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Abstract 

Background: A human diagnostician may harbour a special bias towards favourable positive or negative test results. 
The aim of the present analysis is to describe in quantitative terms how bias can affect the test characteristics of a 
human tester.

Methods: Whereas an unbiased tester would give absolute (100%) preference to true positive or true negative test 
results, and no (0%) preference to any false positive or false negative test results, a biased tester may harbour some 
preferences towards false positive or false negative tests. Such bias can be phrased in terms of a separate sensitiv-
ity–specificity matrix. The bias matrix multiplied with the original test matrix yields the biased test matrix. Similarly, 
the extent of ignorance by a human tester about the diagnosis is modelled as a separate sensitivity–specificity 
matrix, which captures the concordance between positive and negative diagnoses made by an ignorant and expert 
diagnostician.

Results: Increasing bias or ignorance result in decreasing test performance with decreasing positive predictive val-
ues until the test completely loses its discriminatory power. With more pronounced bias towards false test results, any 
positive test outcome may even become misinterpreted as predicting the non-existence of a given diagnosis.

Conclusions: The proposed model helps to understand in quantitative terms, how bias and ignorance can alter a 
diagnostician’s interpretation of test outcomes and result in diagnostic errors.
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Introduction
The performance of a medical test is described in terms 
of its test characteristics [1–4]. Like the performance of 
any other test, the function of a human diagnostician, 
performing a physical exam, taking a history, or using any 
type of diagnostic instrument, can also be captured in 
terms of such test characteristics [5]. Any dichotomous 
judgement by a decision maker lends itself to be phrased 
in terms of its sensitivity and specificity. A good test is 
associated with high sensitivity and specificity values. The 

quality of any test can become compromised by bias or 
ignorance. A human diagnostician may harbour a special 
bias towards favourable positive or negative test results. 
Such bias may stem from financial gains associated with 
a positive diagnosis, a personal interest in establishing an 
interesting diagnosis, or trying to avoid the diagnosis of 
an unpleasant or dangerous disease. Similar to bias, igno-
rance by the tester about the true nature of the diagnosis 
tested for can also affect the test outcome. The aim of the 
present analysis is to describe in quantitative terms how 
bias and ignorance influence the test characteristics of a 
human tester.
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Methods
Throughout the article, T+ and T– represent a positive 
or negative test result, respectively. Dx+ and Dx– rep-
resent a positive or negative diagnosis, respectively. In 
terms of probability theory, the fraction (or probability, 
Pr) of true positive (TP) test results, given a positive 
diagnosis, is defined as

Similarly, the fraction of false positive (FP) test results, 
given a negative diagnosis, is defined as

The two fractions of false negative (FN) and true negative 
(TN) test results are defined as

and

In the medical literature, the fractions of true positive 
and true negative test results are also called sensitivity 
and specificity, respectively [1-4]. The sum of true posi-
tive and false negative test fractions, as well as the sum 
of false positive and true negative test fractions, both add 
up to 100%. The four fractions are generally arranged in 
form of a two-by-two matrix as shown in the tables of the 
present article.

Sequential testing applies to situations when the out-
put of a prior test provides the input for a later test 
and becomes modified or updated by a subsequent test 
[5–7]. Based on its appearance, for instance, a lesion 
detected by endoscopy or other imaging techniques 
may be associated with high sensitivity and specificity, 
but to really establish the diagnosis a physician must 
first be able to visualize the pathognomonic sign and 
then also correctly interpret its meaning. The over-
all sensitivity and specificity, therefore, depend on the 
test characteristics of the image itself, as well as the test 
characteristics of the physician in being able to elicit 
and interpret the diagnostic finding. In other clinical 
scenarios, test information flows from a specialist, such 
as radiologist, gastroenterologist, pulmonologist, etc., 
to a general practitioner. Within such chain of interact-
ing physicians, the overall test performance becomes 
modified by the ability of each individual physician to 
understand and correctly interpret the information that 
passes through. A journal editor who relies in her own 
decision to accept a manuscript on prior assessment 
by a reviewer also acts a sequential tester. As a final 
example, consider a junior physician, such as resident 
or fellow who learns from a senior attending physician. 

(1)TP = Pr(T+ |Dx+).

(2)FP = Pr(T+ |Dx−).

(3)FN = Pr(T− |Dx+)

(4)TN = Pr(T− |Dx−).

At least in the beginning of their career, the overall test 
performance by the junior physicians relies on their 
knowledge, skills and ability in adopting the teacher’s 
own (potentially limited) performance [8].

The joint influence of two consecutive tests corre-
sponds to the multiplication of their respective test 
matrices [5, 6]. According to the rules of matrix alge-
bra, multiplying each row from the secondary test 
matrix with each column from the primary test matrix 
yields the elements of their combined matrix, which 
are located at row-column intersection [9]. The overall 
fraction of true positives (TPs) following two sequential 
tests corresponds to:

Similarly, the overall fraction of  false positives (FNs)
following two sequential tests corresponds to

Lastly, the overall fractions of false negatives (FNs) 
and true negatives (TNs) correspond to

and

Such calculations can be easily performed on an Excel 
spreadsheet (from Microsoft, Redmond, WA), using its 
built-in MMULT array function [10].

For the purpose of the present analysis, the influence 
of bias or ignorance on the test matrix is modelled as a 
quasi add-on sequential test “colouring” the baseline 
test characteristics. A human tester may harbour differ-
ent preferences regarding the four combinations of posi-
tive or negative test results in the presence or absence of 
a diagnosis. The bias of a human tester is reflected by a 
separate sensitivity–specificity matrix.

An unbiased tester would give absolute (100%) pref-
erence to true positive or true negative test results, and 
no (0%) preference to any false positive or false negative 
test results. A bias towards a positive test outcome would 
increase the fraction of false positive tests at the expense 
of true negative testes. Such bias characterizes instances 
where the diagnostician is overly keen in finding an 
explanation for the patient’s symptoms at the expense of 
her professional objectivity or has a professional inter-
est in establishing a diagnosis that is interesting or pro-
vides a financial advantage to the physician herself. A 
bias towards a negative test outcome would increase the 
fraction of false negative tests at the expense of true posi-
tive testes. Such bias characterizes instances where the 
diagnostician is concerned about finding a diagnosis, 

(5)TPs = TP2 · TP1 + FP2 · FN1.

(6)FPs = TP2 · FP1 + FP2 · TN1

(7)FNs = FN2 · TP1 + TN2 · FN1

(8)TNs = FN2 · FP1 + TN2 · TN1.
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which would entail grave and unpleasant consequences 
for the patient, or which exceeds the physician’s profes-
sional means of managing it. Lastly, a physician’s attitude 
may be characterized by a combination of both, a posi-
tive and negative bias towards the primary test results. 
For instance, out of financial or other professional inter-
ests, a radiologist may ignore the findings of abdominal 
ultrasound and recommend other more expensive means 
of radiographic imaging. A gastroenterologist may gener-
ally mistrust intestinal diagnoses made by abdominal CT 
scans or by other endoscopists than herself. Other such 
examples abound.

The influence of bias on the overall test performance is 
represented by the biased test matrix, which corresponds 
to the product of the bias matrix with the test matrix. 
Similarly, the extent of ignorance by a human tester about 
the diagnosis is modelled as a separate sensitivity–speci-
ficity matrix, which captures the concordance between 
positive and negative diagnoses made by an ignorant and 
expert diagnostician.

Bayes’ formula is used to calculate the positive predic-
tive value of a positive test, that is, the change from pre-
test to post-test probability of a specific disease [1–4].

The pre-test probably of a given disease (p) is defined 
as the ratio of individuals in whom the disease occurs 
and the population size tested. (It could also represent 

(9)PPV =
p · TP

p · TP + (1− p) · FP

a known prevalence of the disease or just an estimate of 
its a-priori probability of its occurrence.) The influence 
of multiple consecutive separate tests is calculated by 
repetitive applications of Bayes’ formula. For the purpose 
of the present analysis, the same test characteristics are 
assumed to apply to consecutive tests.

Results
Table 1 contains several scenarios of two sequential tests, 
with the second test depending on the test performance 
of the first test. The combined test characteristics cor-
respond with the multiplication of the two test matri-
ces. The first scenario illustrates that a perfect 2nd tester 
with both sensitivity and specificity values of 100% would 
leave the test characteristics of the primary test unaf-
fected. The second scenario illustrates a situation where 
in an imperfect 2nd tester interprets or builds on the 
results of a prefect primary test. Such situations arise, for 
instance, if the results obtained by using a highly sensitive 
and specific instrument depend on the manual or cogni-
tive skills of its less than perfect operator. In the major-
ity of cases, sequential testing leads to a deterioration of 
the overall test characteristics. This phenomenon is illus-
trated by the third scenario of Table 1 where the 1st and 
2nd test both yield imperfect test results. Such scenario 
would, for instance, apply to a situation, where an attend-
ing physician would assess a clinical status based on the 
report by a medial resident. Their combined test perfor-
mance turns out worse than the test performance of each 
individual tester alone. A completely worthless secondary 

Table 1 Examples of the joint influence of two sequential tests

T+ and T− represent a positive or negative test result, respectively. Dx+and Dx− represent a positive or negative diagnosis, respectively

Scenario 2nd Test matrix 1st Test matrix Combined test matrix

Dx + (%) Dx− (%) Dx + (%) Dx− (%) Dx + (%) Dx− (%)

Perfect 2nd tester

T+ 100 0 80 10 80 10

T− 0 100 20 90 20 90

Perfect 1st tester

T+ 80 10 100 0 80 10

T− 20 90 0 100 20 90

Imperfect 2 testers

T+ 80 10 70 15 59 20

T− 20 90 30 85 41 80

Ignorant 2nd tester

T+ 50 50 70 15 50 50

T− 50 50 30 85 50 50

Ignorant 2nd tester

T+ 50 50 100 0 50 50

T− 50 50 0 100 50 50
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test is characterized by a test matrix with sensitivity and 
specificity values of 50%. Any secondary test or tester 
with such characteristics would turn even the best test 
into worthless information. As all examples of Table  1 
illustrate, the overall (combined) outcome of two sequen-
tial tests is at best only as good as the test performance of 
the lesser of the two tests. In other words, a tester can-
not appreciate any extraneous test results beyond his/her 
very own limitations or level of understanding.

The influence of bias harboured by a human tester 
lends itself to be phrased in terms of a sequential second-
ary test, with the potential to impugn the characteristics 
of the primary test. Table 2 provides seven examples for 
the influence of bias on a test characterized by sensitiv-
ity and specificity values of 80% and 90%, respectively, 
with each consecutive example downward representing 
an increasingly more pronounced form of bias. With-
out bias, as shown by the top example, the test matrix 
remains unaffected, and a positive test result increases 
the disease probability from 20 to 67%. An increasing bias 
results in decreasing test performance with decreasing 
positive predictive values until the test completely loses 
its discriminatory power in the fourth example. With 

even more pronounced bias towards false test results, any 
positive test outcome becomes erroneously interpreted 
as predicting the non-existence of the diagnosis tested 
for.

In general, the sensitivity and specificity of a test can-
not drop below 50%. However, this rule does not apply 
to a biased human tester. Table 3 serves to illustrate how 
a strong bias can completely revert the meaning of a 
positive test outcome into its opposite. The top example 
refers to a completely unbiased tester whose inexistent 
bias leaves the test matrix (and the test outcome) unaf-
fected. Assuming a 50/50 split in the pre-test probability 
for the presence of a diagnosis or its alternative, the unbi-
ased evaluation of a positive test outcome increases the 
diagnostic probability from its pre-test value of p = 50% 
to a post-test value of PPV = 94%. As shown by the sec-
ond example of Table 3, in a strongly biased tester, how-
ever, the same positive test outcome becomes interpreted 
completely differently by assigning the alternative (nega-
tive) diagnosis a falsely high positive predictive value of 
PPV = 83%. By inverting the performance characteristics 
of the test matrix, a strong bias may completely invalidate 
the test outcome and lead to a seeming confirmation the 
tester’s biased perception.

Table 2 Seven examples of the same test matrix affected by bias of increasing magnitude

T+ and T− represent a positive or negative test result, respectively; Dx+and Dx− represent a positive or negative diagnosis, respectively; p & PPV represent pre-test 
probability & positive predictive value, respectively

Bias Test matrix Biased test matrix p and PPV of 
diagnosis (%)

p and PPV of 
alternative 
diagnosis (%)Dx+ (%) Dx− (%) Dx+ (%) Dx− (%) Dx+ (%) Dx− (%)

1st Example

T+ 100 0 80 10 80 10 p 20 80

T− 0 100 20 90 20 90 PPV 67 33

2nd Example

T+ 80 20 80 10 68 26 p 20 80

T− 20 80 20 90 32 74 PPV 40 60

3rd Example

T+ 60 40 80 10 56 42 p 20 80

T− 40 60 20 90 44 58 PPV 25 75

4th Example

T+ 50 50 80 10 50 50 p 20 80

T− 50 50 20 90 50 50 PPV 20 80

5th Example

T+ 40 60 80 10 44 58 p 20 80

T− 60 40 20 90 56 42 PPV 16 84

6th Example

T+ 20 80 80 10 32 74 p 20 80

T− 80 20 20 90 68 26 PPV 10 90

7th Example

T+ 0 100 80 10 20 90 p 20 80

T− 100 0 20 90 80 10 PPV 5 95
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Figure  1 shows the impact of using multiple biased 
tests consecutively. Using unbiased test example from 
Table 2, it takes only 2 positive tests results to raise a pre-
test probability from 20% to a post-test probability over 
90%. With a 20% bias of favouring false tests, it takes 4 
positive tests to raise the post-test probability over 90%, 
and with a 30% bias it would take more than 6 positive 
tests. A 50% bias renders the chain of consecutive tests 
worthless and completely unable to raise the diagnostic 
probability. Even more pronounced forms of bias would 
lead the diagnostician to misinterpret one or few positive 
tests as predicting the absence of the true diagnosis. This 
point is also illustrated by the right panel of Fig. 1, which 
shows the changes in the positive predictive values of 
alternative diagnoses associated multiple positive tests. 
If a particular alternative diagnosis were assigned a high 
pre-test probability, it would take only one or two biased 
tests to erroneously raise its post-test probability above 
90% and seemingly prove its existence.

It is generally assumed that the diagnosis, whose pres-
ence or absence is being tested for, represents a clear-cut 
nosologic entity. However, sometimes the tester knows 
the diagnosis only by name without a detailed appre-
ciation for its true appearance or consequences. There 
is a difference between knowing the terms and having a 
full grasp of the complex and multifaceted nature that 
is encapsulated by a short medical term. The difference 
between a fully understood diagnosis and superficial 
fluency with the medical term relates to the difference 
between an amateur and an expert. The concordance 
between positive and negative diagnoses made by an 
amateur and expert diagnostician can again be phrased 
in terms of a two-by-two sensitivity–specificity matrix 
(Table 3, third and fourth example). An informed tester 
will show a close (to 100%) concordance with any other 

expert diagnostician and leave the function of the test-
matrix uncompromised. Compared with an expert, an 
ignorant tester will understand the true meaning of a 
diagnosis only in a fraction of instances. Ultimately, igno-
rance acts on the test matrix in a similar fashion as a bias, 
with the overall performance of the test being reflected 
by the product of the ignorance-matrix with the test-
matrix. Again, such multiplication invariably results in 
a deterioration of the test characteristics with an overall 
reduction in test performance.

Discussion
It stands to reason that personal preferences would 
bias one’s perception and interpretation of any test out-
come. Physicians like other professionals sometimes see 
the world less as it is and more as they would like it to 
appear. The present analysis tries to establish a quantita-
tive relationship between the magnitude of such personal 
preferences and their effect on cognitive decline. These 
preferences are phrased in terms of a two-by-two matrix, 
which acts on the primary diagnostic test and leads to 
deterioration of its test characteristics. Ignorance exerts 
a similar effect as bias on the test-matrix. Although bias 
and ignorance constitute two different phenomena, ulti-
mately, they both effect the test matrix in a similar fash-
ion and reduce its overall efficacy.

Like any other type of diagnostic test, cognition and 
judgement by a human tester can also be described in 
terms of sensitivity and specificity values. Good judge-
ment is characterized by high sensitivity and specific-
ity values in recognizing abstract concepts or selecting 
between competing alternatives. The performance of 
human testers is a-priori limited by their very own levels 
of sensitivity and specificity in interpreting test outcomes 
or any given array of facts. An adage of hermeneutics 

Fig. 1 Influence of bias on test outcome. The positive predictive value of a diagnosis (left) and its alternatives (right) rise or fall with multiple 
consecutive tests. Each curve represents a bias of different magnitude, ranging from 0 to 100%
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states that humans only see what they know [11–13]. 
Accordingly, human testers cannot measure beyond their 
own level of competence or understanding, as reflected 
by their corresponding sensitivity and specificity values 
in assessing test outcomes. These levels of understanding 
may be determined by innate talents, intellectual apti-
tude, as well as bias and ignorance.

Test characteristics are usually accepted as given, but 
rarely questioned with respect to their function in the 
hands of a biased or ignorant human tester. The influence 
of bias and ignorance can markedly reduce the quality of 
a test as evidenced by its test characteristics. Although 
the focus of the present article is centred on the test per-
formance of a physician, who interprets signs and symp-
toms in making a medical diagnosis, similar arguments 
apply to other human testers deciding between any types 
of dichotomous judgement options. Phrasing judge-
ment in terms of a sensitivity–specificity matrix provides 
a useful framework to conceptualize the influence of 
bias and ignorance on decision making. The underlying 
mathematics involves little more than matrix multiplica-
tion, which is easy to execute and renders the outcome 
of calculations transparent for future reference. Despite 
its simplicity, the model provides valuable insights about 
the impact of two such relevant confounders, such as bias 
and ignorance, on human judgement.

Several caveats and limitations pertaining to the pre-
sent analysis deserve to be mentioned. Among statisti-
cians and epidemiologists, innumerable forms of bias are 
known to affect the accumulation and analysis of research 
data [14–16]. The present analysis is not meant to cover 
all types of different bias, such as selection bias, lead time 
bias, or even other forms of cognitive bias. It also does 
not consider bias with respect to the expected outcomes 
that would be expressed as monetary costs or in terms of 
effectiveness. The present analysis is restricted to the type 
of bias that could be expressed as personal preference for 
identifiable test outcomes. Besides the test characteris-
tics, however, a diagnostician may also be a-priori biased 
in assigning false pre-test probabilities to various diag-
nostic alternatives. Such bias would further aggravate the 
impact of the bias illustrated in Table 2. In the examples 
shown, consecutive tests were assumed to carry the same 
test characteristics, and a bias of the same magnitude 
was chosen for false positive, as well as false negative 
test results, acting similarly on consecutive tests. These 
assumptions were made to simplify the calculations and 
make the results more transparent, but they do not affect 
the general applicability of the model. In reality, different 
tests would harbour varying sensitivity and specificity 
values, and different tests would also be affected by bias 
of varying magnitude.

In conclusion, the proposed model helps to understand 
in quantitative terms, how bias and ignorance can alter 
a diagnostician’s interpretation of test outcomes and 
result in errors of judgement or decision making. Even 
with its potential limitations in mind, the model might be 
insightful and applicable to different scenarios of decision 
analysis.
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