR​ Polyclinic RCR​ 529

2 Clinic RCR​ Reject 606

3 Polyclinic RCR​ Reject 665

4 Polyclinic RMCR Clinic RCR​ 375

5 Polyclinic RMCR Polyclinic RCR​ 434

6 Polyclinic RMCR Reject 511
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were chosen because of their ability to deal with class 
imbalance, handle small data sets and ease of interpret-
ability. Both algorithms create an ensemble of models 
with a Decision Tree [32] as base estimator, which is also 
a classifier that has often been used in related work [33–
35]. In addition, the respective classifiers were chosen 
because of their (1) integrated solution to deal with class 
imbalance; (2) ability to handle mixed data types; (3) abil-
ity to perform well with a small sample size (n ≈ 1000); 
(4) high level of model interpretability; and (5) resem-
blance of thinking compared to a multidisciplinary team 
of health care professionals [30, 32].

Binary classification tasks were created for the differ-
ent referral combinations of the 1040 labelled samples, 
as shown in Table 2. Therefore, each classifier led to six 
models corresponding to the referral combinations. A 
nested cross validation was used to evaluate the perfor-
mance of the models [36]. The nested cross-validation is 
a nesting of two k-fold cross-validation loops, with k rep-
resenting the number of folds. The number of folds for 
both outer and inner loop was chosen to be 5, which is 
a very common number of folds for cross-validations. In 
other words, in every loop and for each binary classifica-
tion task, data was divided into a training dataset with 
80% of the samples, and a testing or validation dataset 
with 20% of the samples.

Feature selection
Feature selection becomes necessary for datasets with 
a large number of features to reduce the dimensionality 
without the loss of any important information. Reduc-
ing the dimensionality of the dataset before applying 
ML methods enables the algorithms to train faster by 
removing redundant information, thereby reducing the 
complexity and risk of overfitting the model [37]. Feature 

selection methods are broadly divided into three types: 
filter, wrapper, and embedded. Filter methods use the 
principal criteria of the ranking technique for selecting 
the most relevant features. Features are ranked based on 
statistical scores, such as correlation, to determine the 
features’ correlation with the outcome variable. These 
methods are computationally efficient and do not rely on 
learning algorithms that can introduce a biased feature 
subset due to over-fitting [37]. However, a disadvantage 
of the filter method is that it does not consider the co-
linearity among features in the subset. Furthermore, it 
is difficult to precisely determine the dimension of the 
optimal feature subset [37]. Wrapper methods use the 
model’s performance metric, for example accuracy, as 
an objective function to evaluate the feature subset [37]. 
These methods consider the association among features 
but are often too computationally expensive to perform 
an exhaustive search of the feature space. In Embedded 
methods, feature selection is integrated with the train-
ing progress of the model to reduce computational time 
compared to wrapper methods, while still considering 
the association among features [37, 38]. These methods 
iteratively extract features that contribute the most to 
the training for a particular iteration of a model during 
the training process. Regularisation methods [39, 40] are 
commonly used embedded methods that penalise a fea-
ture based on a coefficient threshold. Feature Importance 
with ensemble methods is another method to determine 
impurity-based important features in tree-based algo-
rithms.2 Based on the trends observed in the existing lit-
erature, it was decided to use mutual information (only in 

Fig. 3  The workflow of the Machine Learning pipeline used in this study

2  https://​scikit-​learn.​org/​stable/​auto_​examp​les/​ensem​ble/​plot_​forest_​impor​
tances.​html.

https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
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classification task) [41] and impurity-based methods [42, 
43] in this work for selecting feature subsets (Additional 
file 1).

Hyperparameter optimization
Hyperparameter optimization is useful to find a set of 
hyperparameters that optimizes the performance of the 
algorithm [44]. We considered model-based as well as 
model-free methods for hyperparameter optimization. 
Model-based optimization methods like Bayesian opti-
mization use a surrogate model and an acquisition func-
tion to find the optimal set of hyperparameters [45, 46]. 
We did not choose model-based optimization since the 
surrogate model is prone to overfitting on the hyper-
parameters [47] and this approach is more suitable to 
models that are computationally expensive to train, 
such as Deep Neural Networks [46]. Model-free meth-
ods can be categorized as heuristic and simple search 
approaches. Heuristic search approaches maintain a 
number of hyperparameter sets and use local pertur-
bations and combinations of members in these sets to 
obtain an improved hyperparameter set [45, 46]. Two 
common model-free simple search approaches are grid 
and random search [45]. Grid search is one of the several 
ways of hyperparameter tuning and entails an exhaustive 
search through a defined set of hyper-parameter space of 
a learning algorithm. Random search selects the param-
eters at random instead of performing an exhaustive 
search over the hyperparameter space. We used random 
search in the classification task and grid search in the 
regression task to tune the hyperparameters of the algo-
rithms  (Additional file 1).

Evaluation metrics
The evaluation metrics are different for each task owing 
to the very nature of different approaches undertaken. 
The evaluation metrics in the regression task are Mean 
Absolute Error (MAE), R-squared score ( R2 ) and Mean 
Residual (MR), while for the classification task are Mat-
thews Correlation Coefficient (MCC) [48], Balanced 
Accuracy (BAC) [49], Sensitivity (SEN) and Specificity 
(SPE) [50]. MAE is the average of the absolute errors, 
that is the difference between the observed value and the 
predicted value. R2 is a goodness-of-fit metric to measure 
the proportion of variance explained by the independ-
ent variable(s) for a dependent variable in a regression 
model with values in the range [0,1], where 0 implies no 
observed variance and 1 implies 100% variance in the 
dependent variable with the movement of the independ-
ent variable(s). MR is the average difference between the 
predicted values and the observed values and is used to 
determine whether the models are likely to underesti-
mate or overestimate the target value. MCC has a value 

in the range [− 1, 1] and produces a high score only when 
the predictions obtain good results in all of the four con-
fusion matrix categories, which is useful for imbalanced 
classes [51]. The value of BAC lies in the range of [0,1] 
and is a recommended metric for imbalanced classes 
[49]. The values of SEN and SPE metrics lie in the range 
of [0,1] and are used widely to test the performance of 
binary classification models, where SEN is a measure of 
the proportion of correctly identified positives (true posi-
tive rate) while SPE is a measure of the proportion of cor-
rectly identified negatives (true negative rate).

Experiments and results
The experiments were done in Python [52] using Scikit-
learn [53] and Imbalanced-learn [54] (only in clas-
sification task). k-fold cross validation is used in the 
experiments to reduce overfitting and increase the gener-
alizability of the models, with k = 5 for classification and 
k = 10 for regression task.

Regression task
We used the embedded feature importance method of 
Random Forest algorithm to select the relevant features. 
Four and two features were selected for PAf  and WAIf  , 
respectively, which were then used to train the ML algo-
rithms mentioned in the “Methods” section. The results 
are summarised in Table 3.

Classification task
We used the embedded feature selection method in both 
classifiers to select optimal features. For each classifier, 
six binary classification models were trained on different 
referral combinations, as shown in Table  2. The results 
are presented in Tables 4 and 5.

The following observations were made based on the 
results:

•	 The overfit is low based on the MCC scores (both 
classifiers), except for the case Clinic RCR—Poly-
clinic RCR.

•	 The cases Polyclinic RMCR—Clinic RCR, Polyclinic 
RMCR—Polyclinic RCR and Polyclinic RMCR—
Rejected show sub-optimal performances with their 
MCC’s ranging between [0.42, 0.49] for RF and 
[0.43–0.50] for RUSBoost. Furthermore, their BAC 
scores are ranging between [0.70, 0.77] for RF and 
[0.71, 0.78] for RUSBoost.

•	 The cases Clinic—Rejected, Clinic RCR—Poly-
clinic RCR and Polyclinic RCR—Rejected all show 
very poor performances with their MCC’s ranging 
between [0.14, 0.20] for RF and [0.11, 0.21] for RUS-
Boost. Furthermore, their BAC scores are ranging 
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between [0.56, 0.60] for RF and [0.55, 0.60] for RUS-
Boost.

Discussion
Our experiments on dataset 1 indicate that ML meth-
ods and data science techniques can be used to identify 
relevant PROMs features and enhance the prediction of 
patient outcomes, such as pain and work-ability. While in 
experiments using dataset 2, we found that the classifiers 
perform poorly in predicting treatment referral. These 
contrasting findings may be attributed to the different 
predictors available in the two datasets, their strength 
of association with the target outcomes or the fact that 
dataset 1 had the target outcomes measured at baseline 
while dataset 2 does not since it’s a one time outcome 
given by the clinician.

Clinical relevance
To support shared clinical decision making, it is neces-
sary to build prognostic models that can provide infor-
mation to clinicians and patients of likely outcomes 
related to a certain treatment or symptoms profile.

In dataset 1, the baseline measurements of the asso-
ciated target outcomes were their first most important 
predictors. The superior predictive value of baseline 
measurements of target outcomes has also been con-
firmed in other similar studies, such as by Fontana et al. 
[6] and Huber et  al. [14]. In dataset 2, the PROMs had 
low predictive power with regards to referral advises, 
which is similar to findings in our previous work [5, 55]. 
Our results again emphasize the difficulty of referring 
NLBP patients based on PROMs and the need for more 
research on PROMs to include them in decision support 
on treatment referral.

Table 3  Impurity-based feature selection using Random Forest for predicting PAf  (a) and WAIf  (b)

The best performing model are highlighted in bold letters

PAf WAIf

Model MAE ± SD R
2 MR Model MAE ± SD R

2 MR

LR 1.54 ± 1.18 0.25 0.050 LR 1.16 ± 1.12 0.27 0.003

PAR 1.54 ± 1.19 0.25 − 0.087 PAR 1.10 ± 1.14 0.28 − 0.288

SGDR 1.55 ± 1.17 0.25 0.143 SGDR 1.10 ± 1.13 0.29 − 0.243

RFR 1.57 ± 1.13 0.25 0.199 RFR 1.09 ± 1.20 0.25 − 0.246
ABR 1.60 ± 1.14 0.23 0.0 ABR 1.21 ± 1.20 0.18 − 0.090

SVR 1.53 ± 1.15 0.27 0.102 SVR 1.11 ± 1.15 0.27 − 0.221

XGB 1.55 ± 1.13 0.26 − 0.015 XGB 1.18 ± 1.12 0.25 0.016

Table 4  Results for the Balanced Random Forest (RF) classifier (± 
standard deviation)

Train Test

MCC MCC BAC SEN SPE

Model 1: 
C-P

0.22 ± 
0.02

0.14 ± 
0.08

0.56 ± 
0.04

0.66 ± 
0.13

0.47 ± 0.17

Model 2: 
C-R

0.26 ± 
0.01

0.20 ± 
0.08

0.60 ± 
0.04

0.73 ± 
0.11

0.47 ± 0.05

Model 3: 
P-R

0.22 ± 
0.03

0.19 ± 
0.06

0.60 ± 
0.03

0.59 ± 
0.06

0.61 ± 0.02

Model 4: 
M-C

0.54 ± 
0.01

0.46 ± 
0.05

0.73 ± 
0.03

0.86 ± 
0.13

0.59 ± 0.11

Model 5: 
M-P

0.42 ± 
0.02

0.42 ± 
0.05

0.70 ± 
0.03

0.99 ± 
0.03

0.42 ± 0.07

Model 6: 
M-R

0.53 ± 
0.01

0.49 ± 
0.06

0.77 ± 
0.03

0.98 ± 
0.04

0.57 ± 0.05

Table 5  Results for the Random Under Sampling Boosting 
(RUSBoost) classifier ± standard deviation

Train Test

MCC MCC BAC SEN SPE

Model 1: 
C-P

0.22 ± 
0.02

0.11 ± 
0.07

0.55 ± 
0.03

0.72 ± 
0.10

0.39 ± 0.13

Model 2: 
C-R

0.24 ± 
0.01

0.21 ± 
0.08

0.60 ± 
0.04

0.59 ± 
0.16

0.61 ± 0.10

Model 3: 
P-R

0.20 ± 
0.02

0.19 ± 
0.06

0.60 ± 
0.03

0.59 ± 
0.06

0.61 ± 0.02

Model 4: 
M-C

0.55 ± 
0.02

0.49 ± 
0.10

0.74 ± 
0.05

0.94 ± 
0.13

0.54 ± 0.10

Model 5: 
M-P

0.43 ± 
0.01

0.43 ± 
0.05

0.71 ± 
0.03

1.00 ± 
0.00

0.42 ± 0.07

Model 6: 
M-R

0.52 ± 
0.01

0.50 ± 
0.05

0.78 ± 
0.03

0.98 ± 
0.03

0.57 ± 0.06
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Data science relevance
From a data science perspective, PROM-based analyt-
ics is relatively uncharted territory, posing a unique 
challenge and presenting an opportunity for more 
research to test the existing methods and develop new 
ones that can facilitate furthering our comprehension 
of subjective datasets and their utility in improving 
patient-centred care. Building a comprehensive view of 
the patients using data-driven methods and evidence-
based research can help clinicians and patients alike 
get practical insights from the available data to make 
shared strategic decisions. There is a need to increase 
awareness, availability, and understanding of subjec-
tive patient-centred data to build more sustainable and 
secure data ecosystems and facilitate a shift towards 
targeted interventions with the development of diag-
nostic and prognostic learning models.

Conclusion and future work
The results presented in this work support our prem-
ise that the analytical abilities of ML methods can be 
leveraged for making predictions using PROMs, given 
that the PROMs hold predictive power. With better 
predictors, further development, and thorough valida-
tion, ML models can facilitate a shared decision-mak-
ing process for patients with musculoskeletal disorders 
in clinical settings. Support Vector Machines, Random 
Forest, and Random Under-sampling Boosting meth-
ods delivered the best performance in the experiments 
and present promising potential for adaptability and 
utility in clinical practice. The biggest strength of ML 
methods is their ability to handle big data and their 
adaptability to different clinical setups where a certain 
level of accuracy is required to predict outcomes. There 
is, however, a need for the development of a standard 
ML pipeline to guide further research on developing as 
well as reporting results of ML models that can predict 
PROMs in other clinical or healthcare datasets with 
patient-reported outcomes.
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