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Abstract 

Background:  Predicting treatment outcome in major depressive disorder (MDD) remains an essential challenge for 
precision psychiatry. Clinical prediction models (CPMs) based on supervised machine learning have been a promising 
approach for this endeavor. However, only few CPMs have focused on model sparsity even though sparser models 
might facilitate the translation into clinical practice and lower the expenses of their application.

Methods:  In this study, we developed a predictive modeling pipeline that combines hyperparameter tuning and 
recursive feature elimination in a nested cross-validation framework. We applied this pipeline to a real-world clinical 
data set on MDD treatment response and to a second simulated data set using three different classification algo‑
rithms. Performance was evaluated by permutation testing and comparison to a reference pipeline without nested 
feature selection.

Results:  Across all models, the proposed pipeline led to sparser CPMs compared to the reference pipeline. Except 
for one comparison, the proposed pipeline resulted in equally or more accurate predictions. For MDD treatment 
response, balanced accuracy scores ranged between 61 and 71% when models were applied to hold-out validation 
data.

Conclusions:  The resulting models might be particularly interesting for clinical applications as they could reduce 
expenses for clinical institutions and stress for patients.

Keywords:  Major depressive disorder, Treatment outcome, Predictive modeling, Feature selection, Precision 
psychiatry, Supervised learning
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Background
Despite many efforts in psychiatric research, the ques-
tion of which patient will respond to which treatment 
is still unanswered. Specifically for very heterogenous 
disorders, such as major depressive disorder (MDD), no 

reliable (bio-)markers have been uncovered yet and no 
validated tests are available that could match a patient 
to the treatment they would benefit from the most [1, 2]. 
Predicting how well patients will respond to medication 
in general would be an important improvement for psy-
chiatric health care and a further step towards precision 
medicine in psychiatry. Given the complex pathogenesis 
of psychiatric disorders, including MDD, it is unlikely 
that a few single indicators will be sufficient to forecast 
a patient’s response to pharmacotherapy. Rather, it will 
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be important to collect a variety of measurements and 
gather information from many potentially informative 
data modalities [2].

The need to combine information from many different 
sources is why prognostic multivariate clinical predic-
tion models (CPMs) might be particularly important in 
psychiatry. CPMs, and precision psychiatry in general, 
are fueled by data: the more features (in terms of meas-
ured patient characteristics) are available, the higher the 
chances of finding predictive variables. And the more 
samples are available, the higher the chances to obtain 
robust and generalizable models. Most prediction mod-
els, including those targeting treatment outcome in 
MDD, use supervised machine leaning techniques in 
order to maximize predictive power and generalizabil-
ity at the same time [3]. However, when there are more 
features than samples in the data, the risk of overfitting 
the model increases and its generalizability decreases. 
This is often the case for data sets from patient cohorts, 
especially when high-dimensional biological data, such as 
(epi-)genetics and brain imaging, are included [4].

With the increasing availability of large data sets and 
simultaneous advances in bioinformatics and computa-
tional power, several multivariate prognostic models for 
predicting treatment outcome have been developed. We 
will use research on MDD and treatment with antide-
pressant medication as an example here. In general, how-
ever, CPMs are relevant for any condition in which there 
is a need to combine a multitude of predictors because 
no sufficiently predictive single factors have been identi-
fied so far [5].

Chekroud et  al. [6] used data from the Sequenced 
Treatment Alternatives to Relieve Depression (STAR*D) 
study [7] in order to train a supervised machine learn-
ing model that was able to predict patients’ responses to 
the selective serotonin reuptake inhibitor escitalopram 
across different clinical trials with accuracies of 60–65%. 
Before training the model, they reduced the set of predic-
tors by applying an elastic net regularized logistic regres-
sion [8] and kept the 25 most predictive variables (out of 
164 initial variables). Dinga et  al. [9] created a CPM of 
MDD long-term outcome based on observational data 
from the Netherlands Study of Depression and Anxiety 
[10]. The model was trained on different data modali-
ties and included feature selection via elastic net regu-
larization as well. It was able to differentiate between 3 
patient groups (remission, improving, and chronic) with 
balanced accuracies of 60–66%. While these studies iden-
tified the most predictive variables using an entirely data-
driven approach, i.e. via regularization techniques, other 
studies selected their variables a priori based on findings 
from previous research. Iniesta et  al. [11], for instance, 
entered into their predictive models only demographic 

and clinical information that had been associated with 
treatment outcome in prior studies. They tested four dif-
ferent combinations of predictors, from a comparably 
sparse set of 60 variables up to 125, in order to evaluate 
the additional value of certain subgroups of variables. 
The best performing model predicted response to escit-
alopram with an area under the receiver operating char-
acteristics curve of 0.75. Similarly, Athreya et  al. [12] 
focused on previously identified factors in form of phar-
macogenetic markers from genome-wide association 
studies. In combination with depression symptom scores, 
these markers predicted treatment response with accura-
cies between 71% and 86%. When applied to validation 
data sets, however, the model performances decreased 
below statistical significance. Further prediction models 
of MDD treatment outcome have been summarized in 
systematic reviews and meta-analyses [13, 14].

In general, CPMs are aimed at being translated and 
applied in clinical settings. They should be based on 
patient data that physicians can easily assess during 
their daily routine and should not require a lot of addi-
tional time and costs [15]. Consequently, the input data 
the model needs to make a prediction should be as sparse 
and cost-effective as possible [16]. If two models perform 
equally well, the simpler model should be preferred and 
will also be more likely to succeed as a clinical applica-
tion, especially when the more complex model requires 
expensive additional measures. However, the majority of 
CPMs have either been constructed on a fixed, a priori 
selected feature set [6, 11, 12, 17], or included feature 
selection only in form of intrinsic regularization tech-
niques [9]. None of the applied methods have used any 
further feature selection technique incorporated into 
the training process in order to develop sparser models. 
While regularization can effectively remove uninforma-
tive features from the final model, it cannot guaran-
tee that an alternative model built on even less features 
would not perform equally well or even better when 
applied to new data. Hence, it might be beneficial to 
include an additional data-driven feature selection into 
the optimization framework in order to not just tune the 
model’s hyperparameters but also the required input fea-
ture set.

Different feature selection methods exist that can be 
implemented into a predictive modeling pipeline. In gen-
eral, apart from the abovementioned intrinsic feature 
selection, e.g., by adding regularization terms to a regres-
sion model, the two main selection methods are filters 
and wrappers [18]. Filter approaches use the relationship 
between features and target for selection by ranking fea-
tures according to the strength of their association with 
the target variable. The top N features, where N is usu-
ally defined by a certain cut-off, are then retained for the 
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predictive modeling while the remaining features are 
discarded. A disadvantage of this technique is that rela-
tions between the features are not considered. Wrapper 
approaches, on the other hand, use searching techniques 
to find the most informative set of features. They cre-
ate many different subsets of the input features and then 
select on the best performing subset according to a per-
formance metric. These approaches can be more compre-
hensive, but also more computationally expensive [18]. 
Apart from feature selection methods, other techniques 
for dimensionality reduction exist, often including fea-
ture transformation, such as principal component analy-
sis or multidimensional scaling. An overview over feature 
reduction methods for supervised learning problems is 
presented in Table 1.

In this study, we compared a standard predictive mod-
eling pipeline, that is, a repeated cross validation (CV) 
framework, to the same pipeline with an additional wrap-
per method for feature selection, i.e., recursive feature 
elimination (RFE) nested within the CV. We investigated 
three commonly used classifiers applied to two different 
data sets: one real-world data set from an observational 
inpatient study on patients with MDD as well as one 
simulated data set with similar dimensions. Our research 
questions were threefold: First, does the combined 
hyperparameter tuning and feature selection approach 
lead to models with sparser feature sets than intrinsic 
feature selection alone? Second, are classification accu-
racies between the two pipelines comparable or does 
the additional feature selection lead to changes in model 
performance? Third, does permutation testing lead to 

accuracies around chance level and can thus confirm that 
there is no information leakage biasing the results?

Material & methods
Data sets
Two different data sets were included in our analyses. 
First, as a real-world clinical data set, we used data from 
the Munich Antidepressant Response Signature (MARS) 
project [19], a multicenter naturalistic inpatient study, in 
which patients diagnosed with a single depressive epi-
sode, recurrent depressive disorder, or bipolar disorder 
were observed during their hospitalization. Further infor-
mation on the study protocol and exclusion criteria have 
been published elsewhere [19]. The MARS study was 
approved by the ethics committee of the Ludwig Maxi-
milian University in Munich, Germany, and conducted 
according to the Declaration of Helsinki. For our analy-
ses, clinical response after 6 weeks of treatment, defined 
by at least 50% symptom reduction on the 17-item Ham-
ilton Rating Scale for Depression (HDRS-17) [20], was 
used as a binary target variable for the CPMs. Patient 
characteristics measured at baseline, i.e., within the 
first week after study inclusion, were eligible as features 
for the predictions. We limited the analysis to unipolar 
depression and excluded patients diagnosed with bipo-
lar disorder as well as patients without HDRS-17 scores 
at week 6 and patients with at least 75% missing values 
across all baseline features. Data from the resulting 1022 
patients were then randomly split into a training (80%, 
817 patients) and validation set (20%, 205 patients). From 
initially 548 baseline features, we removed those with at 

Table 1  Common feature reduction approaches for supervised machine learning

ANOVA, analysis of variance

Method Description Examples Evaluation

Feature selection

Intrinsic/embedded methods Feature selection is implemented into 
the learning algorithm and performed 
during training

Regularized regression models
Decision trees

Computationally efficient
Interconnected with learning 
algorithm
No guarantee of optimal sparsity

Filter methods Feature selection based on associa‑
tions with target variable

Associations are calculated using, e.g., 
correlations or ANOVA; top N features 
(or N%) are retained for training

Computationally efficient
Relations between features ignored
Independent of learning algorithm

Wrapper methods Selection of best performing subset of 
features

Recursive feature elimination
Sequential forward selection

Extensive search over input feature 
space
Interconnected with learning 
algorithm
Consider relations between features
Computationally expensive

Feature transformation

Projection into lower-dimen‑
sional feature space

Data are transformed and new features 
are created

Principal component analysis
Multidimensional scaling
Matrix factorization

Further methods of dimensionality 
reduction
Alternative approaches to feature 
selection
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least 30% missing values as well as strongly imbalanced 
binary variables (ratio of 95:5% or more extreme), result-
ing in a final number of 113 features. The final feature set 
included sociodemographic data as well as information 
on psychiatric symptom profiles, symptom severity, fam-
ily history, history of MDD, and medication. An overview 
over all included clinical features is presented in Addi-
tional file 1: Table S1. A flow diagram of all preprocessing 
steps that led to the final sample and feature selection is 
depicted in Additional file 1: Fig. S1.

The second data set consisted of simulated data with 
similar characteristics. Using Python’s scikit-learn pack-
age, we generated 1000 samples with 2 target classes and 
125 features, consisting of 25 informative, 50 redundant, 
and 50 uninformative variables. Similar to the clinical 
data, the samples were randomly split into 800 training 
and 200 validation samples.

Predictive modeling pipelines
All analyses were performed in Python (version 3.8.5) 
using the scikit-learn package (version 0.23.1) [21] and 
additional custom functions. The predictive modeling 
consisted of three different methods: (1) the proposed 
repeated nested CV with a simultaneous optimization 
of hyperparameters and best performing feature set; (2) 
a reference pipeline without the nested feature selection 
method; (3) 100 runs of the complete proposed pipeline 
from method (1) but with randomly permuted target var-
iables. The proposed nested CV pipeline is additionally 
illustrated in Fig. 1. It entails a repeated (5 times) nested 
5-by-5-fold CV, where the outer CV is used for hyperpa-
rameter tuning and the inner CV is used for RFE, imple-
mented with scikit-learn’s RFECV() function. The goal of 
RFE is to select features by iteratively testing smaller fea-
ture sets. Initially, the model is trained on the entire fea-
ture set and the importance of each feature is extracted. 
Then, in a stepwise process, the feature with the lowest 
predictive power is gradually removed from the feature 
set until the best performing set of features is found. In 
our approach, the performance of the model is evalu-
ated on a test set using CV. Therefore, in this framework, 
feature selection could happen both intrinsically, e.g., by 
the tuning of regularizing hyperparameters, and by the 
RFE. The final model was then defined by the on aver-
age best performing combination of hyperparameters 
and feature sets across all test folds. The second method 
was included as a reference to represent a common 
supervised machine learning pipeline. It consisted of a 
repeated (5 times) 5-fold CV used for hyperparameter 
tuning. Hence, it was identical to the proposed pipeline 
except for the nested RFE, and feature selection was only 
possible through intrinsic selection. The final model was 
defined by the on average best performing combination 

of hyperparameters across all folds. The third method 
was included as a permutation test for the proposed first 
pipeline in order to rule out the possibility of informa-
tion leakage. It consisted of 100 runs of the complete 
nested CV pipeline but with randomly permuted target 
variables.

All three methods were applied to the two data sets 
using three different types of classifiers: an elastic-net 
regularized logistic regression (LR), a random forest clas-
sifier (RF), and a linear support vector classifier (SVC). 
Elastic-net regularized LR combines two different kinds 
of penalties (L1 or Lasso and L2 or Ridge) on the model 
which are commonly used to reduce complexity when 
the number of features is large [22]. This way, the risk 
of overfitting can be reduced by shrinking the feature 
coefficients and reducing multicollinearity. The ratio 
between the two penalties is usually tuned as a hyperpa-
rameter. RF is an ensemble learner that uses the results 
of a large number of decision trees to make the best pos-
sible classification. Single decision trees are uncorrelated 
and make individual decisions on its own. From the set 
of individual decisions, the RF provides a final decision 
[23]. Linear SVCs try to find optimal separation lines 
between the samples of different classes that can then be 
used to assign new samples to the correct class. These 
decision boundaries are chosen to maximize the distance 
between the data points of the classes so that future data 
points can be classified with the greatest possible confi-
dence [24]. The three classifiers were selected in order 
to cover linear (all three classifiers) and non-linear (RF) 
associations of the features with the target variable and 
because they provide measures of importance (coeffi-
cients/weights) for each feature. Furthermore, they have 

Fig. 1  Supervised machine learning pipeline based on repeated 
nested cross-validation combining hyperparameter tuning and 
feature elimination. RFE, recursive feature elimination
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frequently been used for various CPMs in psychiatry 
[6, 11, 25, 26]. Additional data preprocessing included 
k-nearest neighbors imputation of missing values [27] for 
all three classifiers and feature standardization for LR and 
SVC classification. Both steps were embedded into the 
(nested) CV, i.e., were created on the training folds and 
applied to the corresponding test fold of the CV loop. 
Hyperparameter tuning during model fitting was per-
formed using Bayesian optimization [28]. After training, 
the resulting models were applied to the validation data 
set in order to get a final performance estimate. Crucially, 
the validation data set was completely left out of the 
training process and its CV loops. Such external valida-
tion on a hold-out data set is necessary to assess model 
performance independently of the training data on ‘new’ 
and ‘unseen’ data. Performance was primarily measured 
by Matthews correlation coefficient (MCC) [29] and 
the balanced accuracy score (BAC) [30]. Additionally, 
we extracted receiver operating characteristic curves 
and confusion matrices of all non-permuted classifiers. 
Since the MCC is a special form of the Pearson correla-
tion coefficient, a value of 0 corresponds to chance level. 
For BAC scores, the chance level of a binary classifier is 
0.5. MCC values from the permuted models across both 
data sets and all three classifiers were tested against their 
theoretical null distribution, that is, a t-distribution with 
n-2 degrees of freedom [31], using Kolmogorov–Smirnov 
tests. Statistical significance of the non-permuted models 
was tested using p-values derived from the same distri-
bution. To compare the models with RFE to the models 

without RFE, we performed pairwise tests on the respec-
tive MCC values [32]. Further, for the non-permuted 
models, the importance of each feature was calculated by 
its permutation importance on the validation data, that 
is, by the average decrease in model performance when 
the feature was randomly permuted. The number of per-
mutations for this procedure was set to 25.

Availability of data and materials
Data from the MARS study as well as the corresponding 
preprocessed data set that was used for the analyses can 
be requested by contacting Dr. Tanja Brückl (brueckl@
psych.mpg.de). The TRIPOD (Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
Or Diagnosis) [33] checklist for the present study is pre-
sented in Additional file 1: Table S2. Analysis scripts are 
available at https://​doi.​org/​10.​5281/​zenodo.​67597​30.

Results
In the clinical data set, 564 out of 1022 patients (55.19%) 
showed a clinical response, defined by at least 50% symp-
tom reduction measured with the HRDS-17 sum score 
after 6  weeks of antidepressant treatment, whereas 458 
patients (44.81%) did not respond. Hence, the outcome 
groups were slightly unequally large which is why the 
classifiers’ class weights were balanced. Demographic 
data and basic clinical information for training and vali-
dation set are presented in Table 2. In the simulated data 
set, the outcome groups were created to be balanced with 
500 samples in group 1 and 500 samples in group 2.

Table 2  Basic patient characteristics of the clinical data set (MARS study)

Two sample t-tests were computed for continuous variables, Chi-squared tests were used for categorical variables to compare training and test data set

HDRS-17, 17-item version of the hamilton rating scale for depression; ICD-10, international classification of diseases [34]

Training data (N = 817) Validation data (N = 205) Overall (N = 1,022) p

Gender

Female 431 (52.8%) 105 (51.2%) 536 (52.4%) 0.753

Male 386 (47.2%) 100 (48.8%) 486 (47.6%)

Age

Mean (SD) 47.4 (14.0) 47.1 (14.4) 47.3 (14.1) 0.790

[Min, Max] [18.0, 85.0] [18.0, 87.0] [18.0, 87.0]

Diagnosis (ICD-10)

F32 289 (35.4%) 61 (29.8%) 350 (34.2%) 0.152

F33 528 (64.6%) 144 (70.2%) 672 (65.8%)

HDRS-17 baseline sum score

Mean (SD) 24.0 (5.6) 23.4 (5.5) 23.8 (5.6) 0.185

[Min, Max] [12.0, 40.0] [10.0, 39.0] [10.0, 40.0]

Missing 11 (1.3%) 4 (2.0%) 15 (1.5%)

HDRS-17 response

Yes 454 (55.6%) 110 (53.7%) 564 (55.2%) 0.679

No 363 (44.4%) 95 (46.3%) 458 (44.8%)

https://doi.org/10.5281/zenodo.6759730
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Model performances
Classification performances of the non-permuted models 
(with and without RFE) for the clinical data ranged from 
MCC values of 0.22 up to 0.43 (BAC scores: 0.61–0.71). 
For the simulated data, MCCs between 0.69 and 0.72 
were observed (BAC scores: 0.84–0.86). Figure  2 shows 
the MCCs of the validation data for all computed mod-
els (for corresponding BAC scores, see Additional file 1: 
Fig. S2). Model performances of the non-permuted mod-
els are represented by vertical bars. Results from the 100 
permutations are indicated by histograms, superimposed 
density curves and the respective average performance. 
Across all six comparisons, performances of the modeling 
pipeline with RFE and the pipeline without RFE were rel-
atively similar. No significant differences were observed 
between the two pipelines (see Table 3). Interestingly, in 

four of the six cases, the models with RFE loop resulted 
in better predictions on the hold-out validation set than 
the models without RFE (all three classifiers on clinical 
data and SVC on simulated data). In one of the cases (LR 
on simulated data), MCCs and BAC scores were equal 
up to the second decimal place, and in one case (RF on 
simulated data), the model without RFE was superior. All 
non-permuted models both with and without RFE per-
formed significantly better than chance, indicated by the 
p-values of the MCCs (all p < 0.01, see Additional file 1: 
Table  S3). To further characterize the modeling results, 
we included the receiver operating characteristic curves 
and the corresponding areas under the curves in Addi-
tional file  1: Fig. S3. Confusion matrices and additional 
performance metrics, such as sensitivity and specificity 

Fig. 2  Model performances for the three classifiers and the two data sets on the validation data. Matthews correlation coefficients are shown for 
the 100 permutations (annotations correspond to the respective means) as well as for the models with and without RFE. LR, logistic regression; RF, 
random forest classifier; RFE, recursive feature elimination; SVC, support vector classifier
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of the classifiers, are represented in Additional file  1: 
Table S4.

When the target class labels in the RFE pipeline were 
randomly permuted 100 times, the resulting performance 
metrics became distributed around their chance levels 
as expected (0 for MCC and 0.5 for BAC, respectively). 
For MCC values, Kolmogorov–Smirnov tests showed no 
significant deviations from the theoretical null distribu-
tion (all p > 0.05, see Additional file  1: Table  S5). These 
results suggested no unintended information leakage 

from training to validation data. Quantile–quantile plots 
of empirical and theoretical MCC distributions are pre-
sented in Additional file  1: Fig. S4. None of the permu-
tation runs led to better model performances than the 
corresponding non-permuted models (see Fig. 2).

Number of selected features
Overall, the RFE models resulted in sparser features sets 
than the models without RFE. Figure  3 shows the final 
numbers of features required by the models after intrin-
sic feature selection and selection via RFE. Across all six 
comparisons, the final models from the nested CV pipe-
line with RFE required less features than the equivalent 
models from the single CV pipeline without RFE. While 
for RFs, the RFE pipeline resulted in models requiring 76 
and 96 features for the clinical and the simulated data, 
respectively, the models without RFE yielded 97 and 108 
features with non-zero coefficients. Even stronger dif-
ferences were obtained from the LR classifiers with dif-
ferences of 50 features (clinical data) and 33 features 
(simulated data), and from the SVC models with differ-
ences of 31 features (clinical data) and 112 features (sim-
ulated data). Note that the pipeline without RFE could 
still lead to non-zero feature coefficients via intrinsic fea-
ture selection.

Figure  4 provides a combined overview over the 
main results by simultaneously depicting model perfor-
mances (indicated by MCC on the y-axis) and numbers 

Table 3  Pairwise statistical significance tests between model 
performances (MCC values) of the models with and without RFE 
on the validation data

LR, logistic regression; MCC, Matthews correlation coefficient; RF, random forest 
classifier; RFE, recursive feature elimination; SVC, support vector classifier

MCC z p

RFE No RFE

Clinical data (N = 205)

LR 0.425 0.350 0.888 0.375

RF 0.237 0.224 0.138 0.890

SVC 0.403 0.365 0.448 0.654

Simulated data (N = 200)

LR 0.718 0.719 − 0.021 0.984

RF 0.700 0.724 − 0.483 0.629

SVC 0.709 0.688 0.407 0.684

Fig. 3  Number of selected features for the non-permuted models. Across both data sets and all three classifiers, the nested cross-validation 
pipeline with RFE (lower rows) resulted in sparser models requiring less features than the reference method without RFE (upper rows). LR, logistic 
regression; RF, random forest classifier; RFE, recursive feature elimination; SVC, support vector classifier
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of selected features (on the x-axis) of all non-permuted 
models. Overall, the nested CV pipeline with RFE 
seemed to outperform the reference pipeline without 
RFE as it resulted on average in better performing models 
while also requiring less input features.

Clinical predictors of MDD treatment response
For the clinical data set, we were additionally interested 
in the most important predictors of MDD treatment 
response. Therefore, the permutation importance for 
each feature in each model was calculated using 25 per-
mutations applied to the validation data set. The most 
informative features and their corresponding importance 
values, sorted by their importance (averaged over the 
three classifiers and the two pipelines), are illustrated in 
Fig.  5. The most informative features included informa-
tion on the course of the disorder (e.g., number of prior 
hospitalizations, time since last hospitalization, duration 
of current episode), family history (of psychiatric disor-
ders and MDD specifically) as well as symptom profiles 
and severity (e.g., various item scores from the HDRS and 
the Symptom Check-List-90-R [SCL90-R]) [35]. While 
several features showed rather consistent importance 
values (e.g., number of prior hospitalizations, nonviolent 
suicide attempts in medical history, psychiatric family 
history), regardless of which classifier or which pipeline 
was applied, other features varied in their permutation 
importance depending on the model that was used (e.g., 
preexisting dysthymia, SCL-90-R phobic anxiety, HDRS-
17: total score). Note that negative importance values 

indicate that a feature was non-informative for a model 
but shuffling this feature led to a better model perfor-
mance by chance.

A complete overview over the importance values of all 
features in alphabetical order is included in Additional 
file  1: Fig. S5. A more detailed description of the com-
plete clinical feature set in is given in Additional file  1: 
Table  S1. Corresponding feature importance values for 
the simulated data set are presented in Additional file 1: 
Fig. S6 (top predictors sorted by importance) and Addi-
tional file 1: Fig. S7 (complete feature set).

Discussion
In the present study, we tested whether a supervised 
machine learning pipeline that combined hyperparam-
eter tuning and RFE in a repeated nested CV setup can 
lead to sparser but similarly accurate binary classifica-
tion models than a default pipeline with only one CV 
loop for hyperparameter tuning. For this investigation, 
we used three different kinds of classification algorithms 
applied to two different data sets, one real-world data set 
on MDD treatment outcome and one simulated data set 
with similar dimensions. Our results showed that (1) the 
additional RFE loop led to sparser models that required 
less features for the classification; (2) although not statis-
tically significant, the pipeline with RFE yielded equally 
well or better performing models on the validation data 
set in five of six cases; and (3) permutation tests sug-
gested no unintended information leakage in the pipe-
line with RFE. Furthermore, all non-permuted models 

Fig. 4  Number of selected features for the non-permuted models plotted against the corresponding model performances. The left plot represents 
the values for the clinical data set, the right plot for the simulated data set. The different shapes indicate the three classifiers. LR, logistic regression; 
RF, random forest classifier; RFE, recursive feature elimination; SVC, support vector classifier
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performed significantly better than chance, indicated by 
p-values < 0.01.

The results from the present study might be particu-
larly relevant for classification tasks in clinical research. 
Clinical patient data sets are often based on comparably 
expensive measurements and sparser models requir-
ing less features might not only decrease costs for clini-
cal institutions but also stress for patients. Especially 

when expensive biological measures (e.g., brain imag-
ing, -omics data) that need a lot of laboratory or compu-
tational capacities are included in data sets, it might be 
important to be rather strict on the inclusion of features 
into a predictive model. Measures that are not contrib-
uting strongly to the prediction should be omitted when 
there is a sparser model performing equally well or even 
better [16]. By using the pipeline proposed here, feature 

Fig. 5  Permutation importance from 25 permutations for the most informative clinical features, grouped by classifier and models with and 
without RFE. Only features that were selected by all 6 clinical models and showed a positive mean importance score (averaged over all 6 models) 
are presented. The scores show the average decrease in model performance on the test data when a feature was randomly permuted. Error bars 
represent 95% confidence intervals. LR, logistic regression; RF, random forest classifier; RFE, recursive feature elimination; SVC, support vector 
classifier
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selection, hyperparameter tuning and model fitting can 
be performed in one nested data-driven optimization 
process. Hence, this approach does not require any prior 
theory-driven feature selection but automatically selects 
the best performing feature set for each of the tested 
combinations of hyperparameters. Measurement time 
and costs can be reduced when applying such a reduced, 
sparser model in clinical practice. Sparser models also 
help to increase data quality because patients have to fill 
in less questionnaires which reduces respondent fatigue. 
In our analyses, the additional RFE loop reduced the 
number of features required by the final model by 12 fea-
tures in the least extreme case (RF on simulated data) and 
112 features in the most extreme case (SVC on simulated 
data). With respect to the MDD data set, features con-
taining information on the patient’s marital status, their 
gender, the origin of their grandparents and specific med-
ication, for instance, were removed by the RFE across all 
three classifiers but had mostly non-zero feature coeffi-
cients in models created by the pipeline without RFE. By 
omitting these features, future applications of the model 
would require less information from the patients and 
could thus save time and efforts. While we have focused 
on RFE as a feature selection technique here, other filter 
or wrapper approaches might be similarly appropriate in 
general. In previous studies, different filter techniques 
have been successfully used for spam detection [36, 37], 
for instance, but have also been applied to biological 
human data [38, 39].

With respect to absolute performance of the predictive 
models, the observed performance values for the clini-
cal data were within the expected range. The obtained 
MCCs of 0.22–0.43 and BAC scores of 0.61–0.71 were 
comparable to results from similar prior studies [13, 14]. 
Such classification accuracies of approximately 60–70% 
are far from ideal but might still be clinically relevant 
[40] and could provide support for clinicians in their 
treatment decisions. Our results underline that predict-
ing antidepressant treatment outcome is a difficult and 
still unsolved endeavor, especially when the data set is 
as heterogenous as in our case. Since the MARS project 
was designed to be a naturalistic observational inpatient 
study, it included patients from various age groups with 
diverse symptom profiles and medical histories as well 
as different pharmacological treatments. On the other 
hand, it represents quite a realistic picture of the broad 
clinical spectrum of MDD. Regarding the simulated data 
(MCC: 0.69–0.72; BAC: 0.84–0.86), better performances 
compared to the clinical data were expected because 
25 features were explicitly created to be informative for 
the target variable. The congruency of the main results 
across the two data sets highlights that the differences 
between the two pipelines do not depend on the overall 

informativeness of the features and might generalize to 
other data sets as well.

In addition to ‘traditional’ supervised machine learning 
algorithms, such as the classifiers applied in this study, 
deep learning in the sense of deep neural networks is 
becoming increasingly common in psychiatric research. 
So far, however, applications have rather focused on 
diagnosis than on prognosis or personalization of treat-
ment [41]. A reason might be that deep learning usually 
requires large sample sizes and has an increased risk of 
overfitting due to the number of parameters fitted, espe-
cially in relatively small sample sizes that are common in 
psychiatric clinical trials [3, 42]. In addition, deep neu-
ral networks were shown to be not generally superior to 
other classifiers on many classification tasks [43–47], but 
come with comparatively high computational costs. How-
ever, for more complex features, such as brain imaging, 
time-series, or sensor-based data, prognostic research in 
psychiatry might benefit from deep learning [41, 42, 48]. 
There is also growing evidence that deep neural networks 
might be particularly useful for integration of multimodal 
data, e.g., from studies on stress detection [49] and diag-
nosing MDD [50] and Alzheimer’s disease [51–53].

With respect to treatment outcome, we selected a 
reduction of ≥ 50% on a symptom scale sum score after 
6 weeks of treatment as the target variable for the clini-
cal data set because it represents one of the most widely 
used definitions of treatment outcome in MDD research. 
Recently, more and more critique has come up on MDD 
measurement in general [54] and on symptom scale 
sum score-based outcome definitions in particular (for a 
review, see [55], for instance). The definition of response 
used here represents an artificial dichotomization of 
an ordinal scale and is therefore associated with loss of 
information [56]. While most MDD outcome classifica-
tion models have aimed at such binary outcome defini-
tions based on cut-off values [13, 14], others have used 
unsupervised learning to generate data-driven outcome 
classes beforehand [25]. So far, however, there is no evi-
dence for the superiority of one outcome definition over 
another in terms of predictability.

Our study shows some limitations. First, our pipeline 
can only be applied to classification algorithms which 
provide some kind of feature coefficients, at least in the 
version of scikit-learn (0.23.1) that was used in the pre-
sent study. SVCs with non-linear kernels, for instance, 
were not included in our analyses as they do not return 
feature coefficients required by the RFE. However, the 
applied classifiers represent a selection of commonly 
used classifiers for CPMs of MDD treatment outcome 
[14]. Second, it remains unclear how well our results 
generalize to data sets with very different dimensions, 
i.e., different sample-to-feature ratios. It is possible that 
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data sets with significantly more or less features com-
pared to the number of samples might profit less from 
the nested pipeline with RFE. Still, we tested our pipeline 
both on real and simulated data with dimensions that 
are representative of many psychiatric patient cohorts 
and corresponding CPM studies (e.g., [6, 9, 25]). Third, 
the proposed pipeline with nested RFE is computation-
ally expensive compared to a single CV pipeline or a 
nested CV without RFE. Hence, we restricted our analy-
ses to 100 permutation runs even though a larger number 
of permutations might have resulted in a more precise 
empirical null distribution. In future applications, it 
might be worth to evaluate first if the benefits of a sparser 
CPM would outweigh the additional computational 
expenses needed during model development.

Conclusions
In conclusion, our nested supervised machine learn-
ing pipeline with simultaneous hyperparameter tuning 
and feature selection could lead to sparser CPMs with-
out losses in accuracy. This approach might be particu-
larly beneficial in scenarios in which a literature-based a 
priori feature selection is not possible, e.g., due to lack of 
evidence or, in contrast, due to a large number of poten-
tially useful predictors, as observed in MDD, for instance 
[57]. If measurements that come with certain expenses 
are involved, sparser models could reduce both costs for 
users (e.g., clinical institutions) and stress for patients 
resulting in better data quality.
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