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Abstract 

Background:  Online health care consultation has been widely adopted to supplement traditional face-to-face 
patient-doctor interactions. Patients benefit from this new modality of consultation because it allows for time flex-
ibility by eliminating the distance barrier. However, unlike the traditional face-to-face approach, the success of online 
consultation heavily relies on the accuracy of patient-reported conditions and symptoms. The asynchronous interac-
tion pattern further requires clear and effective patient self-description to avoid lengthy conversation, facilitating 
timely support for patients.

Method:  Inspired by the observation that doctors talk to patients with the goal of eliciting information to reduce 
uncertainty about patients’ conditions, we proposed and evaluated a machine learning-based computational model 
towards this goal. Key components of the model include (1) how a doctor diagnoses (predicts) a disease given natural 
language description of a patient’s conditions, (2) how to measure if the patient’s description is incomplete or more 
information is needed from the patient; and (3) given the patient’s current description, what further information is 
needed to help a doctor reach a diagnosis decision. This model makes it possible for an online consultation system to 
immediately prompt a patient to provide more information if it senses that the current description is insufficient.

Results:  We evaluated the proposed method by using classification-based metrics (accuracy, macro-averaged 
F-score, area under the receiver operating characteristics curve, and Matthews correlation coefficient) and an uncer-
tainty-based metric (entropy) on three Chinese online consultation corpora. When there was one consultation round, 
our method delivered better disease prediction performance than the baseline method (No Prompts) and two heuris-
tic methods (Uncertainty-based Prompts and Certainty-based Prompts).

Conclusion:  The disease prediction performance correlated with uncertainty of patients’ self-described symptoms 
and conditions. However, heuristic solutions ignored the context to decrease large amounts of uncertainty, which did 
not improve the prediction performance. By elaborate design, a machine-learning algorithm can learn the inner con-
nection between a patient’s self-description and the specific information doctors need from doctor-patient conver-
sations to provide prompts, which can enrich the information in patient self-description for a better performance in 
disease prediction, thereby achieving online consultation with fewer rounds of doctor-patient conversation.
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Background
Advances in information technologies have boosted the 
development and adoption of online consultation for 
health care. For example, haodf.com, the leading online 
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consultation platform in China, has provided service for 
more than 58 million patients as of 2019 [1]. Supplement-
ing traditional face-to-face consultation, this new chan-
nel of patient-doctor interaction has been playing an 
increasingly crucial role in modern health care systems 
for several reasons.

First, online consultation can alleviate the prob-
lem of imbalanced distribution of precious health care 
resources. Most medical centers are located in developed 
areas, which makes it difficult for many people living in 
rural areas to access high-quality health care services [2]. 
Online consultation can eliminate the physical distance 
between doctors and patients, allowing sick people to 
acquire timely diagnoses from doctors even thousands of 
miles away from their home.

Second, online consultation helps decrease the load 
of the health care system. In populous countries such as 
China, hospitals are often over-crowded with patients. 
This phenomenon is partly caused by many people going 
to the hospital for periodic checkups of chronic diseases 
or preliminary diagnoses, whose health care needs are 
not critical or urgent. Internet-based diagnoses can tri-
age these patients by helping them decide whether they 
really need to go see a doctor in person or not. This can 
help reduce the over-crowding of hospitals and improve 
the throughput of the health care system.

Third, the unexpected COVID-19 pandemic caused 
by the severe acute respiratory coronavirus 2 (SARS-
CoV-2) in 2019 has attracted ever-increasing attention to 
contact-free diagnosis methods. As a result, the demand 
for online consultation sharply increased. According 
to a report from Xinhuanet, an official news website in 
China, the number of people consulting doctors through 
the Internet was more than 100,000 per day across China 
during the lockdown period, increasing by a factor of 6–7 
compared to normal times.1

Indeed, online patient consultation has the advantage 
that patients can conveniently visit doctors almost any-
where anytime through the Internet. Its primary draw-
back, however, is communication inefficiency [3]. To 
better understand this problem, let us first recall the pro-
cess of asynchronous consultation.

Normally, a doctor’s diagnosis starts with the clinician 
asking a patient what is wrong and the patient giving 
the doctor a self-description about how he or she feels. 
Then the doctor continues to ask more questions, such 
as “Does this part or that part hurt?”, “What medicine 
did you take?”, ’’What is your body temperature?’’, and so 
on. The patient answers these questions, and the doctor 
may follow up with more questions. This back-and-forth 

exchange does not end until the doctor reaches a confi-
dent diagnosis, or assessment, of the patient’s medical 
problems.

How many rounds of conversation this process requires 
largely depends on the completeness of the information 
provided by the patient. In the example above, the patient 
needed at least four rounds to make the doctor under-
stand his condition. However, if a patient tells the doctor 
how they feel, which part(s) of his body hurt, and what 
medicine he has taken in the first round of self-descrip-
tion, the patient will greatly reduce the number of rounds 
of question-answering with the doctor before a diagnosis 
is made.

In face-to-face diagnoses, the difference between four 
rounds and one round of conversation does not matter 
because any question can be answered almost immedi-
ately. However, when the diagnosis is done through the 
internet, the difference is critical. For example, in online 
diagnosis in haodf.com, these consultations are not real-
time but work like an asynchronous chat. The time it 
takes to receive a doctor’s reply depends on how busy the 
doctor is with duties offline. Similarly, the patient may 
not give an instant response for various reasons. Under 
this situation, a four-round conversation can take much 
longer than a one-round one. The problem of prolonged 
consultations may affect user experience extensively for 
both doctors and patients [4]. Such effects can be magni-
fied in a society like China with a low doctor-to-patient 
ratio.

To reduce the conversation rounds that doctors need in 
an online consultation, we aim to seek an approach that 
can automatically prompt patients to provide more infor-
mation during their first round of input in an online con-
sultation so that they provide as complete information as 
possible early in the conversation.

Some studies have directly used powerful machine-
learning models to assign disease labels to patients 
according to their health records [5–11]. This kind of 
approach assumes that a patient’s full information is 
already collected, which is not the case in online con-
sultation scenarios. Other studies resorted to dialogue 
systems to automatically guide patients to detail their 
conditions, and then generate diagnosis results [4, 12–
14]. These methods require not only nuanced under-
standing of patient’s language and fluent generation of 
doctor’s language, but also a large and diverse collection 
of labeled conversation data, which are extremely diffi-
cult to create. Other studies select existing answers given 
a patient’s utterance to drive the dialogue [15–17]. The 
difficulty with such methods is that a large pool of ques-
tion–answer pairs is required, which is also difficult to 
obtain.

1  http://​www.​xinhu​anet.​com/​2020-​02/​25/c_​11256​22948.​htm

http://www.xinhuanet.com/2020-02/25/c_1125622948.htm


Page 3 of 15Li et al. BMC Medical Informatics and Decision Making          (2022) 22:170 	

Building on these studies, we are motivated by the 
characteristics observed in health care consultations: (1) 
To measure certainty, doctors need a certain amount of 
information; (2) doctor-patient conversations involve 
multiple-choice questions in many cases; (3) doctors con-
verse with patients in order to decrease their uncertainty 
and increase their confidence about the correct diagno-
sis. We designed a machine learning based framework to 
fulfill our aim.

We first trained a disease diagnosis function with full 
information consisting of patient self-descriptions and 
doctor-patient conversations in order to measure the 
certainty for an unseen patient’s self-described symp-
toms; then, we built a collection of potential prompts 
by selecting top k TFIDF words from doctor-patient 
conversations; finally, we used the prompt and patient 
self-description pairs to train an information elicitation 
function, wherein the prompt can increase the prediction 
of the correct diagnosis. When a self-description is eval-
uated as under-informative by the diagnosis function, the 
elicitation function launches to provide prompts to help 
make it more informative.

In this study, our main contribution can be summa-
rized as follows:

•	 Designed a machine learning based framework to 
reduce the rounds of doctor-patient conversation in 
online consultations.

•	 Instantiated the proposed framework with different 
models and prompt strategies.

•	 Conducted a number of experiments on the dif-
ferent instantiations on three Chinese online diag-
nosis datasets, and found that the instantiation 
BERT + Learned Prompts delivered the best perfor-
mance in most time.

Prior work
Dialogue diagnosis
There are some works studying dialogue between doc-
tors and patients during the medical consultation for 
diagnosis. Tang et  al. [4] proposed a framework that 
casts dialogue diagnosis as Markov Decision Process 
and trains the dialogue policy via reinforcement learn-
ing. In general, the working process of the framework is 
like MYCIN [18], it starts with a patient’s self-report and 
inquires symptoms from the patient, this loop will not 
end until the system meets ending condition. Wei et  al. 
[12] used a similar schema, but adopt deep Q-network to 
parameterize policy. The two works mostly rely on data-
driven learning. To utilize external information, Lin et al. 
[13] proposed an end-to-end knowledge-based dialogue 
system to incorporate knowledge graph into dialogue 

management, and Xu et  al. [14] used a symptom graph 
to implement goal attention mechanism capturing more 
symptoms related information from dialogue. Unlike all 
of these works, which utilize the conversation form to do 
diagnose, our work is to learn from conversation.

Answer selection
Guiding user to complete information can be done 
through providing the answer of most related ques-
tions in a question–answer pool. Technically this is an 
answer selection task. Feng et  al. [15] designed six dif-
ferent architectures based on convolutional neural net-
works (CNN) to select the right answer for a question in 
insurance domain. In that work, CNN is used to extract 
the representation of question and answer in text at dif-
ferent steps in proposed framework. Another work also 
adopts CNN as the sentence presentation extractor [16]. 
The difference of this work with previous one is it used 
a non-linear tensor layer at the final layer to compare 
the similarity of question and answer. The other popular 
deep learning model—long short-term memory (LSTM) 
is also applied to this task. Tan et al. [17] designed a bidi-
rectional-LSTM (BiLSTM) based model as baseline and 
further extend it through mixing a CNN on top of BiL-
STM. The difference between our method and the above 
ones is that we do not find the answer directly instead a 
kind of hint.

Disease diagnosis with machine learning
Machine learning technology has been widely applied in 
disease diagnosis. Garg et  al. [5] applied several feature 
selection methods and machine learning algorithms on 
text-based electronic health records to classify ischemic 
stroke. Malik et  al. [7] developed a general framework 
for recording diagnostic data and used machine learn-
ing algorithms to analyze patient data based on multiple 
features and clinical observations for eye disease clas-
sification. Lucas et  al. [8] used support vector machine 
to search patterns in electroencephalography epochs to 
differentiate patients with Alzheimer disease. Li et  al. 
[6] used existing knowledge base as additional informa-
tion source to improve rare disease classification per-
formance. These methods only tried to improve the 
performance making classifier have better generalization 
ability or incorporating external knowledge, in this study 
we introduce a more human-like way to reach better 
performance.

Method
Problem formulation
At a high level, prompting patient to provide more com-
plete information can be viewed as an active informa-
tion-seeking problem [19]. To motivate our problem 
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formulation, we describe a simplified example of diagno-
sis as follows.

We assume the doctor can differentiate two diseases: 
pneumonia and enteritis. To reach the diagnosis of pneu-
monia, a patient has to simultaneously present the fol-
lowing conditions: fever, asthenia, and dry cough. To 
reach the diagnosis of enteritis, the conditions include 
fever, asthenia, and diarrhea. If a patient comes to the 
doctor for consultation and says he has fever and feels 
asthenic. In this case, according to the above diagnos-
tic rules, the doctor can not determine which of the 
two diseases the patient has—both are equally possible. 
To be certain about the diagnosis, the doctor needs to 
ask whether the patient experienced dry cough or diar-
rhea. When the third condition is confirmed, the doctor 
can reach a conclusion: if the patient has dry cough, he 
probably has pneumonia; otherwise, he is more likely to 
have enteritis (assuming that dry cough and diarrhea are 
mutually exclusive).

We make several observations from this example. 
First, when the information is incomplete, the doctor 
asks questions to elicit more information. Second, such 
questions are asked to decrease uncertainty in diagnos-
ing a disease. Third, each question expects a categorical 
answer. After obtaining further information, the doctor 
incorporates it with the initial information towards mak-
ing a diagnosis with more certainty. We now formulate 
the consultation process as follows.

Consultation process
Given a patient’s self-description x (represented as a vec-
tor of information), a doctor attempts to make a diagno-
sis by mapping x to y, where y is probability distribution 
over the set of diseases in question. The doctor’s map-
ping/reasoning process can be represented as a function 
f  , i.e., y = f (x).The most probable disease y∗ ∈ y would 
be chosen as the diagnosed disease. If the patient’s self-
description x is complete, the doctor will confidently 
assert a diagnosis y∗ with high certainty. However, if x is 
incomplete, the doctor may be uncertain about the diag-
nosis. In terms of the disease probability vector y , y∗ may 
not have a high enough probability, or multiple diseases 
may have nearly as high probabilities as y∗ . To reduce 
uncertainty about the diagnosis, the doctor will need 
more information z to be collected. z is another vector 
of information that answers doctor’s follow-up questions 
after seeing x . After obtaining z , the doctor will make 
a diagnosis again by invoking y′ = f (x + z) . The hope 
is that this time, the candidate diagnosis y∗ ∈ y′ is cor-
rectly identified as the most probable disease with high 
certainty.

Contextual prompts
Ideally, a computer algorithm can capture the doctor’s 
follow-up questioning process as a model g that gener-
ates the questions z based on x , i.e., z = g(x) . This allows 
the online platform to ask follow-up questions as soon as 
the user typed in his initial descriptions, instead of wait-
ing for the doctor to ask such questions. We call z = g(x) 
contextual prompts as the prompts z shall depend on 
the context x . Such contextual prompts can be useful as 
it can save doctors and patients from time-consuming 
asynchronous communications. Instead, the online plat-
form can prompt the patient to enter more information 
based on what has been entered so far.

Computational modeling of the consultation process 
with contextual prompts.

The above conceptual formulation includes a few com-
ponents, which we further instantiate below.

•	 Patient’s initial self-description x(i) . This is a short 
natural language document written by the i-th 
patient when they initiate the request for online con-
sultation. Here we assume different documents are 
written by different patients.

•	 Ground-truth diagnosis result y(i) . This is the actual 
diagnosis given by the doctor to the i-th patient. For-
mally, if there are m diseases, then y(i) is a m-dimen-
sional one-hot vector with a 1 at the dimension 
corresponding to the diagnosed disease, and 0 else-
where.

•	 Diagnosis function f  . The diagnosis function f  
takes a patient’s self-description (with or without 
prompts) as input and then outputs a probability 
distribution y over the set of m predefined diseases. 
This function is instantiated as a text classification 
model trained on the online consultation corpus. 
Further, as a ’’simulated doctor’’, this function needs 
to reason like doctors who made the disease predic-
tion after having complete information of the patient. 
Thus, we train f  with complete information where 
the input document is a concatenation of patients’ 
initial descriptions and the follow-up doctor-patient 
conversation.

•	 Uncertainty measure and threshold. The consul-
tation process involves a decision point: if the pre-
dicted disease distribution has uncertainty higher 
than some threshold τ , follow-up questions (or con-
textual prompts) shall be invoked. Here we use Shan-
non’s information entropy to measure the degree of 
uncertainty of a probability distribution [20]. Given a 
predicted disease distribution vector y , we calculate 
the entropy H(y) as its uncertainty measure:
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where m is the number of diseases, yj is the predicted 
probability for the j-th disease.

In pilot study, we also explored margin (absolute 
difference between the highest and the second high-
est probabilities) and confidence (absolute difference 
between the highest probability and 1/m) [21] to meas-
ure uncertainty. The impact of different uncertainty 
measures on experimental results was minimal.

We need a threshold τ to decide whether the uncer-
tainty is high enough to invoke contextual prompts. 
We set the average entropy value of the training data 
as the threshold. That is, for every patient’s initial 
self-description x(i) in the training data, we apply f  to 
obtain a predicted probability vector yi , which has an 
uncertainty measure H

(

y(i)
)

 . The threshold τ equals the 
average of H

(

y(i)
)

 as i exhausts all x(i) ’s in the training 
data.

•	 Contextual prompt vector z . Each dimension in z 
represents whether to prompt the user to describe 
his experience about a specific medical term. 
Knowing information about these terms should 
help the doctor better assess the patient’s condi-
tion and make a diagnosis. We apply a data-driven 
approach to construct this vocabulary of prompt 
terms. Specifically, we take k words with the high-
est TFIDF weights from doctor-patient conversa-
tions in the training corpus. A predicted contextual 
prompt vector  z = [z1, z2, . . . , zk ] has k dimensions. 
The elements can take real values indicating the 
predicted utility of prompting a user to mention a 
term in the follow-up conversation. In this work, 
our focus is the way of information elicitation, so in 
order to limit the computation complexity, we limit 
the prompt vocabulary size k = 100.

•	 Information elicitation function g  . As formulated 
above, the function g  generates the contextual 
prompt z given patient’s initial description x . Since 
each of the k dimensions in z represents whether 
a term should be present or absent, we can view g 
as a function that has k real-valued outputs, each 
estimating an importance score for a term given 
the context x . Our instantiations of function g  are 
described in the next subsection.

•	 Updating operation +. Patients use natural lan-
guage to revise their initial self-description under the 
guidance of prompts in the real world. Therefore, we 
assumed that the given prompts would be mentioned 
in the new description: x + z simply appends  z to x.

(1)H(y) =
m
∑

j=1

−yjlog
(

yj
)

Instantiating information elicitation function g
According to the way doctors ask questions, with the goal 
of decreasing their uncertainty about the correct diagno-
sis based on the patient’s self-description, we designed a 
strategy named ’’Learned Prompts’’.

Contextual prompts
We train a classification model z = g(x) where z is an 
array of k independent probabilities indicating the chance 
of prompting a term. This effectively translates g into k 
independent binary classifiers, each predicting the 
chance of prompting the l-th term, 1 ≤ l ≤ k . To con-
struct training data 

{(

x(i), t
(i)
l

)}

 for the l-th binary clas-
sifier, the ground truth label t(i)l  for the i-th training 
instance is determined as follows. t(i)l = 1 if adding zl (the 
l-th prompt term) into the initial description x(i) 
increases the predicted probability of the diagnosed dis-
ease; t(i)l = 0 otherwise. The rationale here is that a term 
zl should have high chance to be prompted if mentioning 
it in later conversations would increase the doctor’s cer-
tainty on the disease that is ultimately diagnosed.

Formally, t
(i)
l = 1 if y(i), f x(i) + zl > y(i), f x(i)  , 

where 〈a, b〉 is the dot product of a and b ; x(i) + zl concat-
enates the document x and the word zl.

For comparison purposes, we also present three base-
line strategies as follows.

No prompts
Under this strategy g does not output a prompt. This 
effectively assumes no information elicitation process 
when making diagnosis.

Certainty‑based prompts
Given x , we measure uncertainty for all f

(

x(i) + zl
)

 , 
1 ≤ l ≤ k . We then rank prompt terms zl such that the 
terms that made the disease prediction more certain (has 
low entropy) are ranked at the top. The rationale is that 
if knowing more about a term can increase doctor’s cer-
tainty about the diagnosis, that term may be useful.

Uncertainty‑based prompts
This strategy was similar to that of Certainty-based 
Prompts but ranked prompt terms in reverse order (pri-
oritizing terms that made the prediction more uncer-
tain). This is inspired by the uncertainty-based sampling 
method in active learning [21].

Selecting top prompts
When an online platform prompts a user to say more 
about their medical conditions, the prompt may only 
contain a small number of terms (e.g., ’’Can you con-
tinue to describe aspects x, y, and z’’?). Therefore, we 
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only consider the top q terms ranked by their scores as 
assigned by g  . In this study, we vary q across the range 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Summarizing the above description, Fig. 1 depicts the 
overall workflow of the proposed method. The dashed 
box denotes a switch that controls which strategy the 
information elicitation function g  chooses.

Fig. 1  Workflow of diagnosis with prompts
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Compared methods
Because both f  and g are classifiers, we explored two 
kinds of models: The one was a traditional classifier 
working on sparse representation, like bag-of-words 
(BOW), that is logistic regression; we use BOW to 
denote this model in the rest of this paper. The other 
model was Bidirectional Encoder Representations from 
Transformers (BERT) [22]. Because the datasets we used 
below are Chinese, we configure the Chinese BERT-base 
model released by Google.2 Each model can work with 
four prompts strategies, thus we had eight methods to 
compare. We named each method with the unified pat-
tern ’’model name + prompts strategy’’. The eight meth-
ods are: BOW + No Prompts, BOW + Learned Prompts, 
BOW + Certainty-based Prompts, BOW + Uncertainty-
based Prompts, BERT + No Prompts, BERT + Learned 
Prompts, BERT + Certainty-based Prompts, and 
BERT.  + Uncertainty-based Prompts.

Experiment and evaluation
Data description
We used three Chinese patient diagnosis datasets to 
demonstrate the effectiveness of our method. They were 
from three different areas of medicine: pediatrics, androl-
ogy and cardiology. Figure 2a–c show the distribution of 
the three datasets, respectively.

The corpora are all from haodf.com, the largest Chinese 
online platform that connects patients to doctors. On the 
platform, a diagnosis starts with a patient’s main con-
cerns in text. Then a doctor converses with the patient to 
give his or her suggestion or ask more questions to better 
understand the patient’s condition. In the end, the doctor 
uses a disease to label this consultation. We illustrate the 
data pattern on haodf.com in Fig. 3

Each document consists of two parts: initial descrip-
tion (ID) and clarification. An initial description is a 
patient’s self-description of symptoms used to consult a 
doctor, and a clarification is the conversation between the 
patient and the doctor. Following the notation we used 
in the Problem Formulation section, we use X and C to 
denote the collection of ID and clarification respectively, 
such that X = {x1, x2, . . . , xn} , xi denotes the i-th exam-
ple’s ID, C = {c1, c2, . . . , cn} , ci denotes the i-th example’s 
clarification. Both xi and ci are text sequence.

The full information of diagnosis should incorpo-
rate both ID and clarification, so we denote it with 
Xcomp−info = {x1 + c1, x2 + c2, . . . , xn + cn} , where xi + ci 
denotes putting i-th example’s ID and clarification 
together to form one text sequence. When training f  , 
Xcomp−info is used, and for test, X is used.

Table  1 summarizes basic statistics of the three cor-
pora. pkuseg package was used for Chinese word seg-
mentation [23].

Evaluation
All paths in Fig.  1 were designed to predict the disease 
diagnosis as the final output, thus we used the classi-
fication metrics of accuracy, macro-averaged F-score, 
macro-averaged area under the receiver operating char-
acteristics (ROC) curve, and macro-averaged Matthews 
correlation coefficient (MCC) to evaluate the perfor-
mance. To reveal the correlation of prediction and diag-
nosis uncertainty we also used entropy as a metric.

Viewing the classification of each individual disease 
as a binary classification problem, results can be divided 
into true positive (TP), true negative (TN), false positive 
(FP) and false negative (FN).

Accuracy. Accuracy measures the proportion of right 
predictions without considering the difference among 
classes. The metric was calculated as follows:

Macro-averaged F-score. F-score is the harmonic mean 
of precision and recall, a metric that balances the two 
[24]. Recall measured the percentage of TPs among all 
documents that truly mentioned that disease; precision 
measured the percentage of TPs among all documents 
predicted to mention that disease. The metric was calcu-
lated as follows:

To measure the classification performance of a set of 
diseases, we used the macro-averaged F-score. Formally, 
the metric was calculated as follows:

where C is the set of diseases (classes), and F-scorei is the 
F-score of the i-th disease.

Macro-averaged Area Under the ROC Curve (Macro-
averaged AUC). The ROC curve shows the performance 
of a classification model at all classification thresholds. 
The curve plots two parameters: true-positive rate (TPR) 
and false-positive rate (FPR). The two parameters are 
defined as follows:

(2)accuracy =
TP + TN

TP + FP + FN + TN

(3)F− score = 2×recall×precision
recall+precision

= 2×TP
2×TP+FP+FN ,

(4)macro-averaged F-score = 1
|C|

|C|
∑

i=1

F-scorei,

(5)TPR = TP
TP+FN ,

(6)FPR = FP
FP+TN

2  https://​github.​com/​google-​resea​rch/​bert

https://github.com/google-research/bert
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Area under the ROC curve (AUC) measures the entire 
two-dimensional area underneath the entire ROC curve 
[24]. In practice, the calculation of AUC often adopts the 
Wilcoxon-Mann–Whitney test [25]:

(7)AUC =
∑

t1∈D0
∑

t1∈D1
1|f (t0)�f (t1)|

|D0|×|D1| ,

Fig. 2  The data distribution of three departments
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Fig. 3  A screenshot of a diagnosis on haodf.com. The doctor’s statements are in light-blue bubbles. The patient’s statements are in light-gray 
bubbles. We include English translation of the Chinese post to improve readability. Source: https://​www.​haodf.​com/​bingc​heng/​88212​40724.​html. 
Accessed in June 2021

https://www.haodf.com/bingcheng/8821240724.html
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where 1|f (t0)
〈

f (t1)
∣

∣ denotes an indicator function that 
returns 1 if f (t0) < f (t1) otherwise it returns 0; D0 is 
the set of negative examples, and D1 is the set of positive 
examples. Macro-averaged AUC was used to calculate 
the average AUC of all diseases:

where C was the set of diseases(classes) and AUCi was 
the AUC of the i− th disease.

Macro-averaged Matthews Correlation Coefficient 
(Macro-averaged MCC). The Matthews correlation coef-
ficient (MCC) calculates the Pearson product–moment 
correlation coefficient between actual and predicted values 
[26]. The formula to calculate MCC is as follows:

Considering the weight of each disease equally, the 
macro-averaged MCC was calculated as follows:

where C was the set of diseases(classes) and MCCi was 
the MCC of the i-th disease.

Entropy. Entropy was introduced in Method section. 
Here we use averaged entropy as the metric:

where N  is the size of test example in a dataset.

Train‑test split
To reduce the variance of results caused by the train-test 
split, we ran a fivefold cross-validation, where 4 folds of the 
data are used as training and onefold of the data are used 
as test. The final results are the averaged results of 5 folds. 

(8)macro-averaged AUC = 1
|C|

|C|
∑

i=1

AUCi,

(9)MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

,

(10)macro-averaged MCC = 1
|C|

|C|
∑

i=1

MCCi,

(11)averaged H = 1
|N |

|N |
∑

i=1

Hi,

To avoid the case where some classes do not appear in the 
training or test set, we applied the stratified k-fold.

Results
Figure  4 shows the accuracy, macro-averaged F-score, 
macro-averaged AUC, macro-averaged MCC and entropy 
of all eight methods under various numbers of prompts on 
three evaluation corpora. This figure consists of 15 sub-
plots, each one reporting results of one metric of all meth-
ods with 1 to 10 prompts on one corpus.

In terms of accuracy (subplots a, b, c in Fig. 4), BERT + No 
Prompts consistently outperformed BOW + No Prompts 
across three corpora. When learned prompts were 
involved, the two baseline methods improved accordingly: 
BERT + Learned Prompts consistently delivered better per-
formance than BERT + No Prompts, and the performance 
of BOW + Learned Prompts exceeded that of BOW + No 
Prompts on two of three data sets. Certainty-based 
prompts did not help much: both BERT + Certainty-based 
Prompts and BOW + Certainty-based Prompts performed 
slightly worse than baseline methods. The two methods 
related to uncertainty-based prompts performed much 
worse than baseline.

In terms of macro-averaged metrics, in F-score (subplots 
d, e, f in Fig. 4), BOW + No Prompts performed better than 
BERT + No Prompts over all corpora. Apart from androl-
ogy, learned prompts benefitted the other two models. 
But both certainty-based and uncertainty-based prompts 
almost always hurt the performance of the two models. As 
for AUC (subplots g, h, i in Fig. 4) and MCC (subplots j, k, 
l in Fig. 4), there was not a consistent pattern for the base-
line methods, but learned prompts consistently improved 
them across all datasets and helped BERT achieve the best 
performance on two of three datasets in AUC and all three 
datasets in MCC. Certainty and uncertainty based strate-
gies still did not help in most cases in the two metrics.

In terms of entropy (subplots m, n, o in Fig.  4), 
BERT showed much lower entropy than BOW, and 
there was a similar pattern in entropy over all cor-
pora: BOW + Uncertainty-based Prompts > BOW + No 
Prompts > BOW + Learned Prompts > BOW + Cer-
tainty-based Prompts > BERT + Uncertainty-based 
Prompts > BERT + No Prompts > BERT + Learned 
Prompts > BERT + Certainty-based Prompts.

As more prompts are adapted, learned prompts tend to 
be more helpful, although such benefits are not consist-
ent with the number of prompts.

Table 1  Corpora statistics

Pediatrics Andrology Cardiology

# of documents 3593 1200 3487

# of diseases 79 31 53

# of rare diseases 12,081 5,478 9,202

Average # of words/ID 33.6 29.8 21.5

(See figure on next page.)
Fig. 4  All experimental results on the three corpora are exhibited in this figure. The whole figure consists of 15 subplots, a–o. Each column of the 
figure is one data set, each row is one metric. In one subplot, the x-axis is the number of prompts, y-axis is the corresponding metric. For instance, 
subplot (a) summarizes the accuracy of all methods from 1 to 10 prompts on pediatrics data set. The higher the accuracy, macro-averaged F-score, 
macro-averaged AUC and macro-averaged MCC the better. The lower the entropy, the better
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Fig. 4  (See legend on previous page.)
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Discussion
It is easy to observe one trend: there is a performance gap 
between two classifiers in disease prediction. From the 
results delivered by BERT + No Prompts and BOW + No 
Prompts, we can see that BERT has better performance 
than BOW in accuracy. This is partly due to the Trans-
former’s multi-head attention mechanism, which allows 
BERT to learn long-distance dependency efficiently. 
Another reason is BERT’s unique pretraining objective, 
which can incorporate the sequence information of text 
in two directions efficiently.

When it comes to macro-averaged metrics, BOW was 
not always worse than BERT, especially in F-score, where 
BOW consistently outperformed BERT. This is because 
BERT has relatively poorer performance than shallow 
conventional models, such as SVM, on classes with few 
samples [27]. Each dataset in experiments had nearly 50% 
classes (diseases) with fewer than 10 examples (eight for 
training): these included 15 of 31 in andrology, 41 of 79 in 
pediatrics and 28 of 53 in cardiology. So, the macro-aver-
aged F-score delivered by BERT was lower than that of 
BOW. In addition, besides the high proportion of minor-
ity classes (those with limited examples), data distribu-
tion was highly skewed, which made classifiers biased 
toward predicting major classes (those with more exam-
ples) [28], and F-scores of the two classifiers were much 
lower than their accuracy.

Another intriguing observation is that the trivial solu-
tion for decreasing uncertainty did not improve dis-
ease prediction. As we described, because of the lack 
of information in self-description, doctors may be too 
uncertain to make an accurate diagnosis. So good per-
formance on disease prediction should correspond with 
low uncertainty. Uncertainty-based and learned prompts 
did follow the hypothesis: compared to baseline, the 
uncertainty-based prompts increased the uncertainty 
while decreasing the performance, the learned prompts 

decreased uncertainty while increasing performance. But 
the certainty-based prompts failed to follow this path: 
searching to quickly lessen large amounts of uncertainty 
hurt the prediction performance most times. To explore 
the reason, we use an example (shown in Table 2) from 
a pediatrics department; this example was classified cor-
rectly by BERT + Learned Prompts but incorrectly by 
BERT + No Prompts, BERT + Certainty-based Prompts 
and BERT + Uncertainty-based Prompts.

In this example, the self-description is short and 
involves common symptoms relating to several diseases, 
like cough, cold and fever. It is unlikely to be classified 
correctly without additional information. But neither 
the certainty-based nor the uncertainty-based prompts 
helped the prediction.

The certainty-based prompts were all related to the 
cough class. Naturally, these words guided the classi-
fier to be biased toward the cough class; therefore, the 
predicted probability distribution was more concen-
trated than in the baseline method, lessening uncer-
tainty. But the certainty-based strategy only considered 
the decrease of uncertainty and ignored the exactness 
of prompts, making the classifier like a doctor who is 
eager to make his decision but lacks comprehensive 
inquiries. In contrast, the uncertainty-based prompts 
were too general; those prompts seemed to relate to 
every disease. They were not helpful to assign correct 
labels and might have led classifiers to give a more even 
probability distribution over all diseases than baseline 
methods, which resulted in the increase in uncertainty. 
In considering both uncertainty and exactness at the 
same time, the learned prompts complemented the 
self-description with related information, thus leading 
to a correct prediction. In reality, if the patient followed 
these prompts to complete his initial self-description, 
the doctor might have had a better chance of getting the 
correct diagnosis even without further conversation. 

Table 2  An example for case study

Initial description: 无感冒症状, 突然发烧, 嗓子红肿, 为何输液又烧?(There are no 
cold symptoms, got fever suddenly, and throat got inflamed. Why 
did he fever while receiving transfusion treatment?

True label: Fever

No Prompts: None

Predicted label: Cold

Learned Prompts: 左右 (about), 退烧药 (antipyretics), 血常规 (blood routine examina-
tion)

Predicted label: Fever

Certainty-based Prompts: 咳嗽 (cough), 鼻涕 (runny nose), 病毒 (virus)

Predicted label: Cough

Uncertainty-based Prompts: 复查 (re-examination), 主任 (director), 体重 (weight)

Predicted label: Cold
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At the same time, more learned prompts possibly cov-
ered the lack of provided information, which therefore 
resulted in better prediction performance.

However, when self-descriptions only include little 
diagnosis-related information or are too complex, even 
Learned Prompts do not work well. We list such two 
examples, which BERT + Learned Prompts failed to 
classify, in Table 3. This is a reasonable phenomenon. 
For the under-informative cases, even doctors need to 
ask questions from the start to get clues for diagnosis, 
so it is understandable that Learned Prompts did not 
know what to suggest and failed to give the right infor-
mation in such cases. And for complicated cases, the 
intuitive but trivial strategy was not capable of captur-
ing the key points to give effective suggestions.

In general, Learned Prompts can bring improvement, 
but it worked relatively poorly with BOW on the androl-
ogy corpus. This is related to the characteristics of the 
department. Andrology has more across-disease key-
words than the other two departments: 22.22 in androl-
ogy, 19.83 in cardiology and 18.5 in pediatrics. Adding 
prompts consisting of those words directly might blur 
the difference among classes for the traditional classi-
fier, which applies a bag-of-words model to represent 
examples [29], in contrast BERT, which benefits from 
the self-attention mechanism, which can better cap-
ture the slight differences than BOW can. Therefore, the 
learned prompts hurt BOW but still benefit BERT.

Limitations
There are some limitations in this study: (1) The way 
patients were cued to provide further information and (2) 
the way elicited information was incorporated. First, the 
natural way to elicit complementary information is the 
way doctors do it—by asking questions with understand-
able and complete sentences; our system’s pop-up word 

prompts are not as user-friendly as a natural conversation 
and may lead to some patient confusion. Second, when 
people see prompts, they tend to incorporate the new 
information by revising their self-description in natural 
language; however, the current updating operation is rel-
atively primitive and might make the useful information 
noise by missing the patient’s syntax.

Conclusion
In this paper we introduced a method to deal with a 
problem in Chinese online health care consultation: low 
communication efficiency caused by under-informative 
patients’ self-descriptions of the problem. The method 
consists of several parts, including a diagnosis function, 
an uncertainty calculation function, a prompts pool and 
an information elicitation function.

The diagnosis function was implemented with a dis-
ease classifier trained using comprehensive information 
from both doctors and patients; the uncertainty calcula-
tion function was implemented with an entropy calcu-
lation formula; the prompts pool was constructed using 
top k TFIDF words from doctor-patient conversations; 
the information elicitation function adopted a classifier 
trained with pairs of potential prompts and patient self-
descriptions, where the prompt improved the prediction 
of the description on the right class.

Through experiments conducted on three Chinese 
online medical consultation corpora, we proved the 
effectiveness of our method. Although, in general, the 
better option to implement our method is the powerful 
pretrained deep learning model BERT, the conventional 
learning regression model (BOW) also delivered decent 
results, which were comparable with the BERT baseline 
method occasionally. This means that when computa-
tional resources are limited, our method still works in 
this task.

Table 3  Case misclassified by BERT + learned prompts

Initial description: Initial description:

医生你好, 我女儿今天早上起来后不舒服?(Hello doctor, my daughter 
complained of feeling not well when she got up in the morning.)
Doctor–patient conversation:
Doctor: 宝宝体温是多少?(What is the body temperature of the baby?)
Patient: 37.8 (37.8 Celsius)
Patient: 她今天比平时吃得少. (She ate less than usual today.)
Doctor: 排便是否正常? (Is her defecation normal?)
Patient: 早上拉了稀。(She had diarrhea this morning.)
Doctor: 如果最近没有接触过肺炎患者, 有可能是发烧。(If she did not 
contact COVID-19 carrier, she may get fever.)
True label: Fever

宝宝前面加米粉又加了胡萝卜泥就开始拉。便便是水和泡沫。一天最
多拉到8次化验了大便也没有异常。吃了思密达和金双歧大概有10天
左右的时间, 现在是拉大便依然有那种鼻涕状和长丝一天也有5 ~ 6次
昨天发烧了感冒吃退烧药布洛芬和抗感颗粒。(My baby started to have 
loose bowels after eating rice flour and grated carrots. Her stool is watery 
and foamy. And she even had loose bowels 8 times one day. Stool examina-
tion does not show abnormality. She has taken Smecta and Golden Bifid 
for about 10 days, but her stool is still filamentous like snot. Besides she got 
fever yesterday and had taken Ibuprofen and Anti-Cold Granule.)
(Doctor-patient conversation is omitted)
True label: Infantile Diarrhea

Learned Prompts: 睡觉 (sleep), 检查 (examination),时间 (time) Learned Prompts: 复查 (re-examination), 头孢 (cephalosporin), 鼻涕 
(runny nose)

Predicted label: Dyspepsia in children Predicted label: Cold
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In future work, we will conduct more evaluation stud-
ies to assess the performance of the method using real-
world scenarios.
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