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Abstract 

Background:  Traumatic Brain Injury (TBI) is a common condition with potentially severe long-term complications, 
the prediction of which remains challenging. Machine learning (ML) methods have been used previously to help 
physicians predict long-term outcomes of TBI so that appropriate treatment plans can be adopted. However, many 
ML techniques are “black box”: it is difficult for humans to understand the decisions made by the model, with post-
hoc explanations only identifying isolated relevant factors rather than combinations of factors. Moreover, such models 
often rely on many variables, some of which might not be available at the time of hospitalization.

Methods:  In this study, we apply an interpretable neural network model based on tropical geometry to predict 
unfavorable outcomes at six months from hospitalization in TBI patients, based on information available at the time of 
admission.

Results:  The proposed method is compared to established machine learning methods—XGBoost, Random Forest, 
and SVM—achieving comparable performance in terms of area under the receiver operating characteristic curve 
(AUC)—0.799 for the proposed method vs. 0.810 for the best black box model. Moreover, the proposed method 
allows for the extraction of simple, human-understandable rules that explain the model’s predictions and can be used 
as general guidelines by clinicians to inform treatment decisions.

Conclusions:  The classification results for the proposed model are comparable with those of traditional ML meth-
ods. However, our model is interpretable, and it allows the extraction of intelligible rules. These rules can be used to 
determine relevant factors in assessing TBI outcomes and can be used in situations when not all necessary factors are 
known to inform the full model’s decision.
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Background
Traumatic Brain Injury (TBI) is a very common medical 
problem with the potential for severe harm [6, 18]. In 
2017, TBIs were identified in 25% of all injury-related 
deaths in the United States. Every year, well over one 

million Americans sustain a form of TBI, resulting in 
over 200,000 hospitalizations and leaving survivors 
with disabilities that require years of rehabilitation at 
significant healthcare cost. Despite the magnitude of 
this problem, few effective treatments are available. 
For decades there have been efforts towards develop-
ing diagnostic and treatment coupled pathways [22], 
followed by those considering additional risk factors. 
Numerous studies have found correlations between 
variables known at the time of hospital admission and 
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mortality; however, it has proven difficult to find gen-
eral and comprehensive guidelines for assessment and 
decision making [16]. A serious challenge in severe 
TBI consists of acutely determining whether a patient 
should undergo continued life-sustaining treatment, 
since early withdrawal of care commonly results in 
death [8]. Sometimes “self-fulfilling prophecies” [4] are 
caused by early withdrawal of treatment when a prog-
nostic factor is found, whose relevance is then rein-
forced by the outcome.

In recent years, several studies have adopted machine 
learning methods to predict mortality in patients admit-
ted with TBI [1, 2, 10, 14, 17, 19]. However, these studies 
focused on in-hospital or early mortality. Fewer studies 
have investigated longer term outcomes that incorpo-
rate functionality in addition to mortality [3, 7, 11, 20, 23, 
24]. Furthermore, it has been observed how this kind of 
problem is especially challenging even for machine learn-
ing (ML) methods, which often perform no better than 
linear regression [9]. Another fundamental issue of many 
ML models in healthcare applications is their “black box” 
nature, i.e., their lack of interpretability. This has greatly 
hindered their adoption since clinicians need to be able 
to understand how such models reach conclusions in 
order to validate the results and/or integrate them into 
their decision making. Additionally, a known problem 
of ML approaches to TBI assessment is that they usu-
ally rely on a large number of variables that might not be 
available at the time of hospitalization [13]. Our previous 
work [5] has addressed some of these issues by predict-
ing the recovery outcome at six months from hospitaliza-
tion and by building a framework for an intelligible TBI 
prognostic model. However, this methodology required 
expert validation, and could only identify relevant prog-
nostic factors, rather than rules (combinations of multi-
ple factors).

A method to make models intelligible is the use of 
fuzzy logic. Fuzzy logic and fuzzy inference models [21, 
28] are established methods for both integrating humanly 
understandable rules into ML models and extracting 
understandable rules. A key idea is the use of member-
ship functions to measure the extent to which a crisp 
value x belongs to a given fuzzy concept. For example, 
we might have a membership function l (typically a tri-
angular function) for the fuzzy concept of “low”, and the 
value l(x) representing the degree to which x can be con-
sidered to be “low”. This approach can be combined with 
neural networks in the form of adaptive network-based 
fuzzy inference systems [12]. In our previous work [26], 
we used a genetic algorithm to train a fuzzy neural net-
work to recommend treatments for advanced heart fail-
ure patients. That work was generalized and refined by 
introducing tropical geometry into the model [27] to 

make it more flexible by parametrizing the aggregation 
operations and membership functions.

In this study, we apply the intelligible neural network 
model based on fuzzy logic and tropical geometry that 
first appeared in [27] to predict the recovery from TBI 
at six months from hospitalization. While our previous 
paper was focused on the algorithmical development of 
the method, in this work we focus on its clinical appli-
cation to TBI assessment, as well as on ways of enhanc-
ing interpretability and controlling the number concepts 
within each rule to be extracted. The model allows us to 
extract rules that can be understood by humans, making 
it highly interpretable since its decision process is trans-
parent. Additionally, each of these rules only involves a 
few factors, so that they can be used individually if some 
of the variables are not available. The model is extensively 
tested on different sets of variables and using different 
loss terms to further investigate its capabilities. The clas-
sification results of the various regularized versions of 
the proposed model are comparable to each other and to 
the other ML algorithms we considered. Moreover, the 
proposed model allows us to interpret the classification 
results and to extract general, humanly understandable 
rules while retaining good classification performance.

Methods
The Tropical geometry-based Fuzzy Neural Network 
(TFNN) used in this work was introduced in [27]. Tropi-
cal geometry can be thought of as a piecewise linear ver-
sion of algebraic geometry, where usual addition and 
multiplication are replaced by max (or min ) and by addi-
tion, respectively. Connections between tropical geom-
etry and neural networks have been partially explored, 
as in [29], but not widely so. The proposed model uses 
the tropical framework in a new way, by interpolat-
ing between a traditional, smooth neural network and a 
fuzzy one. Fuzzy inference models replace crisp member-
ship functions with fuzzy ones, such as triangular or trap-
ezoidal membership. This allows one to replace the crisp 
value of a continuous variable with the fuzzy concepts of 
“low”, “medium”, and “high”, by defining to what extent the 
crisp value belongs to each of these concepts. One key 
advantage is the ability to extract humanly understand-
able knowledge from the data, in the form of “if-then” 
rules that can prove valuable in the decision making pro-
cess. Furthermore, the fuzzy framework enables domain 
knowledge in the form of rules already known to experts 
to be incorporated into the learning process; this way, we 
can improve the training of the model both in terms of 
performance and by reducing the amount of training data 
required.

However, it is not obvious a priori which membership 
function will be best suited for a given task, as well as 
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which aggregation operations (minimum and product, or 
maximum and addition). Tropical geometry allows us to 
interpolate between fully piecewise linear operations and 
smooth ones, as well as between aggregation operations. 
This provides the model with additional flexibility, allow-
ing it to learn the optimal membership functions and 
aggregation operations. Additionally, the optimization 
process works with smooth functions (updated during 
training to be closer to piecewise linear ones), allowing us 
to use a gradient descent algorithm which couldn’t previ-
ously be used within fuzzy frameworks.

We refer the reader to [27] for a full description of the 
model. We report in Fig.  1 a schematic diagram of the 
layers, and briefly describe its components.

In the encoding module, a continuous variable xi is 
assigned three values in [0,1] representing the member-
ship value to the concepts of “low” ( l(xi) ), “medium” 
( m(xi) ), and “high” ( h(xi) ). The number of concepts can 
be varied (e.g., 2, 4) to suit the application. Unlike in tra-
ditional fuzzy theory, membership functions depend 
on a trainable parameter ǫ which determines their 
smoothness.

In the rule module, a total of K rules r1, . . . , rK  are con-
structed. The weights of the first layer of the rule module 
constitute the attention matrix A, obtained by concat-
enating submatrices Ai,:,: , one for each input variables. A 
higher value corresponds to a higher contribution of the 
associated concept to the associated rule. The weights 
of the second layer of the rule module—whose nodes 
r1, . . . , rK  correspond to the rules to be extracted—con-
stitute the connection matrix M. An entry Mi,k represents 
the importance of the ith input variable to the construc-
tion of the kth rule. The outputs r1, . . . , rK  are computed 
via a parametrized norm (dependent on the trainable 
parameter ǫ ) interpolating between the operations of 
product and minimum. Weights of both the attention 
and connection matrix are learned and constrained to 
[0,1] via a hyperbolic tangent activation function.

Finally, the inference module consists of a fully con-
nected layer with nodes corresponding to the classifica-
tion categories o1, . . . , oC (in our study, the number of 
classes is C = 2 ). The positive weights Wk ,c of this layer 
are learned and correspond to the contribution of the 
kth rule to the cth class. Each output oc is computed via 
a parametrized conorm (dependent on the trainable 
parameter ǫ ) interpolating between the operations of 
sum and maximum.

Once the network is trained, rules can be extracted 
from the weights. For the kth rule, a contribution matrix 
S:,:,k can be constructed, with entries computed from the 
attention and connection matrices as Si,d,k = Ai,d,kMi,k . 
Here i represents the index of the input variable xi , 
d = l,m, h represents each of the concepts of “low” (l) 

“medium” (m) and “high” (h), and k = 1, . . . ,K  represents 
the kth rule. The value Si,d,k represents the contribution 
of the dth concept of the ith input variable to the kth rule. 
The value Wk ,c represents the importance of the kth rule 
in determining whether the input data belongs to the cth 
class. Therefore, for each k, the kth rule is fully captured 
by the matrix S:,:,k and the value Wk ,: . In our study, C = 2 
and when discussing rules we will consider those contrib-
uting to the positive class. To exemplify this, assume that 
the trained model identified rule r1 as “ xi low” AND “ xj 
high”, and as relevant for the first class. That means that 
in the model W1,1 would be high (meaning that rule r1 is 
relevant for the class o1 ) and that Si,l,1 (the importance of 
the concept of xi being low in building the first rule) and 
Sj,h,1 (the importance of the concept of xj being high in 
building the first rule) would be high.

The network is trained with the Adam optimizer 
via backpropagation. The total loss is computed as 
lossce + �1losssparse + �2losscorr , where lossce is a stand-
ard cross-entropy loss term, losssparse is a sparsity term 
to penalize rules with too many variables, and losscorr is a 
correlation term to penalize the extraction of redundant 
rules. Specifically, we consider two forms of losssparse:

for i = 0, 1 (where ‖vec(A)‖i and ‖vec(M)‖i are the ℓi
-norm of the attention matrix A and the connection 
matrix M respectively). Finally, the correlation loss is 
computed as

where H is the number of input variables.

Dataset and methodology
The ProTECT III dataset (Progesterone for Traumatic 
Brain Injury Experimental Clinical Treatment) was 
collected for a research study with the goal of testing 
whether progesterone treatment for TBI is safe and/or 
effective [25]. All methods were performed in accord-
ance with the relevant guidelines and regulations. The 
dataset consists of 882 patients with electronic health 
record (EHR) data collected at the time of hospitaliza-
tion; among these, we excluded those with non-surviv-
able injuries, and only considered the remaining 833. 
Long-term recovery from TBI is assessed via the Glasgow 
Outcome Scale Extended (GOSE), a global scale to evalu-
ate recovery at 6 months from insult. GOSE is the most 
commonly used measure of TBI outcome assessment 
and its validity has been corroborated by prior studies 
[15]. Among the 833 patients, 350 have GOSE 1-4 and 

losssparse = lossℓi = �vec(A)�i + �vec(M)�i

losscorr =

H−1

i=1

H

j=i+1

vec(S:,:,i)vec(S:,:,j),
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constitute the class of patients with negative recovery 
outcome (from severe disability to death), and 483 have 
GOSE 5-8 and constitute the class of patients with posi-
tive recovery outcome (from moderate disability to good 
recovery). After excluding features such as race and cause 
of injury (with the goal of only including strictly medical 
features), a total of 58 features per patient remained. The 
proposed model was trained using three different sets of 
features: all 58 features, 18 robust features selected using 
SHapley Additive exPlanations (SHAP) in [5], and the 

best 18 features computed from the Minimum Redun-
dancy Maximum Relevance (MRMR) algorithm. With 
respect to MRMR, there are 13 features with scores 
above 0.01 and 18 features with scores above 0.007. We 
selected the 18 highest-scoring features—described in 
Table  1—for better comparison with the features in [5]; 
12 of the 18 features selected via MRMR overlap with the 
18 features selected via SHAP.

The proposed model along with established ML mod-
els (Random Forest, SVM, XGBoost) was tested on the 
ProTECT III dataset; the reported results are the average 
scores of 10-fold cross-validation.

Results
Tables 2, 3 and 4 contain relevant performance metrics of 
the proposed model (TFNN) in comparison to XGBoost 
(XGB), Random Forest (RF), and Support Vector 
Machine (SVM), for each set of features we considered. In 
this set of experiments, TFNN is run with no sparsity loss 
term (i.e., with total loss computed as lossce + �losscorr ) 
and with a total number of rules optimized among 20, 
25, and 30. The performance of the proposed model is 
always very close to that of the best performing tradi-
tional machine learning method, with the crucial differ-
ence that TFNN is interpretable and provides intelligible 
rules. The worse performance using all 58 features is to 
be expected for a neural network, given the small size of 
the dataset compared to the number of features used.

Table  5 compares different versions of the proposed 
model on each set of features considered. “TFNN” refers 
to the model run with no sparsity loss term and with a 
total number of rules optimized among 20, 25, and 30, 
as before; “fewer rules” refers to the model run with no 
sparsity loss term but a smaller total number of rules, 

Table 1  Features with the highest MRMR scores. Variables 
sourced from radiology reports are suffixed with rad. 

Variable MRMR score

Subarachnoid hemorrhage (#)—rad. 0.0679

Intraparenchymal hematoma—rad. 0.0631

DAI finding—rad. 0.0683

Third ventricle compression—rad. 0.0355

Best motor response—baseline 0.0275

Age—demographics 0.0261

Pupil response—baseline 0.0258

Intra-ventricular hemorrhage—rad. 0.0198

Skull fracture: basilar—rad. 0.0147

Best eye opening—baseline 0.0128

Brain contusion (#)—rad. 0.0121

Herniation: transtentorial—rad. 0.0106

Subdural hematoma—rad. 0.0101

Intraparenchymal hematoma (max width)—rad. 0.0087

Abnormal finding—rad. 0.0085

Best verbal response—baseline 0.0078

Herniation: upward—rad. 0.0077

Herniation: uncal—rad. 0.0072

Table 2  Mean (standard deviation) of performance metrics using 18 features selected in [5] via SHAP

Values in bold are the highest for a given metric across different methods

Method Accuracy Recall Precision F1 AUC​

TFNN 0.719 (0.040) 0.657 (0.094) 0.671 (0.054) 0.614 (0.057) 0.794 (0.039)

XGB 0.693 (0.028) 0.591 (0.075) 0.646 (0.033) 0.569 (0.048) 0.743 (0.039)

RF 0.744 (0.035) 0.579 (0.055) 0.754 (0.057) 0.608 (0.049) 0.802 (0.036)

SVM 0.728 (0.019) 0.551 (0.106) 0.745 (0.056) 0.579 (0.059) 0.795 (0.048)

Table 3  Mean (standard deviation) of performance metrics using the best 18 features selected by MRMR

Values in bold are the highest for a given metric across different methods

Method Accuracy Recall Precision F1 AUC​

TFNN 0.719 (0.033) 0.617 (0.074) 0.683 (0.046) 0.600 (0.050) 0.793 (0.039)

XGB 0.675 (0.027) 0.584 (0.053) 0.619 (0.033) 0.554 (0.039) 0.716 (0.034)

RF 0.740 (0.031) 0.581 (0.053) 0.744 (0.051) 0.606 (0.044) 0.800 (0.037)

SVM 0.731 (0.035) 0.590 (0.055) 0.719 (0.053) 0.601 (0.047) 0.800 (0.040)
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optimized among 5, 10, and 15; “ ℓ1-sparsity” and “ ℓ0
-sparsity” refer to the model run with a sparsity loss term. 
We observed that a larger number of rules provides bet-
ter results, as well as an ℓ0-sparsity term rather than an 
ℓ1-sparsity term. The main effect in imposing sparsity is 
that of extracting simpler rules with fewer variables.

Extracted rules
Presented below are the most relevant rules selected by 
the TFNN model on two sets of features: SHAP features 
and MRMR features. The rules are extracted from the 
model trained on the first 9 of the 10 folds. The rules cor-
respond to the nodes r1, . . . , rK  of the rule module; for the 
sake of interpretability and ease of visualizations, rules 
with high correlation and concepts with low contribution 
to a rule are removed. The best performing model from 
Table 5 is the ℓ0-sparsity model using SHAP features; we 
will compare it to the a model trained on the same fea-
tures but without a sparsity term. We then describe rules 
extracted from MRMR features without sparsity terms. 
For each group of features, the presented rules are those 
the model deemed most important, i.e., the rules with 
the highest weights. Another important layer of inter-
pretability consists of having a range for each of the con-
cepts of low, medium, and high, learned by the network. 
For example, Fig.  2 shows the final membership func-
tions learned by the model with the ℓ0-sparsity term on 
SHAP features for the variable “third ventricle compres-
sion—rad.”. Each input value can be low, medium, or high 
to some degree, and the network additionally determines 
the range for each concept. For example, the concept of 

high for the “third ventricle compression—rad.” variable 
is computed as having values higher than 0.59.

In the case of SHAP features with the ℓ0-sparsity term, 
a total of 30 rules are extracted (equivalently, the rule 
module has 30 nodes). The rules refer to the class with 
GOSE 1-4 that corresponds to poor recovery outcome. 
We report here the three most important—and not 
highly correlated—rules, i.e., those with highest weights. 
For this set of rules, next to each concept is the numerical 
value that defines it according to the model. We denote 
with the concept “not low” the union of the concepts 
“medium” and “high”. 

1	 IF intra-ventricular hemorrhage—rad. high ( > 0.5 ) 
AND best eye opening—baseline low ( < 1.6 ) AND best 
verbal response—baseline low ( < 2.1 ) AND best motor 
response—baseline low ( < 4.1 ) AND DAI finding (#)—
rad. high ( > 0.9);

2	 IF subdural hematoma (#)—rad. not low ( > 0.8 ) AND 
age high ( > 48);

3	 IF third ventricle compression—rad. high (> 0.4 ) AND 
herniation: transtentorial—rad. high ( > 0.49).

For this model, it wasn’t necessary to remove concepts 
with low contribution to the rules because of the addi-
tion of a sparsity term in the training of the model, which 
forced the rules to depend on fewer concepts.

To verify that the extracted rules are meaningful, 
we can consider the patients in the dataset that satisfy 
them. There are a total of 59 patients satisfying Rule 1. 
Though this number is not high, it is reasonable as the 
rule includes many concepts and is therefore somewhat 
restrictive. Of these, 44 have GOSE less than 5. If the next 
most important rule, Rule 2, is included, there are only 
5 patients satisfying both rules, all of whom have GOSE 
less than 5. If we consider Rule 2, a total of 166 patients 
satisfy it. This is a larger set than for Rule 1, which is to 
be expected, as Rule 2 only involves two concepts. How-
ever, 121 of these patients have GOSE less than 5, mean-
ing that even a rule with only two concepts can be very 
significant.

In the next two cases we consider, we didn’t apply a 
sparsity term; as a consequence the rules depend on more 

Table 4  Mean (standard deviation) of performance metrics using all 58 features

Values in bold are the highest for a given metric across different methods

Method Accuracy Recall Precision F1 AUC​

TFNN 0.702 (0.026) 0.551(0.050) 0.684 (0.038) 0.564 (0.039) 0.786 (0.027)

XGB 0.697 (0.019) 0.624(0.041) 0.647 (0.026) 0.588 (0.026) 0.762 (0.016)

RF 0.735 (0.021) 0.574 (0.054) 0.741 (0.027) 0.599 (0.038) 0.810 (0.018)

SVM 0.740 (0.018) 0.615 (0.048) 0.731 (0.037) 0.620 (0.028) 0.808 (0.024)

Table 5  Mean AUCs of several variants of the proposed model

Values in bold are the highest for a given metric across different methods

Method SHAP features MRMR features All 58 features

TFNN 0.794 (0.039) 0.793 (0.039) 0.786 (0.027)

ℓ1-sparsity 0.788 (0.033) 0.794 (0.041) 0.765 (0.022)

ℓ0-sparsity 0.799 (0.035) 0.797 (0.041) 0.784 (0.030)

fewer rules 0.784 (0.037) 0.784 (0.042) 0.775 (0.022)
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concepts. In order to make the rules more intelligible, 
concepts with low contribution to a rule are removed.

The main rules (for the class with GOSE 1-4) extracted 
from the 18 features selected from SHAP values without 
a sparsity term are the following: 

1	 IF subarachnoid hemorrhage (#)—rad. high AND 
intra-ventricular hemorrhage—rad. high AND best 
verbal response—baseline low AND best motor 
response—baseline low;

2	 IF intra-ventricular hemorrhage—rad. high AND best 
verbal response—baseline lowAND Hgb lab low;

3	 IF intraparenchymal hematoma—rad. high AND best 
verbal response—baseline low.

There are a total of 48 patients in the dataset that satisfy 
this rule, 44 of which have GOSE less than 5. Of the 4 
that do not satisfy the rule, the patient with the highest 
GOSE has a value of 7, which would be the worst mis-
classification. However, this patient would not satisfy the 
next rule, Rule 1, since their Hgb lab value is 14, whereas 
the concept of low corresponds to less than 13.2.

For completeness, we can consider another set of rules 
(for to the class with GOSE 1-4) without a sparsity term, 
namely the main rules extracted from the set of MRMR 
features (also depicted in Fig. 3): 

1	 IF abnormal finding—rad. not low AND intraparen-
chymal hematoma—rad. high AND best verbal 
response—baseline low AND age—demographics 
high.;

2	 IF third ventricle compression—rad. high AND skull 
fracture: basilar—rad. high;

3	 IF subdural hematoma—rad. high AND age—demo-
graphics high.

Except for “abnormal finding—rad.” and “skull fracture: 
basilar - rad.”, these features also belong to the set of 
SHAP features, and are therefore consistently recognized 
as meaningful by the model. Not imposing a sparsity 
term allows the first rule to be somewhat complex even 
after removing concepts with low relevance. However, 
the second and third most relevant rules of this model, 
shown in Fig. 3, depend only on two factors.

Fig. 1  A schematic of the tropical geometry-based neural network introduced in [27]

Fig. 2  Membership functions for the concepts of low, medium, and 
high of the variable “third ventricle compression—rad.”, extracted 
from the model trained on SHAP features with ℓ0-sparsity
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A similar analysis to the one conducted previously 
shows that within the entire dataset, 17 patients satisfy 
Rule 1, and among these only one patient has GOSE 
greater than 4 (namely, 7). However, this patient would 
fail Rule 2 since both variables “third ventricle compres-
sion” and “skull fracture” have a value of 0, and therefore 
neither is high.

Discussion
The classification results for the proposed model are 
comparable with those of XGBoost, Random Forest, 
and SVM. In terms of AUC, the best performing model 
across all considered sets of features is Random Forest, 
with the best result achieved on the set of all 58 features. 
However, when considering values one standard devia-
tion from the average AUC, the intervals of the proposed 
model and Random Forest overlap, meaning that the 

difference in performance is not substantial. The worst 
AUC performance of our model is on the set of all 58 fea-
tures, which is to be expected from a NN based model 
given the reduced size of the dataset. Reducing the num-
ber of features improves the classification results. How-
ever, reducing the number of rules (equivalently, the 
nodes in the last hidden layer) consistently amounts to 
a worse performance. Introducing sparsity terms doesn’t 
affect AUC scores in a significant way: the change is 
negligible, and can lead to higher or lower average AUC 
depending on the set of features we considered. However, 
on the given dataset ℓ0-sparsity is preferred over ℓ1-spar-
sity. While the change in AUC is large and consistent 
enough to make a definitive conclusion, the main effect 
of imposing sparsity terms is on the set of rules: sparsity 
leads to “simpler” rules with fewer variables. Therefore, 
the choice of whether to use sparsity should be mainly 

Fig. 3  Rules extracted from MRMR features without a sparsity term
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guided by the type of rules that would most useful for a 
given application. The general rules extracted from the 
model have been analyzed by clinicians and make clinical 
sense. The rules are human-understandable, making use 
of concepts such as “low” and “high”, with the numerical 
thresholds defining these concepts being readily extract-
able if needed. From the results, one can observe that the 
rules are also meaningful in the sense that they capture a 
majority of the population with low GOSE score.

There are some limitations of our study, mainly related 
to the utilized dataset. Despite ProTECT III being one of 
the largest available dataset for TBI, the size doesn’t allow 
for the presented results to be considered definitive, as 
they should be tested on larger and different datasets as 
well. Additionally, the patients in our study lean towards 
severe outcomes of TBI, and a study more inclusive of 
milder TBI outcomes would be beneficial. Another limi-
tation is the classification by means exclusively of the 
GOSE score: despite this being a crucial measure of TBI 
outcome, it does not capture all potentially relevant post-
traumatic conditions, and it is not sufficient to paint an 
exhaustive picture of a patient’s recovery. Finally, the data 
utilized for each patient was generally the most proximal 
data available at the time of hospitalization. The sever-
ity of the injury as well as the variables of interest can 
change, and a more comprehensive model would take 
that into account as well. Future studies should consider 
larger datasets, multiple measures to assess TBI out-
come, and examine the use of the algorithm for updated 
prognostics.

Conclusions
TBI is a common and challenging health care issue which 
has proved difficult to impact by ML methods which are 
typically “black box” and incapable of providing explana-
tions for their decision process. The classification results 
for the proposed model are comparable with those of 
traditional ML methods. However, unlike other ML algo-
rithms, our model is interpretable, since it allows for an 
explanation as to why a patient was classified in a certain 
way by looking at rules the neural network determined 
to be relevant. These rules are intelligible; as such clini-
cians can assess whether they are sensible and therefore 
whether the result is reasonable resulting in clinical sup-
port tool with credibility. Additionally, these rules can be 
used to determine relevant factors in assessing TBI out-
comes as well as serve as prognostication tools. Finally, 
by dividing the decision process in simpler components, 
our model allows the use of single rules or small groups 
of rules in  situations when not all necessary factors are 
known to inform the full model’s decision.
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