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Abstract 

Background: Various machine learning and artificial intelligence methods have been used to predict outcomes of 
hospitalized COVID‑19 patients. However, process mining has not yet been used for COVID‑19 prediction. We devel‑
oped a process mining/deep learning approach to predict mortality among COVID‑19 patients and updated the 
prediction in 6‑h intervals during the first 72 h after hospital admission.

Methods: The process mining/deep learning model produced temporal information related to the variables and 
incorporated demographic and clinical data to predict mortality. The mortality prediction was updated in 6‑h intervals 
during the first 72 h after hospital admission. Moreover, the performance of the model was compared with published 
and self‑developed traditional machine learning models that did not use time as a variable. The performance was 
compared using the Area Under the Receiver Operator Curve (AUROC), accuracy, sensitivity, and specificity.

Results: The proposed process mining/deep learning model outperformed the comparison models in almost all 
time intervals with a robust AUROC above 80% on a dataset that was imbalanced.

Conclusions: Our proposed process mining/deep learning model performed significantly better than commonly 
used machine learning approaches that ignore time information. Thus, time information should be incorporated in 
models to predict outcomes more accurately.
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Background
Throughout the COVID-19 pandemic, machine learning 
and artificial intelligence (AI) methods have been used to 
understand and predict virus spread, the potential impact 
of vaccines, morbidity, mortality, and resource allocation 
[1]. Modeling of COVID-19 morbidity and mortality has 
yielded insights into disease progression [2, 3], which 
have been informative for health systems to anticipate 

resource needs and effective interventions [4]. However, 
with the emergence of COVID-19 variants and rapid 
advances in COVID-19 treatment, prevention, and vac-
cination, 1-time modeling is likely ineffective for under-
standing how to provide optimal care from the patient, 
health system, and public health perspectives [4].

Process mining techniques assist in analyzing and opti-
mizing systems using sequences of observations. Process 
mining approaches have been shown to be valuable in the 
healthcare industry by enhancing healthcare processes 
[5, 6]. However, process mining has not yet been used to 
predict mortality after hospital admission for COVID-19 
patients [7, 8] though providing significant advantages 
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over static models. In general, process mining algorithms 
take a sequential perspective on data points that have 
been observed over time to derive a single semantic-
rich graph structure like a Petri Net. In the context of 
COVID-19, each patient follows a distinct path through-
out such a derived Petri net while being in one state at 
any point of time. The states naturally embed informa-
tion of the sequence of observations that lead to this state 
and of potential future observations leading to subse-
quent states. This means that process mining algorithms 
allow to explicitly incorporate the timing and sequence of 
healthcare events into the modeling process by leverag-
ing the states of a Petri Net.

One significant advantage of process mining tech-
niques over static models is their ability to explicitly 
incorporate the timing and sequence of healthcare events 
into the modeling process. For example, let’s assume that 
a machine learning model uses two specific inputs of 
blood pressure and blood sugar to predict the mortality 
of a patient. In this case, a static machine learning model 
is indifferent to the sequence by which the values of 
blood pressure and blood sugar were obtained from the 
patient. Also, the model does not consider when these 
values were collected (the occurrence times of the events 
associated with collecting blood pressure and blood 
sugar values are ignored by the model) in predicting the 
mortality of the patients. In contrast, for this example, a 
process mining model uses not only the values of blood 
pressure and blood sugar, but by leveraging Petri net 
states, also their collection sequence, and timing in cal-
culating the mortality of the patient. It can be shown that 
by incorporating the time and sequence information, one 
can usually generate better prediction models [9]. There-
fore, we aimed to utilize a combined process mining and 
deep learning modeling approach for prediction.

Methodology
University of illinois hospital (UIH) cohort and variables
UIH is a tertiary, academic teaching hospital in Chi-
cago. The University of Illinois at Chicago (UIC) Institu-
tional Review Board approved this study. All admissions 
to UIH for COVID-19 positive patients were reviewed 
for the time of the first COVID-19 positive test and the 
date of admission. If the first positive COVID-19 test 
was performed greater than 14  days prior to admission 
or greater than 48  h after admission, the patient was 
excluded. Patients transferred from another institution 
were reviewed for prior COVID-19 testing. The patient 
was excluded if the most recent COVID-19 test has been 
performed longer than 14 days prior to the transfer. If the 
transfer was not related to any possible COVID-19 symp-
toms, the patient was excluded. Symptomatic patients for 

COVID-19 were included in this cohort, as verified by 
manual chart review or claim data.

If a patient had multiple hospital admissions at UIH 
related to COVID-19, each admission encounter was cat-
egorized with a final outcome of as death or discharge. 
All admissions were categorized as intensive care unit 
(ICU) or Non-ICU.

We partitioned our data into training, validation, and 
test cohorts using a 60/20/20 split ratio, respectively. 
Consequently, each admission encounter belonged to a 
unique cohort.

Variable selection was based on literature review and 
expert opinion [10]. The variables selected are shown 
in Table  6, in the appendix section, where demograph-
ics, vital signs, laboratory data, and clinical characteris-
tics (comorbidities, diagnosis codes, problem list, clinic 
notes, procedure reports, location within the hospital) 
were assessed.

Converting electronic health records (EHRs) to an event log
Process mining algorithms utilize event logs as their input. 
Event logs consist of a sequence of events with a name 
describing the observed action and its corresponding 
timestamp (i.e., when the event occurred). The temporally 
ordered sequence of such events is called a trace. Com-
monly, a trace contains only events that belong to the same 
context. In this paper, the observations of a specific COVID-
19 admission formed a trace. This can also be understood as 
a trajectory. The set of all traces (i.e., all COVID-19 admis-
sions in the dataset) comprised an event log.

The extracted traces of the event log were performed at 
6 h, 12 h, 18 h, 24 h, 30 h, 36 h, 42 h, 48 h, 54 h, 60 h, 66 h, 
and 72 h of the hospital admission. Patients that had died 
or been discharged before a given time of the prediction 
were excluded from contributing date to times after dis-
charge or death.

For each admission, static features were extracted that 
did not change over the course of the hospital encoun-
ter (i.e. demographic information, comorbidities). The 
patient-centric trajectory of the hospital encounter was 
then represented as a trace. A trace started with the first 
occurrence of an event related to the hospital encoun-
ter and ended with the occurrence of an outcome event: 
either discharge or death. Each event was associated with 
the timestamp of observation. In this way, the state of the 
patient can be reconstructed at each point of time. Events 
can be either location-based, vital signs, lab measure-
ments, report-based, encounter-based, or ICU-based.

Location-based events represented that a patient 
moved to a particular location. For example: the emer-
gency room, ICU, non-ICU inpatient teams, among oth-
ers. Vital sign events represented the observation of a 
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particular vital sign, which were subsequently recorded 
as either “ok” or “critical”. Laboratory measurements were 
flagged as either normal or abnormal to create the labo-
ratory events. Report-based events corresponded to pro-
cedure reports (e.g. electrocardiograms or radiological 
testing). Report-based events correspond to a performed 
procedure without considering individual findings or 
outcomes within the reports. Encounter-based events 
represented specific highlights (admission, observation 
status, discharge, or death) during the hospital stay. ICU-
based events were based on the admission or not to the 
ICU, therefore, there were ICU-in and ICU-out events 
recorded.

After the conversion of the EHR data, a set of traces 
(i.e., an event log) was obtained. Each set of traces corre-
sponded to one hospital admission and used the events to 
describe the health trajectory of the patient from admis-
sion to either discharge or death. Due to the definition of 
events and the sequential structure of traces, the traces 
could be used to create subtraces, such that a subtrace 
contained only events from, e.g., admission time to 24 h 
into the hospital encounter.

Process mining/deep learning model development
A process mining/deep learning model was developed to 
predict the likelihood of mortality every 6-h within the 
first 72 h of hospital admission. Our approach is a com-
bination of both process mining and deep learning mod-
eling. The process mining modeling output were used as 
the input to the deep learning model for the prediction. 
The patient trajectories were used to extract a process 
graph model using a process mining discovery algo-
rithm [11]. The resulting process model and the patient 

trajectories from admission to the time of prediction 
were fed to the Decay Replay Mining (DREAM) algo-
rithm [12]. The DREAM algorithm enhances the process 
model with functions that parameterize time using the 
patient trajectories. As an output, the DREAM algorithm 
provides a state of the process model for each patient 
that contains time information. Hence, the outputs of the 
DREAM algorithm are called timed state samples (TSS). 
The TSS corresponds to the health condition of a patient 
up to the time of prediction and contains information on 
the observed events and process states, and their interar-
rival times. Comorbidities and demographic information 
were used as independent variables. The generated TSS, 
together with demographic information and comorbidi-
ties, were then fed to a Neural Network (NN) model to 
predict mortality for each 6-h interval within the first 
72 h. The same process model was used for all time inter-
vals, and the architecture of the NN is shown in Fig.  1. 
Also, Table  1 provides more details about the deep 
learning modeling parameters. Figure  2 illustrates the 
complete overview of our proposed approach. The corre-
sponding source code is publicly available on our Github 
repository. Descriptive statistics, model development, 
and statistical analysis were conducted using Python, ver-
sion 3.6.

Machine learning models
We compared the results of the process mining approach 
with results of a published model and self-developed 
models using machine learning algorithms that did not 
directly utilize time information.

The first model was a Logistic Regression (LR) model 
developed using data from 305 patients in China [13]. 

Fig. 1 Architecture of Neural Network (NN). This Figure shows the details of the NN architecture. The timed state samples, demographics 
information and comorbidities were fed separately to two branches which first branch contains three hidden layers with 90, 50 and 20 neurons 
respectively. After the first and after the second hidden layers, there is a dropout layer with a rate of 20%. Moreover, the second branch contains one 
hidden layer with 5 neurons. The two branches were then concatenated to a branch with three hidden layers, containing 90, 50, and 20 neurons 
respectively. There is a dropout layer after the second concatenated hidden layer with the rate of 30%. At the end, the output layer included 
softmax activation function to predict mortality of the COVID‑ 19 patients
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Core features in this model were age, Lactate dehydroge-
nase (LDH), and C-reactive protein (CRP).

The self-developed model was trained using the UIH 
data cohorts to explore other machine learning algo-
rithms for the time interval modeling task. The devel-
opment of these models utilized the variables described 
above. However, the data were kept in the original tabular 
format, as opposed to the event log format. The time com-
ponent of the data was implicitly added to the training 
process by splitting a single training instance into multi-
ple instances based on the time interval. This conversion 
allowed the developed models to witness instances from 
low time intervals that had limited information and from 
high intervals with more complete information. A variety 
of popular machine learning algorithms were evaluated 
to classify mortality at each 6- hour time interval within 
72  h of admission. These algorithms included Logistic 
Regression (LR) [14], Decision Trees [15], Support Vec-
tor Machine (SVM) [16], Random Forest [17], XGBoost 
[18], LightGBM [19], and CatBoost [20]. The training 
process of these models included both a forward step 
feature selection and a grid search of model parameters. 
This search process aimed to find the best model with the 

fewest input features. The best model was determined 
based on the Average Area Under the Receiver Operat-
ing Characteristic Curve (AUROC) [21] of the validation 
cohort at each time interval.

Model evaluation
The primary evaluation metric for model development 
and selection was the AUROC. We used Delong’s test to 
calculate 95% confidence intervals (CI) of the AUROCs 
and compare AUROC CIs between models [22]. In addi-
tion, we calculated the accuracy, sensitivity and specific-
ity of models across the time intervals [22], with 95% CIs.

Analysis of contribution of process mining unique 
variables
Shapley value analysis [23] was conducted on the testing 
cohort to find out the impact of each variable in the pro-
cess mining model prediction and to identify variables 
associated with the mortality prediction of the COVID-
19 patients in the 6-h intervals within the first 72 h, and 
to compare it to the self-developed machine learning and 
Chinese LR [13] models.

Table 1 Deep learning model parameters

Hours Epoch Batch size Dropout rate Activation function Learning rate optimizer

6,12, 18, 30, 42, 54, 60, 
66, 72

350 12 0.5 Relu 5e‑4 Adam

24, 36 350 12 0.7 Relu 5e‑4 Adam

48 350 8 0.7 Relu 5e‑4 Adam

Fig. 2 Process Mining/Deep Learning Model Development: The orange parallelograms represent the input/ output data. Four different algorithms 
were used in this methodology which is shown in red rectangles. The green cylinders represent the variable types that were coming directly from 
the database and were used as the inputs to the algorithms. *Refer to Section Converting Electronic Health Records (EHRs) to an Event Log for more 
details
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Results
UIH cohort characteristics
Table  2 shows the demographics, clinical characteris-
tics, and medical conditions of the study population 
per encounter. There was a total of 508 encounters of 
481 unique patients. The training cohort included 303 
encounters (60%), the validation and testing cohorts 
the remaining 101 (20%) and 104 (20%) encounters, 
respectively. Given the size of the data, more traditional 
machine learning models have an advantage over deep 
learning based models. With the emergence of more 
COVID-19 data these models have the potential to be 
updated with more information. In the current state, 
data augmentation methods have the potential to be 

implemented with the goal of increasing overall perfor-
mance. In this study, we do not implement any data aug-
mentation, as the purpose of this work is to focus on the 
utilization of time information through the process min-
ing algorithms.

The testing cohort was slightly younger than the train-
ing and validation cohorts (mean 53.4 vs. 56.6  years, 
p = 0.009). Though the distribution of race was not sig-
nificantly different between the cohorts, the proportion 
of self-described Black patients was slightly higher in the 
validation (50.5%) and testing (47.1%) cohorts compared 
to the training cohort (45.2%). There were no statistically 
significant differences in the number of comorbidities per 
encounter in each cohort.

Table 2 Encounter characteristics of the training, validation, and testing cohorts

Bold indicates p-value < 0.05

Significance was set at 0.05

Patients older than 89 have been clipped to age 90
* Continuous variables were compared using a t-test and categorical variables were compared using a Chi-square test

Characteristics Training cohort
(N = 303)

Validation cohort
(N = 101)

Testing cohort
(N = 104)

p-value train 
versus Test*

p-value 
validation 
versus test*

p-value 
train + validation 
versus test*

Number of unique patients N (%) 288 (95.0) 96 (95.0) 97 (93.3)

Primary outcome (N, (%))

Mortality 43 (14.2) 6 (5.9) 11 (10.6) 0.18 0.12  < 0.0001
Demographics

Age in years Mean (std) 56.6 (16.6) 56.6 (15.6) 53.4 (14.2) 0.012 0.028 0.009
Female N (%) 147 (48.5) 50 (49.5) 56 (53.8) 0.18 0.27 0.18
Race/ethnicity (N, (%)) 0.63 0.95 0.76
Black 137 (45.2) 51 (50.5) 49 (47.1)

Hispanic 36 (11.9) 13 (12.9) 16 (15.4)

Other, non‑ hispanic 112 (37.0) 30 (29.7) 32 (30.7)

White 18 (5.9) 7 (6.9) 7 (6.7)

Mean (std) of the number of laboratory measurements per encounter

636 (786) 510 (663) 531 (972) 0.078 0.228 0.090
Mean (std) vital signs measurements per encounter

999 (1540) 765 (1344) 802 (1971) 0.026 0.12 0.030
Comorbidities 0.81 0.69 0.81
Mean (std) comorbidities per 
encounter

1.0 (1.1) 1.0 (1.1) 0.9 (0.9)

Hypertension N (%) 128 (42.2) 43 (42.6) 37 (35.6)

Diabetes N (%) 89 (29.4) 32 (31.7) 30 (28.8)

Heart disease N (%) 12 (3.9) 1 (1.0) 2 (1.9)

COPD N (%) 3 (1.0) 0 (0.0) 1 (1.0)

Stroke N (%) 1 (0.3) 0 (0.0) 0 (0.0)

Cerebrovascular disease N (%) 0 (0.0) 2 (2.0) 0 (0.0)

Cancer N (%) 4 (1.3) 2 (2.0) 1 (1.0)

Respiratory problems N (%) 44 (14.5) 12 (11.9) 15 (14.4)

Chronic kidney disease N (%) 28 (9.2) 11 (10.9) 6 (5.7)

Tuberculosis N (%) 3 (1.0) 1 (1.0) 3 (2.9)
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There were statistically more events in the train-
ing cohort (516.0 ± 3,882.3), compared to the testing 
(186.8 ± 1,217.4) and validation (176.6 ± 1,133.4) cohorts 
(P = 0.014). Conversely, there were no statistically sig-
nificant differences across encounter types by cohort 
(P = 0.96); laboratory events were the most frequent 
(94%, 94%, and 93% in the training, testing, and validation 
cohorts, respectively), followed by location (3.6%, 3.3% 
and 4.3% in the training, testing and validation cohorts, 
respectively) and vital signs events (0.9%, 1.2% and 1.2% in 
the training, testing and validation cohorts, respectively).

Evaluation metrics and proposed and baseline model 
performance
The process mining/ deep learning approach surmounted 
all of the time intervals in terms of AUROC compared to 
both the best baseline model and the best existing model 
in the literature. Also, in terms of specificity and accu-
racy, the proposed approach yielded the highest results 
in 9 intervals out of 12. Lastly, comparing the sensitivity 
metric results, our proposed model resulted in the best 
results in 10 intervals. The summary of the evaluation 
metrics for both the proposed approach and the base-
line models is illustrated in Fig.  3 (detailed numbers in 
Table  3). Moreover, Table  4 shows an evaluation of the 
sensitivity and specificity for the three models. Hence, 
the experimental results indicate that our approach out-
performed all evaluation metrics in most time intervals. 
A t-test of means is performed to test the stated null and 
alternative hypothesis for both the sensitivity and spec-
ificity over the 72-h time range with a threshold of 0.5. 
This analysis shows that the PM model outperformed 
both the RF and LR models.

Shapley value analysis
Figure 4 illustrates the results of the Shapley value analy-
sis for all 6-h intervals within the first 72 h of admission. 
Also, the exact Shapley values are shown in Table  5. In 
almost all cases, demographic characteristics had the 
most significant impact on the prediction of mortality, fol-
lowed by comorbidities. Age was strongly associated with 
mortality [9]. The impact of other variables varied from 
one time interval to another and comparing the value 
of the Shapley analysis for other variables, no consistent 
order was observed. The Shapley value analysis confirmed 
that the process mining-related variables–including the 
time decay function values, markings, and token counts– 
were consistently important for predicting mortality .

Discussion
Using a cohort of hospitalized COVID-19 patients from 
a large medical center in the United States, we devel-
oped a process mining model using routine clinical data 

and the sequence of clinical events to evaluate mortality 
risk. Process mining performed significantly better than 
traditional predictive models over 6-h intervals within 
the first 72  h after hospital admission. Furthermore, we 
corroborate prior findings indicating that demographic 
characteristics and comorbidities are strong mortality 
predictors in COVID-19 [24, 25]. Interestingly, process 
mining-related variables such as time decay function 
values, markings, and token counts were found to have 
a strong predictive value. These findings advance our 
understanding of COVID-19 mortality prediction and 
support further studies using process mining for dynamic 
risk prediction.

Although previous studies have consistently demon-
strated the underlying factors associated with COVID-
19 mortality [24], our results highlight those traditional 
models such as logistic regression or random forest might 
underestimate the mortality prediction. In contrast to 
more traditional models, process mining leverages time 
and the sequence of events. Technically, this was realized 
through the usage of time functions, which activated the 
observation of events, and which decayed over time [12]. 
Multiple types of time decay functions were used, such as 
linear, exponential, and logarithmic. Each of those func-
tions was initialized based on the mean or maximum 
patient history duration that was observed in the deriva-
tion data set.

By following this approach, predictive models can be 
developed that update outcome probability based on the 
time of the prediction. Thus, the likelihood of mortal-
ity may change over time, even if no further events have 
been observed.

The time decay functions values at a given time were 
fed into a NN, along with event features. Ideally, the NN 
does not just simply learn the impact of the duration 
of the last event observation on the outcome probabil-
ity, but models potentially complex time relationships, 
such as event interarrival times that have an effect on 
the outcome probability. These complex time rela-
tionships could be the durations between specific lab 
measurements, or the duration from admission to ICU 
in the interplay of performed procedures. As clinician 
behavior may affect event timings and sequencing, the 
clinician behavior itself may be playing a role in the 
prediction.

Our results suggest that evaluating the clinical course 
and the sequence of events up until the time of a predic-
tion can improve predictions as compared to only look-
ing at factors present on admission [25]. Our results help 
reconcile and summarize findings that demographics, 
clinical events, laboratory data, and comorbidities can 
help predict mortality in COVID-19 inpatients. To date, 
work on artificial intelligence modeling in COVID-19 
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Fig. 3 Statistical metrics for all 6‑h intervals within the first 72 h on the testing cohort. Blue indicators the Process Mining Model. Green indicators 
the Random Forest Model. Red indicators the Logistical Regression Model. Dashed lines indicate the upper and lower 95% confidence interval of 
the model’s AUROC
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Table 4 Statistical comparison of evaluation metrics

Hypothesis AUROC
(p-value)

Null Alternative

PM = LR PM > LR  < 0.05
(PM has a significantly better AUROC than LR)

PM = LR LR > PM  > 0.05
(LR does not have a significantly better AUROC than PM)

PM = RF PM > RF  < 0.05
(PM has a significantly better AUROC than RF)

PM = RF RF > PM  > 0.05
(RF does not have a significantly better AUROC than PM)

RF = LR RF > LR  > 0.05
(RF does not have a significantly better AUROC than LR)

RF = LR LR > RF  > 0.05
(LR does not have a significantly better AUROC than RF)

Fig. 4 illustrates the results of the Shapley value analysis for all 6‑h intervals within the first 72 h of COVD‑19 patients

Table 5 Shapley value analysis summary

Category Time intervals

6 Hr 12Hr 18Hr 24Hr 30Hr 36Hr 42Hr 48 Hr 54Hr 60Hr 66Hr 72Hr

Demographics 0.0144 0.0706 0.5983 1.014 0.0657 0.0622 0.0222 0.2034 0.0422 0.0274 0.0199 0.0698

Comorbidity 0.0044 0.0071 0.0264 0.2162 0.0126 0.0465 0.0076 0.1012 0.0087 0.0032 0.0039 0.0058

REP Events 0.0041 0.0064 0.0143 0.0201 0.0092 0.0061 0.0049 0.0041 0.0036 0.0022 0.0037 0.0044

Lab Measurement events 0.0035 0.0062 0.0092 0.0023 0.0083 0.0048 0.0048 0.0026 0.0036 0.0022 0.0035 0.0041

marking 0.0027 0.0040 0.0079 0.0023 0.0061 0.0048 0.0043 0.0025 0.0034 0.0022 0.0034 0.0033

Location events 0.0027 0.0033 0.0068 0.0023 0.0058 0.0044 0.0035 0.0023 0.0032 0.0019 0.0032 0.0033

Linear decay function (max) 0.0025 0.0030 0.0058 0.0022 0.0053 0.0039 0.0033 0.0022 0.0028 0.0015 0.0029 0.0032

Linear decay function (mean) 0.0024 0.0030 0.0055 0.0018 0.0052 0.0038 0.033 0.0022 0.0028 0.0013 0.0020 0.0029

VIT events 0.0023 0.0027 0.0053 0.0017 0.0046 0.0031 0.0025 0.0019 0.0020 0.0012 0.0018 0.0026

Token count 0.0022 0.0027 0.0044 0.0017 0.0042 0.0028 0.0023 0.0016 0.0018 0.0011 0.0017 0.0024

Logarithmic decay function (mean) 0.0018 0.0026 0.0042 0.0016 0.0038 0.0027 0.0023 0.0015 0.0017 0.0011 0.0017 0.0021

ICU Events 0.0018 0.0019 0.0026 0.0013 0.0018 0.0024 0.0022 0.0014 0.0013 0.0002 0.0011 0.0020
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includes several methodologies, the most frequent being 
LR, XGBoost, support vector machine, RF, among oth-
ers [7]. Although current artificial intelligence models 
have exhibited promising mortality predictive ability, it 
is unclear which of these methodologies might provide 
a better prediction compared to others. Moreover, avail-
able models do not consider the patient time course in 
addition to baseline covariates [26, 27]. This is crucial 
since it can promote early identification of COVID-19 
patients with high mortality risk, helping improve clinical 
decision-making and resource allocation.

At a more general level, our findings are consistent with 
the concurrent evaluation of the clinical course and avail-
able clinical data [24]. Therefore, our work highlights the 
importance of a comprehensive evaluation of COVID-19 
inpatients, including the sequence of clinical events.

A second important finding of this study was the added 
value of TSS on the process mining model develop-
ment as time passes, which to date has not been used in 
COVID-19 prediction models [7]. Based on the results of 
the Shapley analysis, the time decay function values, and 
the distinct process mining variables such as markings 
and token counts, consistently demonstrated an impor-
tant role in the mortality risk. Hence, our findings under-
score the importance of carefully modeling mortality 
risk while taking into account the series of clinical events 
among hospitalized COVID-19.

Our approach outperformed other published models in 
terms of the accuracy, specificity, sensitivity, and AUROC 
values [13], as well as the best baseline internal model.

Study limitations
Our results should be interpreted in the light of several 
limitations. First, our modeling was performed using 
data from a single site, and these models may have per-
formed differently in other cohorts; as a result, our pro-
cess should be repeated externally to validate the value 
of adding time and sequence information in other data 
sets. Second, our data reflect the first COVID-19 wave 
in Chicago, therefore, it may not reflect the impact from 
COVID-19 variants, developed therapies, or vaccination. 
Third, our dataset contained only a modest number of 
patients and validation in larger cohorts is needed. Lastly, 
data validation for report time versus event occurrence 

time, were demanding, limiting the evaluation of the pro-
cess mining model in real-time.

Conclusion
A process mining/deep learning approach using admis-
sion data and clinical course of hospitalized COVID-19 
patients was able to predict mortality in 6-h intervals 
within the first 72  h of admission and performed sig-
nificantly better than the commonly used approach of 
using only the initial admission results. Our findings 
underscore the importance of adopting clinical event 
times and sequencing in the study of COVID-19 mortal-
ity, which may help identify underlying characteristics 
among patients at risk. Since the use of TSS in process 
mining improved the prediction of COVID-19 mortality, 
strategies should be considered while identifying those 
sequential clinical changes, therefore helping to target 
treatments and resources among those at risk.

There are several avenues for future research. First, 
the resulting DREAM model can be used to discover 
if the non-observance of future events (such as action 
to be performed) has a positive or negative impact 
on the prediction to facilitate decision making. Such 
research efforts might enable the detection of improved 
intervention points in time. Second, sensitivity analy-
ses can be performed to investigate the modeled time 
dependencies to gain new knowledge about COVID-19 
care. This also allows us to investigate the robustness 
of the model to detect weaknesses that can be further 
improved. Lastly, our modeling can be used on larger 
and more diverse datasets and could be continued to 
be applied as new variants are observed and new vac-
cines and treatments introduced to assess their impact 
on clinical outcomes.

Appendix
Table 6 shows the variables which were used as inputs to 
the proposed model. These variables are related to one 
of the following categories: demographics information, 
process mining, comorbidities, locations, encounters, 
procedure reports and the lab measurements. Moreo-
ver, where applicable, possible values of the variables are 
shown.
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Table 6 Detailed variables were used as inputs to the proposed 
model

Variables related to 
specific category

Variables Variables values (if 
applicable)

Demographics Age

Demographics Gender

Demographics Race

Process mining EventCount

Process mining TokenCount

Process mining Marking

Process mining LinearDecay

Process mining LinearDecay_mean

Process mining ExpDecay_max

Process mining LogDecay_mean

Comorbidities Hypertension

Comorbidities Diabetes

Comorbidities Heart Disease

Comorbidities COPD

Comorbidities Stroke

Comorbidities Cerebrovascular Disease

Comorbidities Cancer

Comorbidities Respiratory Problems

Comorbidities Chronic Kidney Disease

Comorbidities Tuberculosis

Location COVID‑4

Location COVID‑2

Location MEDICAL INTENSIVE

Location FAMILYMEDICINE

Location MICU‑2

Location MED SERVICE A

Location MED SERVICE D

Location MED SERVICE C

Location MED SERVICE B

Location MiCU‑1

Location MED SERVICE E

Location COVID‑5

Location COVID MICU‑3

Location MED HEMATOLOGY

Location MED HEPATOLOGY/LIVER

Location MED SICKLE CELL

Location COVID MICU‑5

Location ORGAN TRANSPLANT

Location MED ONCOLOGY

Location COVID MICU‑4

Location STEM CELL TRANSPLANT

Location PED PREADMIT ONLY

Location COVID‑6

Location SURGERY GENERAL

Location NEUROSURGERY

Location MED CARDIO

Location CORONARY CARE UNIT

Location NEUROLOGY

Location MED PREAD ONLY

Location MED GI

Encounters Inpatient

Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Encounters UIH ER

Encounters death

Encounters PREADMIT

Encounters ER OB

Encounters 5 W PEDS

Encounters disch

Procedure reports RADRPT

Procedure reports ECG Measurements and 
Interpretation

Procedure reports Echo Transthoracic

Procedure reports Pathology Report

Procedure reports Echo Transesophageal

Lab (1,3)‑BETA‑D‑GLUCAN Normal

Lab (1,3)‑BETA‑D‑GLUCAN 
INTERPRETATION

Normal

Lab % BASOPHIL Normal

Lab % EOSINOPHIL Normal

Lab % LYMPHOCYTE Normal

Lab % MONOCYTE Normal

Lab % NEUTROPHIL Normal

Lab % TRANSFERRIN SAT Normal, LOW, HI

Lab A. GALACTOMANNAN AG Normal

Lab A. GALACTOMANNAN 
INDEX

Normal

Lab A1ANTITRYP Normal

Lab ABO/RH(D) No flag

Lab ABS CD19 Normal, LOW

Lab ABS CD3 Normal, LOW

Lab ABS CD3/CD4 LOW

Lab ABS CD3/CD8 Normal,LOW

Lab ABS CD56 Normal,LOW,HI

Lab Abs Retic Normal,HI

Lab ABSOLUTE BAND NEU‑
TROPHIL (MANUAL DIFF)

Normal

Lab ABSOLUTE BASOPHIL 
(MANUAL DIFF)

HI

Lab ABSOLUTE EOSINOPHIL 
(MANUAL DIFF)

Normal, HI

Lab ABSOLUTE LYMPHOCYTE 
(MANUAL DIFF)

Normal, LOW, HI

Lab ABSOLUTE MONOCYTE 
(MANUAL DIFF)

Normal, LOW, HI

Lab ABSOLUTE NEUTROPHILS 
(MANUAL DIFF)

Normal, HI

Lab ACETAMINOPHEN LOW

Lab ACT BICARB Normal, LOW, HI

Lab ADAMTS13 LOW

Lab ADDITIONAL TESTING Normal

Lab ADENOVIRUS Normal

Lab ADENOVIRUS QUANT 
BY PCR

Normal

Lab AEROMONAS/PLEISO‑
MONAS SCREEN

Normal

Lab ALB CONC Normal

Lab ALBUMIN Normal, LOW
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Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab Alcohol, Urn Screen Normal

Lab ALK PHOS Normal, LOW, HI

Lab ALT(SGPT) Normal, LOW, HI

Lab amd LOW

Lab AMMONIA HI

Lab AMORPHOUS Normal

Lab AMPHETAMINES‑UR Normal

Lab Amphetamines, Urn 
Screen

Normal

Lab AMYLASE HI

Lab ANION GAP Normal, HI

Lab ANISOCYTOSIS Normal

Lab ANTI NUCLEAR AB Normal

Lab ANTI‑HB CORE IGM Normal

Lab ANTI‑MITOCHONDRIAL 
IGG

Normal

Lab ANTI‑SMOOTHMUSCLE Normal

Lab ANTIBODY SCREEN No flag

Lab ASPERGILLUS AB BY ID Normal

Lab AST(SGOT) Normal, LOW, HI

Lab ATYPICAL BACTERIAL 
PNEUMONIA

Normal

Lab B‑NATRIURETIC PEPTIDE Normal, HI

Lab BAND NEUTROPHIL Normal

Lab BARBITURATES‑UR Normal

Lab Barbiturates, Urn Screen Normal

Lab BASE EXCESS Normal

Lab BASO Normal

Lab BASOPHILS Normal, HI

Lab Benzodiazepines, Urn 
Screen

Normal

Lab BENZODIAZPINE‑UR Normal

Lab BETAHYDROXYBUTYRIC 
ACID

Normal, HI

Lab BF ALBUMIN Normal

Lab BF BILIRUBIN Normal

Lab BF GLUCOSE Normal

Lab BF LDH Normal

Lab BF LYMPH Normal

Lab BF MACROS/MONOS Normal

Lab BF MESO Normal

Lab BF NEUT Normal

Lab BF TOTAL PROTEIN Normal

Lab BF‑RBC Normal, HI

Lab BF‑WBC Normal

Lab BILIRUBIN, DIRECT Normal, HI

Lab BILIRUBIN,TOTAL Normal, HI

Lab BKV QUANT BY PCR Normal

Lab BKV RT SPECIMEN Normal

Lab Blastomyces AB Normal

Lab BLASTOMYCES INTERPRE‑
TATION

Normal

Lab BLASTOMYCES RESULT Normal

Lab BLASTOMYCES SPECIMEN Normal

Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab Bordetella parapertussis Normal

Lab BORDETELLA PERTUSSIS Normal

Lab BRPR ABN

Lab BUDDING YEAST Normal

Lab BUN Normal, LOW, HI

Lab BUN/CREAT RATIO Normal, LOW, HI

Lab BURR CELLS Normal

Lab C DIFFICILE RT PCR Normal

Lab C‑REACTIVE PROTEIN Normal, HI

Lab CALCIUM Normal, LOW, HI

Lab CALPROTECTIN, FECAL HI

Lab CAMPYLOBACTER GROUP 
BY PCR

Normal

Lab CARBMAZPNE, 
UNBOUND

Normal

Lab CD19%, TOTAL B CELLS Normal, HI

Lab CD3/CD4%, HELPER T Normal, LOW

Lab CD3/CD8%, SUP T CELLS Normal, HI

Lab CD3%, TOTAL T CELLS Normal, LOW

Lab CD4 COMMENT Normal

Lab CD56% Normal, HI

Lab CDASU 9A Comments Normal

Lab CEA HI

Lab CERULOPLASMIN LOW

Lab CHK No flag

Lab CHLAMYDIA PNEUMO‑
NIAE

Normal

Lab CHLORIDE Normal, LOW, HI

Lab CHOLESTEROL Normal, HI

Lab CK MACRO TYPE I Normal

Lab CK MACRO TYPE II Normal

Lab CK TOTAL Normal

Lab CK‑BB Normal

Lab CK‑MB Normal

Lab CK‑MM Normal

Lab CLARITY Normal

Lab CLUMPED PLATELETS Normal

Lab CMV QUANT BY PCR Normal

Lab CO2 CONTENT Normal, LOW, HI

Lab COCAINE‑URINE Normal

Lab Cocaine, Urn Screen Normal

Lab COLOR Normal

Lab COMPLEMENT C3 LOW

Lab COMPLEMENT C4 Normal

Lab COPPER HI

Lab Coronavirus 19 Normal, ABN

Lab CORONAVIRUS 229E Normal

Lab CORONAVIRUS HKU1 Normal

Lab CORONAVIRUS NL63 Normal

Lab CORONAVIRUS OC43 Normal

Lab CPK Normal, LOW, HI

Lab CREAT CONC Normal

Lab CREATININE Normal, LOW, HI
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Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab Creatinine, Urn Screen Normal

Lab CROSSMATCH No flag

Lab CYTOPLASMIC STAINING Normal

Lab D‑DIMER Normal, HI, CRIT

Lab DIFF METHOD Normal

Lab DIFFERENTIAL METHOD Normal

Lab DOHLE BODIES Normal

Lab EBV QUANT BY PCR Normal, ABN

Lab EOS Normal, HI

Lab EOSINOPHIL Normal, HI

Lab Estimated Creat Clear‑
ance

No flag, LOW

Lab Estimated GFR No flag

Lab ETHANOL Normal

Lab FENTANYL QUANT URINE Normal

Lab FERRITIN Normal, LOW, HI

Lab FIBRINOGEN Normal, HI

Lab FINE GRAN CAST HI

Lab FK506/TACROLIMUS Normal

Lab Flu A (POCT) Normal

Lab FLU A H1 SEASONAL Normal

Lab FLU A H1N1 2009 Normal, ABN

Lab FLU B Normal

Lab Flu B (POCT) Normal

Lab FOLATE Normal

Lab FREE T4 Normal, LOW

Lab GLUCOSE Normal, LOW, HI, CRIT

Lab GLUCOSE (POCT) Normal, LOW, HI, CRIT

Lab HAPTOGLOBIN Normal, HI

Lab HCT Normal, LOW, HI

Lab HCV REAL TIME PCR Normal

Lab HDL Normal, LOW

Lab HELP/SUPP RATIO Normal

Lab Hemoglobin—POCT LOW

Lab HEMOGLOBIN A2 Normal

Lab HEMOGLOBIN F Normal, HI

Lab HEP A IGM AB Normal

Lab HEP B CORE AB,TOTAL Normal

Lab HEP B SURF AB,QUANT Normal

Lab HEP B SURFACE AG Normal

Lab HEP C ANTIBODY Normal, ABN

Lab HGB Normal, LOW, HI

Lab HGB A Normal

Lab HGB A1C Normal, HI

Lab HGB C Normal

Lab HGB S Normal

Lab HISTOPLASMA INTERPRE‑
TATION

Normal

Lab HISTOPLASMA RESULT Normal

Lab HISTOPLASMA SPECIMEN Normal

Lab HIV 1 Antibody Normal

Lab HIV 1 Antigen Normal

Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab HIV 2 Antibody Normal

Lab HIV Antigen and Anti‑
body Screen NC

Normal

Lab HIV1AB Normal

Lab HIV1AG Normal

Lab HIV2AB Normal

Lab HOWELL JOLLY Normal

Lab HSV TYPE I Normal

Lab HSV TYPE II Normal

Lab HUMAN METAPNEUMO‑
VIRUS

Normal

Lab HUMAN RHINOVIRUS/
ENTEROVIRUS

Normal

Lab HVABAG Normal

Lab HYALINE CAST Normal

Lab HYPOCHROMASIA Normal

Lab IGA Normal, LOW, HI

Lab IGG Normal, LOW

Lab IGM Normal, LOW, HI

Lab IMMUNOFIX SERUM Normal

Lab Influenza A Equivocal 
(Inconclusive)

Normal

Lab INFLUENZA A, H3 
SUBTYPE

Normal

Lab Influenza A, No Subtype 
Detected

Normal

Lab INR Normal, HI, CRIT

Lab INTERLEUKIN 6 Normal, HI

Lab INTERPRETATION Normal

Lab IONIZED CALCIUM Normal, LOW

Lab IRON Normal, LOW, HI

Lab Issue Date/Time No flag

Lab LACTIC ACID Normal, LOW, HI, CRIT

Lab LARGE PLATELETS Normal

Lab LDH Normal, HI

Lab LDL, CALCULATED Normal, HI

Lab LEGIONELLA AG, UR Normal

Lab LEUK ESTERASE Normal, ABN

Lab LEVETIRACETAM LEVEL LOW

Lab LIPASE Normal, LOW, HI

Lab LITHIUM Normal

Lab LYMPH Normal, LOW, HI

Lab LYMPHOCYTE Normal, LOW, HI

Lab MACROCYTOSIS Normal

Lab MAGNESIUM Normal, LOW ,HI

Lab MARIJUANA‑URINE Normal, ABN

Lab Marijuana, Urn Screen 
(THC, Urn, Screen)

Normal

Lab MCH Normal, LOW, HI

Lab MCHC Normal, LOW

Lab MCV Normal, LOW, HI

Lab MEAS O2 SAT‑MV Normal, LOW, HI

Lab META HI
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Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab Methadone, Urn Screen Normal

Lab METHANOL Normal

Lab MICROALB/CREAT RATIO HI

Lab MICROCYTOSIS Normal

Lab MITOGEN MINUS NIL Normal

Lab MONO Normal, LOW, HI

Lab MONOCYTE Normal, LOW, HI

Lab MPV Normal, LOW, HI

Lab MRSA Transcribed Result No flag

Lab MUCUS Normal

Lab MYELO HI

Lab NEUT Normal, LOW, HI

Lab NEUTROPHIL Normal, LOW, HI

Lab NIL (NEGATIVE CONTROL) Normal

Lab NITRITE Normal, ABN

Lab NON FENTANYL URINE Normal

Lab Non‑HDL Chol No flag

Lab NOROVIRUS GI/GII BY PCR Normal

Lab NUCLEATED RBC’S Normal

Lab O2 SAT Normal, LOW, HI

Lab O2 SAT MEASURED Normal, LOW

Lab OPIATE HYDROCODONE Normal

Lab OPIATE ACETYL MOR‑
PHINE

Normal

Lab OPIATE CODEINE Normal

Lab OPIATE HYDROMOR‑
PHONE

Normal

Lab OPIATE MORPHINE Normal

Lab OPIATE OXYCODONE Normal

Lab OPIATE OXYMORPHONE Normal

Lab OPIATES NORHYDROCO‑
DONE

Normal

Lab OPIATES NOROXYCO‑
DONE

Normal

Lab OPIATES NOROXYMOR‑
PHONE

Normal

Lab OPIATES‑URINE Normal, ABN

Lab Opiates, Urn Screen Normal

Lab OVA AND PARASITES 
EXAM

Normal

Lab OVALOCYTES Normal

Lab PARA1 Normal

Lab PARA2 Normal

Lab PARA3 Normal

Lab PARA4 Normal

Lab PARVOVIRUS QUANT 
BY PCR

Normal

Lab PCO2 Normal, LOW, HI, CRIT

Lab PCT FREE CARB Normal

Lab PERFORMING LAB Normal

Lab PH Normal, LOW, HI

Lab PHENCYCLIDINE UR Normal

Lab Phencyclidine, Urn 
Screen

Normal

Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab PHENYTOIN FREE Normal

Lab PHENYTOIN TOTAL Normal, LOW

Lab PHOSPHORUS Normal, LOW, HI, CRIT

Lab PLT Normal, LOW, HI, CRIT

Lab PLT ESTIMATE Normal

Lab PO2 Normal, LOW, HI

Lab POIKILOCYTOSIS Normal

Lab POLYCHROMASIA Normal

Lab POTASSIUM Normal, LOW,HI, CRIT

Lab PRO BNP,NT Normal, HI

Lab PROCALCITONIN Normal

Lab Product Code No flag

Lab Product Identification No flag

Lab PROLACTIN Normal

Lab Propoxyphene, Urn 
Screen

Normal

Lab PROT/CREAT RATIO Normal

Lab PROTHROMBIN TIME Normal, HI

Lab PTH‑INTACT HI

Lab PTT Normal, LOW, HI, CRIT

Lab QTBG INTERPRETATION Normal

Lab QUANTIFERON TB RESULT Normal

Lab RBC Normal, LOW, HI

Lab RDW Normal, HI

Lab REACTIVE LYMPHS Normal

Lab RESPIRATORY PCR PANEL 
SPECIMEN SOURCE

Normal

Lab RESPIRATORY SYNCYTIAL 
VIRUS

Normal

Lab RETIC COUNT Normal, HI

Lab ROTAVIRUS A BY PCR Normal

Lab SALICYLATE Normal

Lab SALMONELLA SPECIES 
BY PCR

Normal

Lab SARS‑CoV‑2 IGG AB Normal, ABN

Lab SCHISTOCYTES Normal

Lab SED RATE‑WEST Normal, HI

Lab SEND OUT RESULT: Normal

Lab SEND OUT TEST: Normal

Lab SERUM ALB ELECT Normal

Lab SERUM ALPHA 1 Normal

Lab SERUM ALPHA 2 Normal

Lab SERUM BETA Normal

Lab SERUM GAMMA Normal

Lab SERUM HCG Normal

Lab SERUM OSMOLALITY Normal, LOW, HI, CRIT

Lab SERUM TOTAL PROTEIN Normal

Lab SFIX ENHANCED REPORT Normal

Lab SHIGA TOXIN 1 BY PCR Normal

Lab SHIGA TOXIN 2 BY PCR Normal

Lab SHIGELLA SPECIES BY PCR Normal

Lab SICKLE CELLS Normal

Lab SODIUM Normal, LOW, HI
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Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab SPECIMEN SOURCE Normal

Lab SPECIMEN TYPE Normal

Lab SPHEROCYTES Normal

Lab SQUAMOUS EPI’S Normal, HI

Lab Status Information No flag

Lab STREPTOCOCCUS PNEU‑
MONIAE AG, URINE

Normal

Lab SYPHILIS FOLLOW UP, RPR 
QUANT

Normal

Lab TARGET CELLS Normal

Lab TB AG MINUS NIL Normal

Lab TB SCR COMMENT Normal

Lab TB2 AG MINUS NIL Normal

Lab TEARDROPS Normal

Lab TOTAL CARB Normal

Lab TOTAL IRON BINDING Normal, LOW, HI

Lab TOTAL PROTEIN Normal, LOW, HI

Lab Total Syphilis Antibody 
IGG and IGM

ABN

Lab TOXIC VACUOLIZATION Normal

Lab TRANS EPI CELLS Normal, HI

Lab TRANSFERRIN Normal, LOW

Lab Treponema pallidum 
Antibody by TP‑PA

Normal

Lab TRIGLYCERIDE Normal, HI

Lab TROPONIN I Normal, HI, CRIT

Lab TSH Normal, LOW, HI

Lab Unit Blood Type No flag

Lab Unit Number No flag

Lab UR CHLORIDE‑RANDOM Normal

Lab UR CREATININE Normal

Lab UR OSMOLALITY Normal, LOW, HI

Lab UR PH Normal

Lab UR POTASSIUM‑RANDOM Normal

Lab UR SODIUM‑RANDOM Normal

Lab UR TOTAL PROTEIN Normal

Lab UR UREA N‑RANDOM Normal

Lab URIC ACID Normal, LOW, HI

Lab Urine bacteria ABN

Lab URINE BILIRUB Normal

Lab URINE BLOOD Normal,ABN

Lab URINE CLARITY Normal

Lab URINE COLOR Normal

Lab URINE GLUCOSE Normal,ABN

Lab URINE HCG Normal

Lab URINE KETONES Normal,ABN

Lab Urine pregnancy test—
POCT

No flag

Lab URINE PROTEIN Normal,ABN

Lab Urine RBC’s Normal,HI

Lab URINE SP GRAV Normal,HI

Lab Urine WBC’s Normal,HI

Lab UROBILINOGEN Normal,HI

Table 6 (continued)

Variables related to 
specific category

Variables Variables values (if 
applicable)

Lab VANCOMYCIN‑RANDOM Normal

Lab VIBRIO GROUP BY PCR Normal

Lab VITAMIN B1 Normal

Lab VITAMIN B12 Normal,HI

Lab VITAMIN D (25 OH) LOW

Lab Volume No flag

Lab WAXY CAST Normal

Lab WBC Normal,LOW,HI

Lab WBC CLUMPS Normal

Lab WHOLE BLOOD GLUC Normal,HI,CRIT

Lab WHOLE BLOOD HGB Normal,LOW

Lab WHOLE BLOOD K Normal,LOW,HI,CRIT

Lab WHOLE BLOOD NA Normal,LOW,HI

Lab YERSINIA ENTEROCOL‑
ITICA BY PCR

Normal

Lab ZINC, BLOOD Normal

Vit BMI ok

Vit BP diastolic ok

Vit BP systolic ok

Vit Pulse rate ok

Vit Respiratory rate ok

Vit SPO2 ok,crit

Vit Temp (DegC) ok,crit
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