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Abstract 

Background:  COVID-19 caused more than 622 thousand deaths in Brazil. The infection can be asymptomatic and 
cause mild symptoms, but it also can evolve into a severe disease and lead to death. It is difficult to predict which 
patients will develop severe disease. There are, in the literature, machine learning models capable of assisting diag-
nose and predicting outcomes for several diseases, but usually these models require laboratory tests and/or imaging.

Methods:  We conducted a observational cohort study that evaluated vital signs and measurements from patients 
who were admitted to Hospital das Clínicas (São Paulo, Brazil) between March 2020 and October 2021 due to COVID-
19. The data was then represented as univariate and multivariate time series, that were used to train and test machine 
learning models capable of predicting a patient’s outcome.

Results:  Time series-based machine learning models are capable of predicting a COVID-19 patient’s outcome with 
up to 96% general accuracy and 81% accuracy considering only the first hospitalization day. The models can reach up 
to 99% sensitivity (discharge prediction) and up to 91% specificity (death prediction).

Conclusions:  Results indicate that time series-based machine learning models combined with easily obtainable data 
can predict COVID-19 outcomes and support clinical decisions. With further research, these models can potentially 
help doctors diagnose other diseases.
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Background
Coronavirus disease 2019 (COVID-19) has affected 
approximately 350 million people globally, having caused 
more than 5 million deaths as of January 25, 2022. In 
Brazil, so far, there have been more than 24 million 
diagnosed cases and 622,000 deaths [1]. The disease has 

different forms of presentation, from mild to very severe, 
with variable death rates worldwide (0.1 to 19.3%).

Unfavorable outcome of COVID-19 has various deter-
minants, including populational and individual fac-
tors [2], and the virus itself. During the pandemic, we 
observed the emergence of different variants of SARS-
CoV-2, which were responsible for the waves of infection.

In Brazil, there was a first increase in the number of 
COVID-19 cases between April and May 2020, related 
to the introduction and initial spread of the virus. A 
second wave started in December, 2020, reaching its 
peak in March, 2021 due to the emergence of the novel 
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SARS-CoV-2 gamma variant (P.1) [3], when more than 
90,000 cases per day were recorded. Due to this signifi-
cant occurrence, we decided to perform the data analysis 
in two stages, roughly corresponding to the two waves. 
Determining risk factors or individual characteristics that 
help predict the outcome of patients may be one of the 
strategies to deal with COVID-19.

Hospital das Clínicas (HC) is a public teaching hospital 
located in São Paulo, Brazil. It comprises seven buildings 
with 2200 beds and approximately 22,000 employees. 
The hospital was designated by the São Paulo State gov-
ernment to receive the severe cases of COVID-19. The 
Central Institute (CI) is an 11-floor building with 6000 
healthcare workers designated from March 2020 through 
August 2020 to receive all the COVID-19 cases referred 
to the hospital. It included an emergency unit, 300 ICU 
beds, 300 beds in regular wards, and was entirely dedi-
cated to COVID-19 care [4]. After this period, the hospi-
tal continued to receive cases spread out in all of its seven 
institutes, in COVID-19-designated areas. This scenario 
shows itself rich enough to acquire a large volume of data 
from patients with different characteristics, divided into 
two periods of time, which were the first and the second 
waves mentioned above.

Machine learning has been used in health care applica-
tions to both diagnose diseases and predict patients’ out-
comes. Deep learning neural networks have been used to 
aid diagnosis based on images of diseases such as breast 
cancer [5], skin cancer [6], and histopathologic cancer 
[7]. Other data such as vital signs, patient history, and 
laboratory tests have also been used as input for machine 
learning models. Recurrent neural networks, for exam-
ple, were used to diagnose acute kidney injury based 
on vital signs, prescriptions, laboratory tests, admis-
sion dates, and other data available in electronic health 
records (EHRs) [8]. The prediction of the outcome of a 
patient has also been assisted by machine learning. For 
septic patients, models such as feed forward neural net-
works (based on patient’s history of diseases) [9] and 
recurrent neural networks (based on vital signs and heart 
rate variability) [10, 11] were used to predict their out-
come. For COVID-19 a Time Aware Long Short-Term 
Memory neural network (T-LSTM) was recently used to 
predict the patients’ outcome based on bio markers pre-
sent in blood samples [12].

Although vital signs are already used to predict out-
comes related to COVID-19, the predictions presented 
in the literature take into consideration laboratory tests 
and images in addition to these signs. Since vital signs are 
routinely used in healthcare and do not require expen-
sive equipment for their acquisition, vital signs-based 
models can be more broadly adopted. Additionally, time 
series-based models were under explored in the literature 

within this context. In this paper, we use univariate and 
multivariate time series to represent COVID-19 patients’ 
vital signs and other simple routine measurements to 
build classifiers capable of predicting their outcomes. 
Most of these data can be routinely collected for any 
patient and are easily available in any level of healthcare.

The main contributions of this study are: providing 
machine learning models capable of predicting COVID-
19 patients’ outcomes with up to 81% accuracy in the first 
day of hospitalization; using easily obtainable vital signs 
and measurements to predict outcomes, without the 
need of laboratory tests or imaging; and the possibility of 
identifying which vital signs or measurements directed 
the models to a certain prediction, helping doctors make 
clinical decisions.

Besides this background, in this paper “Materials and 
methods” section details the datasets, data models, and 
time series models we proposed; “Results” section pre-
sents the results of multiple time series models tests; 
“Discussion” section discusses these results, highlighting 
advantages and limitations of the models; “Conclusions” 
section concludes this paper, by presenting the main con-
tributions and future research possibilities.

Materials and methods
This observational cohort study evaluated patients who 
were admitted to Hospital das Clinicas between March 
2020 and October 2021 due to COVID-19. The criteria 
considered to identify patients are described in “Data-
sets” section.

A selection of vital signs and routine measurements 
were extracted from COVID-19 patients’ EHRs. The 
data were used to create multivariate and univariate time 
series representing each patient’s evolution during hospi-
talization. These time series were used to train and test 
classifiers based on time series transformations and ran-
dom convolutional kernels, as described in “Training the 
models” section. The trained models were able to predict 
a patient’s outcome (death or discharge) when at least 
one day of electronic medical records is available (Fig. 1).

“Datasets” section describes the datasets used for 
training and testing time series models. In “Preprocess-
ing the data” section we detail the data preprocessing 
step. “Modelling the data” section explains the different 
data models that were applied to the datasets. “Training 
the models” and “Predicting the outcome for COVID-19 
patients” sections present, respectively, the training and 
the testing of the time series classifiers.

Datasets
The inclusion criteria to compose the HC’s datasets with 
EHRs from patients with COVID-19 were:
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•	 The patient should present at least one of the fol-
lowing symptoms: cough, fever, shortness of breath, 
sudden onset of anosmia, ageusia or dysgeusia;

•	 The patient should fulfill at least one of the follow-
ing evidence:

•	radiological evidence showing lesions compat-
ible with COVID-19 (e.g. bilateral, peripheral 
ground-glass opacities);

•	positive RT-PCR test or antigen test for SARS-
CoV-2 in a clinical specimen (oro-nasopharyn-
geal swab or bronchoalveolar lavage).

Table  1 shows eight different vital signs and measure-
ments extracted from 6692 COVID-19 patients’ elec-
tronic medical records (EHRs): heart rate, respiration 
rate, systolic blood pressure, diastolic blood pres-
sure, oxygen saturation, body temperature, and, when 
applicable, fraction of inspired oxygen on mechanical 

ventilation and ventilator breath rate. Since each vital 
sign and measurement was associated with a date, 
it is possible to observe a patient’s evolution during 
hospitalization.

Besides the vital signs/measurements, additional data 
were extracted from EHRs: patients’ final outcome (death 
or discharge), age, gender, and date of hospital discharge. 
In our approach, the final outcome is the situation of a 
patient at the end of the hospitalization period.

The EHRs were divided into two datasets. The first one 
contains 3394 patients’ EHRs collected during the first 
wave of COVID-19, from March 2020 to December 2020. 
The second one contains 2238 patients’ EHRs collected 
during the second wave of COVID-19, from January 2021 
to October 2021.

The demographic data concerning the patients pre-
sent in the databases are shown in Table  2. The mor-
tality rate decreased from 33.29% in the first wave to 
26.99% in the second wave. The opposite trend can be 
observed with the mean age of the patients: increased 

Fig. 1  Methods for predicting severe COVID-19 patients’ outcome

Table 1  Vital signs and measurements available in EHRs

The second column refers to the number of patients who had available data for 
each vital sign/measurement

Vital sign/measurement Number of patients (%)

Heart rate 6691 (99.98)

Body temperature 6689 (99.95)

Diastolic blood pressure 6688 (99.94)

Systolic blood pressure 6688 (99.94)

Oxygen saturation 6686 (99.91)

Respiration rate 6644 (99.28)

Fraction of inspired oxygen on mechanical 
ventilation

3161 (47.23)

Ventilator breath rate 2746 (41.03)

Table 2  Demographic data of the patients admitted to Hospital 
das Clínicas in each COVID-19 wave, from March 2020 to October 
2021

SD standard deviation, ICU intensive care unit

First wave Second wave

Number of patients 3394 2238

Female patients 1508 (44.43%) 1041 (46.51%)

Age—mean (SD) 51 (28) years 57 (23) years

Days of hospitaliza-
tion—mean (SD)

20 (21.09) days 17 (15.58) days

Patients on ICU 2207 (65.03%) 1694 (75.69%)

Number of deaths 1130 (33.29%) 604 (26.99%)

Period analyzed 03/2020 to 12/2020 01/2021 to 10/2021
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from 51 to 57 years-old. The mean hospital stay length 
had a slight decrease from 20 days in the first wave to 
17 days in the second wave.

Preprocessing the data
The dataset was formed by combining vital signs/
measurements data and additional information about 
the patients (i.e., patient’s outcome, discharge date, 
age, gender, etc.). Each sample in the dataset is a mul-
tivariate time series, which are represented by eight 
lists of vital signs/measurements recorded in a single 
day. Each list can have a variable number of values. For 
example, a patient admitted for three and a half days 
generates four multivariate time series, since there 
are four different dates in her EHRs. Each time series 
has eight lists, one for each vital sign/measurement. 
The length of each list is determined by the number 
of samples available, i.e., how many times a vital sign/
measurement was taken. If a patient has ten occur-
rences recorded for each vital sign/measurement in a 
single day, then the multivariate time series of the day 
will have 80 values, i.e, the number of occurrences 
(ten) multiplied by the eight vital signs/measurements.

Due to the method we used for time series classifi-
cation (“Training the models” section), there was no 
need to normalize data. However, this method requires 
that every multivariate time series in the dataset have 
the same length. This requirement was satisfied by 
making the length of every list of vital signs/measure-
ments be the same as the biggest list in the dataset. 
Consequently, every day of hospitalization was equal-
ized in terms of length, i.e., each list was filled to reach 
the maximum number of vital signs/measurements 
taken for a patient of the dataset. For example, if the 
patient with the most vital signs/measurements has 
40 heart rate readings registered and a lesser amount 
of readings for other vital signs, then every patient 
must have 40 values for every vital sign/measurement 
in all hospitalization days. The vital signs/measure-
ments with less than 40 readings will be filled with the 
average of the occurrences until they reach 40 values. 
Consequently, all multivariate time series will have the 
same length.

Two approaches were tested in this step. First, each 
list fill was performed by using the average of the vital 
sign/measurement available. This value was repeated to 
complete each list until they reached the same length. 
Second, we tested to fill each list with zeros. Since no 
significant difference was detected in the accuracy of 
the predictions, the average was used to avoid confu-
sion between zeros, missing data, and, consequently, 
any relation with a patient’s death.

Modelling the data
Two different data models were considered in this 
work: 

1.	 independent days of hospitalization (Fig.  2): each 
time series represents the recorded vital signs/meas-
urements of a patient in a single day; this data model 
does not discriminate between patients, i.e., different 
days of the same patient or of distinct patients are 
independent samples.

2.	 complete hospitalization history (Fig.  3): each time 
series represents the recorded vital signs/measure-
ments of a patient during the entire hospitalization, 
i.e, each sample is related to a patient’s history.

Each data model was used with both univariate and 
multivariate time series. An univariate time series 
contains all the values of only a single vital sign/
measurement (e.g., heart rate or ventilation breath 
rate) recorded in a single day or during the patient’s 
entire hospitalization. A multivariate time series con-
tains the values of the eight vital signs/measurements 
recorded in a single day or during the entire patient’s 
hospitalization.

The preprocessing steps described in “Preprocessing 
the data” section were sufficient for the first data model, 
but did not address the particularities of the second 
data model: although every day of hospitalization had 
the same number of vital signs/measurements across 
the dataset, the hospital stay varied from 1 to 262 days. 
Consequently, the length of each time series varied 
according to the days of hospitalization. This differ-
ence was eliminated by completing the “missing” days 
with zeros. Initially, all the time series were filled with 
zeros until they represented 262 hospitalization days 
for each patient. However, the length of the time series 

Fig. 2  Example of independent days of hospitalization data 
modelling

Fig. 3  Example of complete hospitalization history data modelling
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increased the execution times to the point of impracti-
cality. To avoid this problem, only the first 120 days of 
hospitalization were used in the models.

As an example, considering both data model categories 
(univariate and multivariate), a patient hospitalized for 3 
days would have:

•	 considering independent days of hospitalization:

•	three multivariate time series: each one formed by 
the same number of readings for all the eight vital 
signs.

•	24 univariate time series: eight univariate time 
series per day, each time series formed by the 
readings of a single vital sign.

•	 considering the complete hospitalization history:

•	one multivariate time series formed by all the vital 
signs readings recorded during the hospitalization.

•	eight univariate time series: one time series per 
vital sign, each one formed by all the readings of a 
single vital sign recorded during the entire hospi-
talization.

The implementation of the models is detailed in “Train-
ing the models” section. The performance of the models 
with different amounts of data (days of hospitalization) 
are presented in “Results” section.

Training the models
The preprocessed data was used as input for Mini-
Rocket [13] algorithm, a method for time series classi-
fication. This method uses random convolutional kernels 
to transform time series and uses the transformed time 
series as input for a linear classifier that does the actual 
prediction.

There are several state-of-the-art methods for time 
series classification, such as LSTM-FCN, cBOSS, Prox-
imity Forest, Canonical Interval Forest (CIF), Tem-
poral Dictionary Ensemble (TDE), InceptionTime, 
Rocket, TS-CHIEF, HIVE-COTE/TDE, etc. Mini-
Rocket authors conducted benchmarks [13, 14] with 
the popular UCR Time Series Classification Archive 
[15] datasets, including long time series and datasets 
with a high number of instances. The authors observed 
better accuracy than most of the state-of-the-art meth-
ods above mentioned. The only exceptions were TS-
CHIEF and HIVE-COTE/TDE, which achieved slightly 
higher accuracies. However, MiniRocket used only a 
little fraction of the execution time when compared to 
other methods. For example, the computing time spent 
with the training and testing with 109 UCR datasets is 

more than two weeks for TS-CHIEF and eight minutes 
for MiniRocket [13]. Additionally, MiniRocket is 
compatible with both univariate and multivariate time 
series, there are no parameters to adjust, data normali-
zation is not required and the results are almost deter-
ministic. The reasons presented justify the choice for 
this method.

With MiniRocket, time series are transformed by a 
fixed set of 84 convolutional kernels. This transforma-
tion is made with additions (instead of multiplications) 
to reduce execution time. The transformations produce 
10,000 features for each original time series. These fea-
tures are called PPV (proportion of positive values). 
Using the PPVs obtained for each time series, a ridge 
regression classifier is used to predict a class [13]. In this 
study we consider two classes: a positive class represent-
ing a patient’s discharge and a negative class represent-
ing a patient’s death. Thus, we have a binary classification 
where the method output must predict, from the vital 
signs/measurements, the patient’s final status.

As the observed mortality rates were 33.29% and 
26.99% during the first and second waves, respectively, 
the datasets have unbalanced class (outcome) distribu-
tion. We used a stratified cross-validation strategy to 
ensure that all data are used both to train and to test the 
machine learning models, but avoiding overfitting and 
possible distortions in the accuracy due to different class 
distributions in each fold.

We trained and tested 144 models, combining different 
data models and time series, as shown in Fig. 4. For inde-
pendent days of hospitalization, eight univariate models 
were trained and tested (one for each vital sign/meas-
urement) and one multivariate model was trained and 
tested. For the complete hospitalization history, one mul-
tivariate model was trained and tested with all available 
data and 14 multivariate models were trained with partial 
data. As for univariate models, eight models were trained 
and tested with all available data and 120 were trained 
and tested with partial data. The high number of models 
were necessary to conduct the experiments.

For the second data model, which considers the com-
plete patient’s hospitalization history, two experiments 
were conducted:

•	 Experiment 1: train with complete hospitalization 
history and test with partial hospitalization history;

•	 Experiment 2: train and test with partial hospitaliza-
tion history, from the first day until the 14th day of 
hospitalization;

The first experiment consisted in using part of the data-
set for training and the other part for testing. The test-
ing considered data until the 14th day of hospitalization. 



Page 6 of 15Rodrigues et al. BMC Medical Informatics and Decision Making          (2022) 22:187 

This test was also conducted with independent days of 
hospitalization.

In the second experiment, both training and testing 
were done with partial data: train and test with data until 
the ith hospitalization day, from the first day until the 
14th (i.e., train with complete data and test with data of 
the first day, then test with data of the first two days, then 
test with data of the first 3 days, and so on).

Experiment 1 was designed to indicate whether using 
the complete hospitalization history as a multivari-
ate time series would result in better predictions and to 
simulate a real world use case (i.e., predict the outcome 
for a patient currently hospitalized). Experiment 2 was 
designed to indicate whether the inclusion of more data 
would result in better predictions.

By using the same datasets with multiple data models it 
is possible to compare the performance of the time series 
models with all the available data versus the performance 
of these models with limited data. It is also possible to 
measure the impact of applying univariate and multivari-
ate approaches to the same problem and datasets.

Predicting the outcome for COVID‑19 patients
We used the scikit-learn [16] implementation of the 
stratified k-fold cross-validation strategy to train and test 
all models with threefolds. This method divides the data-
set in k folds taking into consideration the proportion of 
the classes. In our case, the datasets are unbalanced with 

around 70% of discharge outcomes. Thus, this method 
produces folds that maintain the proportion between the 
classes, i.e., each fold is composed by 70% of instances 
related to discharges and 30% of instances related to 
deaths. Each fold is then used to both train and test each 
model. This cross-validation strategy minimizes the pos-
sibility of overfitting our models by using all available 
data in both training and testing steps, without the risk 
of using folds of the dataset that contains just one of the 
classes.

The multivariate time series models use the preproc-
essed EHRs as input (see “Preprocessing the data” sec-
tion), transform the time series, execute convolutions, 
and predict the outcome for each patient (Fig. 5a).

The univariate time series models function similarly to 
the multivariate ones but, by definition, can only consider 
a single vital sign/measurement. To predict the patient’s 
outcome, we created ensemble classifiers that combine 
eight univariate models (one for each vital sign/meas-
urement) and use simple voting to predict the patient’s 
outcome (Fig.  5b). Each univariate time series predicts 
an outcome for a patient and the most predicted out-
come (simple majority) is considered the outcome of the 
ensemble. A weighted average was tested, but no signifi-
cant difference in the ensemble accuracy was observed.

For each model tested, six metrics were collected: accu-
racy, sensitivity, precision, F1 score, specificity, and nega-
tive predictive value. Since this is a binary time series 

Fig. 4  Overview of the 144 time series models that were trained and tested in this work
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classification problem, the discharge outcome was con-
sidered the positive class and it was associated with sen-
sitivity, precision, and the F1 score. The death outcome 
was considered the negative class and it was associated 
with specificity and negative predictive value.

Results
This section presents the results of multiple combina-
tions of data models and time series models in predicting 
the outcome of COVID-19 patients. Results for univari-
ate time series models are shown in “Univariate time 
series models” section, multivariate time series models in 
“Multivariate time series models” section and a compari-
son between the models is presented in “Comparisons 
between models” section.

Univariate time series models
An ensemble of eight univariate time series models was 
trained and tested with the data models for both COVID-
19 waves. Each model was trained with data recorded 
for a single vital sign/measurement, as detailed in “Mod-
elling the data” section. For each patient, the outcome 
predicted by the ensemble is the one predicted by the 
majority of the univariate models.

Independent days of hospitalization
Table  3 shows the average metrics collected during the 
tests. When tested with independent days of hospitaliza-
tion, the ensemble achieved a higher accuracy with the 
second wave dataset. In both datasets, the ensemble was 
capable of correctly predicting most patients’ discharge, 

as the high sensitivity and precision indicate. However, 
specificity was low for the second wave, showing that the 
ensemble had difficulty predicting patients’ deaths in this 
dataset.

Experiment 1: tests by days of hospitalization with univar-
iate time series models  Figure 6 shows that the ensem-
ble trained with all available data and tested with partial 
data has high accuracy in the second wave (above 80%), 
even when only the first day of hospitalization was used in 
the test. For the first wave dataset, the accuracy increased 
when more days of hospitalization were available, but 
even with few days of hospitalization used in the test, the 
model indicates accuracy above 72%.

Complete hospitalization history
Table 3 shows that the ensemble trained and tested with 
the patients’ complete hospitalization history achieved 
accuracy above 87% for both waves. With this data 
model, the ensemble correctly predicted most of the dis-
charges. When predicting deaths, the ensemble shows 
a performance decrease with the second wave data-
set, as the specificity is lower than that of the first wave, 
although it can be still considered high (above 82%).

Experiment 1: tests by  days of  hospitalization with  uni-
variate time series models  In this model, the ensemble 
was trained with the complete hospitalization history and 
tested with partial data. The accuracy of the ensemble 
increased when more data was available in the test (Fig. 7). 

Fig. 5  Flowchart of the univariate and multivariate time series classification method
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In the second wave, the accuracy was already above 72% 
on the first day of hospitalization.

Experiment 2: partial hospitalization history with  uni-
variate time series models  When trained and tested only 
with the available vital signs and measurements recorded 
on the first day of hospitalization, the ensemble achieved 
accuracies of 67.08% and 72.73% for the first and second 
waves, respectively. Figure  8 shows that increasing the 
available hospitalization history in both training and test-
ing steps increases the accuracy of the ensemble. With the 

second wave dataset, the accuracy was already above 80% 
on the first day of hospitalization.

Multivariate time series models
The multivariate time series models use all the eight 
vital signs/measurements to predict patients’ outcome. 
We tested these models with different datasets and data 
models. All metrics, except for those of the experiment 
one, are average metrics collected during the stratified 
cross-fold validation.

Fig. 6  Metrics for an ensemble of MiniRocket models using independent days of hospitalization and univariate time series. The ensemble was 
trained with all available data and tested with the data available until each day of hospitalization. The first COVID-19 wave is the period between 
March 2020 and December 2020. The second wave is the period between January 2021 and October 2021

Fig. 7  Accuracy for an ensemble of MiniRocket models using complete hospitalization history and univariate time series by day of hospitalization. 
The ensemble was trained with the complete hospitalization history and tested with the data available until each day of hospitalization. The first 
COVID-19 wave is the period between March 2020 and December 2020. The second wave is the period between January 2021 and October 2021



Page 9 of 15Rodrigues et al. BMC Medical Informatics and Decision Making          (2022) 22:187 	

Independent days of hospitalization
Training and testing a multivariate time series model 
considering independent days of hospitalization resulted 
in accuracies above 80% (Table 3). In both datasets, the 
model correctly identified a similar number of deaths. 
Sensitivity and precision were above 84%.

Experiment 1: tests by days of hospitalization with multi-
variate time series models  The multivariate time series 
achieved higher accuracy as more days of hospitalization 
were available in the test. With the second wave dataset, 

even using only the first day of hospitalization, the accu-
racy of the model was higher (above 81%) when compared 
with the first wave dataset (Fig. 9), which achieved 76% of 
accuracy when using only the first day of hospitalization.

Complete hospitalization history
A multivariate time series model trained and tested with 
the complete hospitalization history achieved very high 
accuracy. As shown in Table 3, the model was capable of 
correctly predicting both deaths and discharge in both 

Fig. 8  Accuracy for an ensemble of MiniRocket models using complete hospitalization history and univariate time series by day of hospitalization. 
The ensemble was trained and tested with the data available until each day of hospitalization. The first COVID-19 wave is the period between March 
2020 and December 2020. The second wave is the period between January 2021 and October 2021

Fig. 9  Metrics for MiniRocket models using independent days of hospitalization and multivariate time series. The model was trained with all available 
data and tested with the data available until each day of hospitalization. The first COVID-19 wave is the period between March 2020 and December 
2020. The second wave is the period between January 2021 and October 2021
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COVID-19 waves, achieving values above 87% for all 
metrics.

Experiment 1: tests by days of hospitalization with multi-
variate time series models  When trained with the com-
plete hospitalization history and tested with partial data, 
in the second wave, the multivariate time series model 
achieved accuracies above 70% when using the first day of 
hospitalization. The accuracy in the second wave became 
higher as more data was available in the test (Fig.  10), 
reaching values around 90% in the 5th day and around 

95% in the 14th day. Although this same behavior was 
observed for the first wave dataset, the increase was con-
siderably smaller, reaching values around 85%.

Experiment 2: partial hospitalization history with  mul-
tivariate time series models  For the training and test-
ing with partial data, the multivariate time series model 
achieved similar accuracies for both waves. Figure  11 
shows that as more data were available in the tests, the 
accuracies increased. Although the behavior is similar to 
the previous case and the accuracy is similar when all the 

Fig. 10  Accuracy for MiniRocket models using complete hospitalization history and multivariate time series by day of hospitalization. The models 
were trained with the complete hospitalization history and tested with the data available until each day of hospitalization. The first COVID-19 wave 
is the period between March 2020 and December 2020. The second wave is the period between January 2021 and October 2021

Fig. 11  Accuracy for MiniRocket models using complete hospitalization history and multivariate time series by day of hospitalization. The models 
were trained and tested with the data available until each day of hospitalization. The first COVID-19 wave is the period between March 2020 and 
December 2020. The second wave is the period between January 2021 and October 2021
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period is used, the training with partial data accuracy pro-
duces smaller accuracies, as can be observed in the middle 
portion of the curves in the second wave. As for the first 
wave, accuracy was higher than the previous experiment 
in the first few days, reaching values around 81% on the 
seventh day of hospitalization.

Comparisons between models
We compared the outcomes predicted by the ensemble 
and the multivariate models by determining the intersec-
tion between predictions. For independent days of hos-
pitalization, in the first wave (Fig. 12a), both approaches 
predicted the same outcome for 72.89% of patients. In 
the second wave (Fig. 12b), the predictions coincided for 
78.40% of patients. When trained and tested with com-
plete hospitalization history, the model predicted the 
same outcome for 89.25% and 97.54% of patients in the 
first (Fig. 13a) and second (Fig. 13b) waves, respectively.

Table  3 shows all results obtained for models trained 
and tested with independent days of hospitalization and 
with complete hospitalization history, per COVID-19 
wave. These metrics are averages collected during the 
stratified cross-fold validation with threefolds. In general, 
models with complete hospitalization history obtained 
the best results. Depending on the dataset, univariate or 
multivariate models can achieve higher metrics. The best 
metrics were obtained when the complete hospitalization 
history was used to train univariate models. Discussion

The results show that the use of time series to represent 
EHRs and to predict COVID-19 patients’ outcomes pro-
duced robust machine learning models that can reach up 
to 81% accuracy when only the first hospitalization day 
is used in the test and all dataset is used in the training. 
This indicates that by these models one can predict the 
outcome of the patient with a high accuracy already in 
the first day of hospitalization. However, it is important 
to note that the models were trained and tested with an 
unbalanced dataset, since there are more discharges 
than deaths. This unbalance is a key factor to the models 
achieving higher values for sensitivity (discharge predic-
tion) than those for specificity (death prediction).

The data model—independent days or complete hospi-
talization history—can have a significant impact on the 
model performance. The best results for all metrics were 
achieved when using univariate or multivariate models 
with complete hospitalization history. These results sug-
gest that the MiniRocket method was able to identify 
patterns in the evolution of the vital signs/measurements 
during hospitalization that enabled the models to cor-
rectly predict more adequately patients’ outcomes.

Although multivariate models are better at correctly 
predicting both discharges and deaths across datasets, 
the ensembles of univariate models are designed as 

Fig. 12  Intersection between predictions made by an ensemble of 
univariate time series models and by multivariate time series models 
with independent days of hospitalization. Intersection of correct 
outcome predictions (left) and incorrect predictions (right) with data 
regarding the first COVID-19 wave from March 2020 to December 
2020 (a) and the second wave from January 2021 to October 2021 (b)

Fig. 13  Intersection between predictions made by an ensemble 
of univariate time series models and by multivariate time series 
models with complete hospitalization history. Intersection of correct 
outcome predictions (left) and incorrect predictions (right) with data 
regarding the first COVID-19 wave from March 2020 to December 
2020 (a) and the second wave from January 2021 to October 2021 (b)
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“white-boxes” and can offer doctors a more detailed out-
come prediction. For example, a patient can have seven 
vital signs/measurements indicating a discharge, but that 
one vital sign that indicates death can help doctors make 
clinical decisions. Thus, doctors can analyze which type 
of intervention they recommend according to the critical 
variables identified by the model.

Clinicians started working in the COVID-19 pandemic 
without any elements to help them, and without evidence 
to support their decisions [17]. Despite living in a con-
nected world, bedside observations and experience were 
initially the only sources of guidance.

The natural history of COVID-19 involves a viremic 
period that lasts approximately a week followed in severe 
cases by an inflammatory period in which the clinical 
condition of the patients worsens and death may ensue 
[18]. Several studies identified risk factors associated 
with severity and mortality include increased age, multi-
ple preexisting comorbidities, such as cardiovascular dis-
ease, hypertension, diabetes mellitus, hypoxia, extension 
of pulmonary involvement, laboratory tests abnormali-
ties, and biomarkers of end-organ dysfunction [2, 19].

In this study, we evaluated the performance of models 
to predict outcomes of hospitalized patients using the 
most simple and accessible patient evaluations which 
included physical examination; the use of an oximeter; 
and, when the patient was under mechanical ventilation, 
breathing rate and ventilator parameters. These models 
did not require the use of laboratory tests, cardiac moni-
toring, or imaging. Our results were surprisingly good. 
There have been other attempts to predict patient out-
comes. Use of cardiac monitoring has been attempted 
to predict severity and mortality [20, 21]. Viral load has 
been suggested to predict mortality [22]. Severity scores 
used for prognosis in intensive care, such as qSOFA, 
NEWS, or SIRS, have shown to perform poorly in 
COVID-19 [23]. Furthermore, most of these evaluations 

require data that may not be easily available in all set-
tings. In different areas of the world, conditions of 
healthcare vary widely [24], which includes differences in 
access to hospital beds, oxygen, intensive care, advanced 
respiratory support, laboratory testing, and imaging. 
The ability to predict the patients’ outcomes may allow 
proper allocation of high risk patients to more complex 
care, and our study has shown that it can be done using 
simple measurements.

All the models presented in our study have great poten-
tial to be applied in daily medical practice. For example, 
the models can be inserted in an application available in 
mobile devices, in which the patient data are pulled from 
EHRs database and the model informs the probability 
of discharge or death in real time. At the same time, the 
data of each patient with their respective outcome can be 
used to update the model and improve the metrics.

When comparing the first and the second COVID-
19 waves, we found better results in the second wave. 
Despite having older patients and a higher proportion 
of patients admitted to the ICU, mortality was lower 
during the second wave and our models presented a 
better performance when compared to the first wave. 
In Brazil, the second wave was due to the SARS-CoV-2 
variant Gamma [25]. Although this variant has been 
shown to be more transmissible [26], other character-
istics such as increased virulence have not been dem-
onstrated [27]. However, differences in characteristics 
of the viruses may explain the difference in perfor-
mance of the models. Another potential explanation is 
the enhanced knowledge in COVID-19 management 
that occurred over the pandemic. Changes in the use 
of anticoagulants and steroids [28] are examples of 
this and may have improved the outcome of COVID-
19 patients in the second wave, as shown by the lower 
death rate in our study. Furthermore, knowledge on 
mechanical ventilation strategies has also improved 

Table 3  Results of all tests conducted with data and machine learning models, with stratified cross-validation

The best metrics are bolded and the worst metrics are in italic

Dataset Model COVID-19 wave Accuracy (%) Sensitivity (%) Precision (%) f1 score (%) Specificity (%) Negative 
predictive 
value (%)

Independ‑
ent days of 
hospitaliza‑
tion

Univariate First 81.04 85.16 86.28 85.71 72.75 70.89

Second 83.76 93.15 86.69 89.80 52.73 66.97

Multivariate First 80.66 87.74 83.98 85.81 66.52 73.06

Second 83.51 90.56 86.99 88.71 65.80 73.64

Complete 
hospitaliza‑
tion history

Univariate First 87.55 86.50 94.94 90.52 90.60 76.70

Second 95.98 99.31 95.85 97.55 82.29 96.64
Multivariate First 94.49 97.75 94.23 95.94 87.96 95.23

Second 95.62 98.65 95.54 97.06 87.43 96.14
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[29]. These changes in management and patient treat-
ment increased the probability of a positive outcome. 
Further studies evaluating these factors should clarify 
differences in outcome and model performance.

Despite the unbalanced datasets, time series mod-
els were capable of correctly predicting most of the 
deaths. The stratified cross-validation strategy did not 
indicate overfitting in any model. Even so, there are dif-
ferences in the capabilities of the models for correctly 
identifying deaths. The ensembles of univariate models 
had more difficulties predicting deaths, as indicates the 
52.73% specificity observed with the second wave data-
set and independent days of hospitalization (“Compari-
sons between models” section).

The biggest difference between univariate and mul-
tivariate models can be observed in execution times. 
Both models need preprocessed data that can be con-
verted to time series. The preprocessing takes up to 
dozens of minutes. Univariate models with complete 
hospitalization history take just a few minutes to com-
plete training and testing. Compared to this model, 
multivariate models with complete hospitalization his-
tory take more than 45 times longer to complete the 
training and testing. In general, training and testing 
multivariate models takes more time than univariate 
models (Table 4).

For both univariate and multivariate models, it is nec-
essary to input a considerable amount of data. In a real 
world scenario, these models should have access to the 
EHRs database to collect and preprocess vital signs/
measurements data rather than requiring the end user 
to manually input data. Thus even if univariate models 
can present a lower performance in some cases, they 
can be a suitable solution for real time applications.

Conclusions
Using time series to represent and predict COVID-19 
patients’ outcome produces machine learning mod-
els with high accuracy and sensitivity for predicting 

discharges. Even with an unbalanced dataset, the mod-
els have good specificity and negative predictive value.

Multivariate time series models offer higher accuracy, 
sensitivity, and specificity, but take considerable addi-
tional time to train and test. An ensemble of univari-
ate time series models takes considerably lower times 
to be trained and tested and offers a detailed outcome 
prediction for each of the available vital signs. However, 
the ensemble will have more difficulties correctly pre-
dicting deaths.

These high accuracy models based on vital signs/
measurements can be used as a support for clinical 
decisions. The fact that these models used data that 
is very easily obtainable, without requiring laboratory 
tests or imaging, makes them even more promising for 
use in a variety of healthcare settings, especially if a 
simple and accessible application can be developed for 
mobile phones or personal computers. Finally, it is pos-
sible that, with available data, these models can poten-
tially predict outcomes for other diseases, requiring 
further studies.
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