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Combining symbolic regression with the Cox 
proportional hazards model improves 
prediction of heart failure deaths
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Abstract 

Background:  Heart failure is a clinical syndrome characterised by a reduced ability of the heart to pump blood. 
Patients with heart failure have a high mortality rate, and physicians need reliable prognostic predictions to make 
informed decisions about the appropriate application of devices, transplantation, medications, and palliative care. In 
this study, we demonstrate that combining symbolic regression with the Cox proportional hazards model improves 
the ability to predict death due to heart failure compared to using the Cox proportional hazards model alone.

Methods:  We used a newly invented symbolic regression method called the QLattice to analyse a data set of medi-
cal records for 299 Pakistani patients diagnosed with heart failure. The QLattice identified non-linear mathematical 
transformations of the available covariates, which we then used in a Cox model to predict survival.

Results:  An exponential function of age, the inverse of ejection fraction, and the inverse of serum creatinine were 
identified as the best risk factors for predicting heart failure deaths. A Cox model fitted on these transformed covari-
ates had improved predictive performance compared with a Cox model on the same covariates without mathemati-
cal transformations.

Conclusion:  Symbolic regression is a way to find transformations of covariates from patients’ medical records which 
can improve the performance of survival regression models. At the same time, these simple functions are intuitive 
and easy to apply in clinical settings. The direct interpretability of the simple forms may help researchers gain new 
insights into the actual causal pathways leading to deaths.

Keywords:  Proportional hazards model, Symbolic regression, Qlattice, Machine learning, Cardiovascular heart 
diseases, Heart failure
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Background
Heart failure (HF) is a clinical syndrome characterised 
by a reduction in the ability of the heart to pump or fill 
with blood. HF can be defined physiologically as an inad-
equate cardiac output to meet metabolic demands, often 
manifesting as increased left ventricular filling pressure 
[1]. Among the causes of HF are coronary heart disease, 
hypertension, diabetes, obesity, and smoking [2]. HF 

affects at least 26 million people globally and has a high 
mortality rate [3].

Various methods have been developed to estimate the 
risk of death for patients with HF. Well-known models 
include the ADHERE model [4] and the Seattle Heart 
Failure Model [5]. Although these models are accu-
rate, they are unintuitive and rely on extensive medical 
records, making them hard to apply in a clinical setting.

Ahmad et al. published a study of 299 patients with HF 
admitted to Faisalabad Institute of Cardiology or Allied 
Hospital Faisalabad, Punjab, Pakistan [6]. In their study, 
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Ahmad et  al. used a Cox model to predict survival of 
patients using much fewer covariates than the Seattle 
Heart Failure Model. The data set was made freely avail-
able by Ahmad et al., and it has subsequently been used 
in additional analyses using both survival models [7] and 
machine learning techniques [8].

Cox proportional hazards model
The Cox model [9] is widely used to predict survival in 
health science. When using the method, the researcher 
needs to choose which risk factors to include in the 
model, and the final model performance is obviously 
dependent on the appropriate choice of risk factors. One 
such example of a Cox regression model to model HF is 
the MAGGIC model in [10]

The general form of the Cox model is [9]:

where

•	 t is the survival time
•	 h(t) is the hazard function determined by a set of p 

covariates (x1, x2, . . . , xp)
•	 (b1, b2, . . . , bp) are the coefficients which measure the 

impact of the covariates
•	 the term h0(t) is the baseline hazard, i.e. the hazard if 

all the xi are equal to zero

This can also be written as:

If we let h(t) and h′(t) be the hazard function for two 
individuals that differ only in x1 with a difference δx , their 
relative hazard is:

This shows an important limitation of Cox models: A 
unit change in a covariate will have the same effect on the 
hazard regardless of the origin of the change. For exam-
ple: a change in x1 of 0.1 will have the same effect on sur-
vival whether from 1.0 to 1.1 or from 5.0 to 5.1.

Mathematical transformations
In this paper, the term mathematical transformation, 
sometimes just transformation, means to apply a math-
ematical function to a covariate: xT = f (x) for some 
function f. Perhaps the most widely used mathematical 
transformation is log-transformation: xT = log(x) . But 
other typical transformations include x2 , 

√
x , and ex.

h(t) = h0(t) · eb1x1+b2x2+...+bpxp

h(t) = h0(t) · eb1x1 · eb2x2 · . . . · ebpxp

h′(t)

h(t)
=

eb1(x1+δx)

eb1x1
= eb1(x1+δx−x1) = eb1δx

When fitting a Cox model using mathematically trans-
formed covariates, we have:

which is clearly no longer independent of the origin of x1 
unless f is a linear function. Thus the effect of the trans-
formation is to overcome this specific limitation in the 
generality of Cox models.

It is reasonable to hypothesise that well-chosen trans-
formations of the available covariates will improve the 
predictive power of Cox models.

In this study, we demonstrate that this is indeed the 
case, and that a useful method to identify an appropri-
ate mathematical transformation is to use symbolic 
regression.

Symbolic regression
Symbolic regression is a machine learning method that 
attempts to explain some Y in terms of some X using a 
mathematical expression composed of a set of basic func-
tions. However, the search space of possible expressions 
grows exponentially with the length of the expression, 
which makes a direct search infeasible. Traditionally, 
genetic programming has been used to search this space 
selectively [11–13]. Recent approaches have been more 
physics-inspired [14].

The QLattice is a symbolic regressor inspired by quan-
tum field theory [15]. The QLattice runs on a dedicated 
high-performance computing cluster and models the 
list of possible mathematical expressions—in principle: 
infinite—that could link Y to X as a superposition of an 
infinite set of spatial paths. The QLattice searches this 
list of all mathematical expressions, including param-
eters, for the expressions that best model the output from 
the input. The result of the search is a list of expressions 
sorted by how well they match observations.

The QLattice can be used to generate either classifica-
tion models or regression models. In this study, we only 
use it to generate classification models. Mathematically, 
this means that the QLattice will wrap each expression 
in a logistic function, thereby allowing the output to be 
interpreted as a probability. In other words: if X is an 
input vector, f(X) is the mathematical equation, and Y 
is the event we want to predict, then the QLattice will 
search for functions f such that the predictive power of:

is maximised.
In this study, we used symbolic regression to mathe-

matically transform the available covariates from Ahmad 

h′(t)

h(t)
= eb1(f (x1+δx)−f (x1))

Y =
1

1+ e−f (X)
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et al. We subsequently fitted a Cox model to these trans-
formed values.

To our knowledge, the combination of symbolic regres-
sion and Cox models has not previously been studied in 
research.

Data
The data set used in this study consists of medical records 
of 299 HF patients admitted to the Faisalabad Institute of 
Cardiology and the Allied Hospital in Faisalabad (Punjab, 
Pakistan) between April and December 2015.

The data set contains 105 women and 194 men with 
left ventricular systolic dysfunction. The patients had HF 
in the classes III or IV of New York Heart Association 
(NYHA) classification scheme.

The patients were between 40 and 95 years old (mean 
60.8) at the time of admission. The follow-up period was 
between 4 days and 285 days with a mean of 130 days.

The data set contains the following potential risk fac-
tors: age, serum sodium, serum creatinine, gender, smok-
ing, blood pressure (BP), ejection fraction (EF), anaemia, 
platelets, and creatinine phosphokinase (CPK). Table  1 
shows the summary statistics for the data.

Anemia in patients was assessed by their haematocrit 
level. Patients with haematocrit less than 36% (mini-
mum normal level of haematocrit) were taken as anemic. 
Information on a patient’s smoking status and high blood 
pressure were taken from physician’s notes.

Methods
In this study we picked the top three significant fea-
tures under the Mann–Whitney U test from [8] and 
then used the QLattice to find how these covariates can 
best be mathematically transformed to model risk of 
death. Finally, we fitted a Cox model on the transformed 
covariates.

The top three significant features according to the 
Mann–Whitney U test are: ejection fraction, serum cre-
atinine and age. Interestingly typical factors contributing 
to HF such as gender, smoking and blood pressure are 
not significant in this test. See the discussion in Ahmad 
et al. [6] and references therein .

QLattice for finding the best transformation of covariates
For each of the selected covariates, we used the QLattice 
to find the mathematical transformation that best pre-
dicted death events given that covariate alone.

Cox regression has an important limitation: a unit 
change in a covariate will have same effect on the hazard 
regardless of the origin of change. Thus by exploring the 
possibility of transformations of covariates we can over-
come this limitation and potentially improve the predic-
tive power of Cox models.

Since this search only involved a single covariate, we 
limited the QLattice to work with the following unary 
function set: 1x , e

x , log(x) , 
√
x.

Table 1  Summary statistics for the data set

Overall Min 25% 50% 75% Max

n 299

TIME, mean (SD) 130.3 (77.6) 4 73 115 203 285

Event, n (%) 0 203 (67.9)

1 96 (32.1)

Gender, n (%) 0 105 (35.1)

1 194 (64.9)

Smoking, n (%) 0 203 (67.9)

1 96 (32.1)

Diabetes, n (%) 0 174 (58.2)

1 125 (41.8)

BP, n (%) 0 194 (64.9)

1 105 (35.1)

Anaemia, n (%) 0 170 (56.9)

1 129 (43.1)

Age, mean (SD) 60.8 (11.9) 40 51 60 70 95

EF, mean (SD) 38.1 (11.8) 14 30 38 45 80

Sodium, mean (SD) 136.6 (4.4) 113 134 137 140 148

Creatinine, mean (SD) 1.4 (1.0) 0.5 0.9 1.1 1.4 9.4

Pletelets, mean (SD) 263K (97K) 25K 212K 262K 303K 850K

CPK, mean (SD) 581.8 (970.3) 23 116.5 250 582 7861
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Cox model
Finally, we fitted a Cox model with the output of the math-
ematically transformed covariates.

The resulting model was validated using concordance 
index (C-index). The C-index for a survival model can be 
thought of as the weighted average of the area under time-
specific Receiver Operating Characteristic (ROC) curves. 
We also computed the time-specific ROC curve and area 
under the curve (AUC) for 285 day survival.

Comparison Cox model
For comparison, we fitted a Cox model on the same covari-
ates but without the identified mathematical transforma-
tions. The two models used the same covariates and only 
differed in the transformations. The models were com-
pared using C-index, AUC (285 days), log-likelihood, and 
Akaike Information Criterion (AIC) [16].

All calculations were done in the programming language 
Python. For symbolic regression, we used QLattice ver-
sion 1.4.6 [15]. For Cox Modelling, we used lifelines version 
0.25.7 [17].

Results
Best transformation of Ejection Fraction
The best mathematical relation between ejection fraction 
and the probability of death was:

or, combined with the logistic wrapper:

f (E) = −2.1+
1.6

0.066E − 0.89

P(death | E) =
1

1+ e2.1−
1.6

0.066E−0.89

The probability of death was found to be closer associ-
ated with the inverse of the ejection fraction than with 
the ejection fraction directly.

Best transformation of serum creatinine
The best mathematical relation between serum creatinine 
and the probability of death was:

or, combined with the logistic wrapper:

As with the ejection fraction, the probability of death is 
closer associated with the inverse of serum creatinine 
than to serum creatinine directly.

Best transformation of age
The best mathematical relation between age and the 
probability of death was:

or, combined with the logistic wrapper:

The probability of death grows exponentially with age, 
with a growth constant of 0.056.

Kaplan Meier curves
In Fig. 1 we plot the Kaplan Meier curve on all the data 
and compare between Kaplan Meiers curves segmented 

f (C) = 1.5−
0.91

0.42C − 0.084

P(death | C) =
1

1+ e−1.5+ 0.91
0.42C−0.084

f (C) = 0.02e0.056A − 1.5

P(death | A) =
1

1+ e−0.02e0.056A+1.5

Fig. 1  Kaplan Meier curves
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linearly over the ejection fraction. The aim is to demon-
strate the non-linear effect the ejection fraction has on 
survival. Below are the curves with 95% confidence inter-
val bands.

Within linear increments between 25 and 80 of ejec-
tion fraction, the change on survival is limited. However 
within the range of 15 < EF ≤ 25 then ejection fraction 
has a larger impact on survival. This points towards a 
non-linear effect the ejection fraction has on survival.

Cox model with transformed risk factors
Having determined that e0.056A , 1/E, and 1/C are closer 
associated with risk of death than E, C, and A directly, 
we fitted a Cox model on these transformed covariates. 
Table 2 shows the coefficients (coef ), hazard ratios (HR), 
and p-values for each of the risk factors. (Where A is the 
age, E is the ejection fraction, and C is serum creatinine.)

The log-likelihood of the model was found to be 83.8, 
and the C-index was 0.75. The model’s discrimination 
ability was also tested with a ROC curve, and the AUC 
was found to be 0.82 at 285 days, meaning that the model 
could correctly predict death within 285 days for 82% of 
the patients.

Cox model with unmodified covariates
The comparison model was fitted on the same three 
covariates used above, but in untransformed form. 
Table 3 shows the coefficients (coef ), hazard ratios (HR), 
and p-values for each of the risk factors for this compari-
son model.

The log-likelihood of the model was found to be 66.5, 
and the C-index was 0.72. The model’s discrimination 
ability with AUC was found to be 0.78 at 285 days, mean-
ing that the model could correctly predict death within 
285 days for 78% of the patients.

Comparing the two models
Table  4 shows a comparison of all four performance 
metrics for the two Cox models on the three covariates 
(ejection fraction, serum creatinine, and age) with and 
without the mathematical transformations.

The mathematical transformations improved the Cox 
model on all metrics without adding additional covari-
ates or any other information.

Comparison to model with all untransformed covariates
In the model used in Ahmad et al. [6], all covariates are 
used and have not been transformed. The AUC (250 days) 
of this model is 0.81 so we can see that the performance 
is very similar to the model with transformed covariates.

Discussion
Beyond the linear assumption in Cox models
Cox models are a powerful tool for survival regression. 
They are conceptually simple, easy to interpret, and can 
often accurately model the survival probability over 
time–even given censored data. These properties have 
made Cox models one of the most popular methods for 
survival modelling in health science.

As described above, a limitation of Cox models is that 
each risk factor is modelled to affect risk independent 

Table 2  Significance of mathematically transformed covariates in the Cox model

coef HR HR lower 95% HR upper 95% z p

Exp(0.056A) 0.014 1.014 1.009 1.019 5.851 < 0.0005

1/E 0.537 1.711 1.418 2.064 5.609 < 0.0005

1/C -1.515 0.220 0.108 0.446 −4.198 < 0.0005

Table 3  Significance of covariates without transformation in the Cox model

coef HR HR lower 95% HR upper 95% z p

A 0.044 1.045 1.027 1.064 4.934 < 0.0005

E -0.049 0.952 0.933 0.971 −4.803 < 0.0005

C 0.358 1.430 1.251 1.635 5.244 < 0.0005

Table 4  Comparison of performance metrics

Transformed covariates Untransformed 
covariates

C-index 0.75 0.72

AUC (285 days) 0.82 0.78

Log-likelihood 83.8 66.5

Partial AIC 941 958
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of the origin. This study has shown than using math-
ematically transformed covariates can overcome this 
limitation.

For example: with the mathematical transformation 
1/E, the hazard ratio after a unit change in ejection frac-
tion is:

which is clearly no longer independent of the origin of E.

Interpretability
One of the advantages of symbolic regression over other 
machine learning methods is that the models are easier 
to interpret. This is true when the full model is expressed 
as a symbolic relation, and it is also true when a symbolic 
transformation is combined with another interpretable 
model such as the Cox model.

For example, the fact that the transformation 1/E is a 
better risk factor than E directly has at least two possible 
interpretations:

•	 One is simply that the lower the ejection fraction, 
the larger the additional hazard given an additional 
reduction, i.e. a change from 0.3 to 0.29 is more dan-
gerous than a change from 0.6 to 0.59

•	 Another interpretation can be seen by observing that 
if a fraction E is pumped out of the heart in every 
heartbeat, the average number of heartbeats that a 
unit of blood stays in the heart before it is pumped 
out will be 1/E, although certainly with large varia-
tion across the cavity of the ventricles.

	 The mathematical transformation 1/E of ejection 
fraction means that the Cox model is based on a 
covariate which is the average number of heartbeats 
blood stays in the heart.

Conclusions
In this study, we demonstrated that combining symbolic 
regression with survival regression models improves the 
predictive power without sacrificing the interpretability 
that comes from a clear mathematical formulation of the 
model.

Other machine learning methods exist that may 
provide the same—or perhaps better—performance 
improvements than what can be achieved with the com-
bination approach used here, but the price will typically 
be that the resulting model is black-box, or at least dif-
ficult to interpret.

In this study, we focused on predicting heart failure 
deaths, which is important in its own right, but the per-
spective of our research is that mathematical transforma-
tions based on symbolic regression may be applied to any 

h′(t)

h(t)
= eb1(f (E+δE)−f (E)) = eb1(

1
E+δE−

1
E )

survival model with improved predictive accuracy and 
new insights as a result.
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