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Abstract 

Background:  Insightful feedback generation for daily home-based stroke rehabilitation is currently unavailable due 
to the inefficiency of exercise inspection done by therapists. We aim to produce a compact anomaly representation 
that allows a therapist to pay attention to only a few specific sections in a long exercise session record and boost their 
efficiency in feedback generation.

Methods:  This study proposes a data-driven technique to model a repetitive exercise using unsupervised phase 
learning on an artificial neural network and statistical learning on principal component analysis (PCA). After a model is 
built on a set of normal healthy movements, the model can be used to extract a sequence of anomaly scores from a 
movement of the same prescription.

Results:  The method not only works on a standard marker-based motion capture system but also performs well on a 
more compact and affordable motion capture system based-on Kinect V2 and wrist-worn inertial measurement units 
that can be used at home. An evaluation of four different exercises shows its potential in separating anomalous move-
ments from normal ones with an average area under the curve (AUC) of 0.9872 even on the compact motion capture 
system.

Conclusions:  The proposed processing technique has the potential to help clinicians in providing high-quality feed-
back for telerehabilitation in a more scalable way.

Keywords:  Anomaly detection, Rehabilitation exercise, Repetitive movement, Segmentation, Time normalization, 
Upper limb kinematics, Exercise monitoring
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Introduction
An increasing number of stroke survivors globally leads 
to a growing demand for rehabilitation and long-term 
care [1]. However, the continuity of care at the patient’s 
home is limited as a therapist cannot conduct time-con-
suming home visit regularly [2]. Moreover, the home visit 
could be expensive and not widely available [3]. This lack 

of monitoring when the patient performs self-directed 
exercises makes it difficult for the therapist to assess 
whether the prescribed exercises are done properly. As 
such, telerehabilitation services that allows the thera-
pist to monitor the exercise session remotely [4] have 
been developed to enhance functional recovery in stroke 
patients [5–7]. Considering a typical exercise duration of 
around 30–60 min per day for each patient [8], a therapist 
will still be overwhelmed by long hours of information 
generated daily from all the patients under his supervi-
sion. To make the daily feedback generation scalable, an 
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automated data analysis must be integrated on top of a 
sensing system to reduce the therapist’s workload [9].

To reduce the therapist’s workload, motion capture 
system with machine learning have been used to auto-
mate the assessment of rehabilitation exercise [9, 10]. For 
example, Raihan’s study employed convolutional neural 
networks to predict the summary score of rehabilita-
tion exercise sessions [9]. Similarly, various studies use 
motion-related sensors with data-driven techniques to 
calculate scores for assessments [11–15]. For instance, 
Lee’s study used time-frequency informed singular spec-
trum analysis to automatically assess the score of one 
grasping task in the Action Research Arm Test (ARAT) 
[11]. However, these studies can only show a summary 
score of each rehabilitation session. By looking at those 
scores, a therapist cannot pinpoint an anomalous move-
ment of patients to generate insightful feedback. Some 
studies designed the compensation detection methods 
for patients [16–19]. Nevertheless, methods in these 
studies have not been designed to produce anomaly 
detection in a time-series manner.

Interestingly, there is a study [20] that calculates time-
series anomaly scores of repetitive tasks involving upper 
body movements. Their method detects intra-subject 
anomalies based on a history of movement from the 
same healthy subject in the earlier part of the same epi-
sode. Thus, it is useful for fatigue detection in assembly 
line workers performing repetitive tasks. On the other 
hand, our method is designed for monitoring stroke sur-
vivors performing rehabilitation exercises. Furthermore, 
in our case, the movement anomaly cannot be compared 
against the same patient, but it must be compared against 
a set of normal healthy movements from a group of 
healthy subjects.

This study aims to design an information process-
ing method that assists a therapist in monitoring their 
patients who need daily rehabilitation exercises. By auto-
matically transforming the movement records into a 
time-series plot of anomaly scores, it can help to direct 
the therapist’s attention to specific sections of the records 
where the patient performs the exercises differently. This 
will allow the therapist to have more time in generat-
ing insightful feedback instead of aimlessly skimming 
through the full length of the video record to identify the 
anomalies. A similar form of automatic assessment dur-
ing the rehabilitation exercise has been found in the Vir-
tual Exercise Rehabilitation Assistant (VERA) for lower 
extremity exercises [21]. However, the feedback gener-
ated from VERA must follow pre-defined criteria of cor-
rect movement which is programmed individually for 
each exercise.

Instead of engineering a new set of rules for every 
new movement prescription, our system is designed to 

automatically model some characteristics of the normal 
exercise from a small group of healthy subjects perform-
ing the prescription. To do so, there are a number of 
requirements and challenges as follows. 

1	 Due to the impracticality of using a multi-camera 
marker-based motion capture system at a patient’s 
home on a daily basis, the method must be tolerant 
of inaccuracy in the data recorded from a more com-
pact motion capture system (e.g., with a single depth 
camera).

2	 A patient undergoing rehabilitation usually moves 
slower as compared to healthy subjects. The method 
must not consider those slow movements as anoma-
lies if the movement patterns are similar to the norm.

3	 Other than the data collection step from healthy sub-
jects, all the other steps such as period segmentation 
must be done automatically without any given tem-
plate of the waveform. The method only has access 
to records of continuous repetitive movements from 
healthy subjects in order to model the movement.

4	 When a therapist wants to add a new exercise move-
ment, it should not be too time-consuming. Thus, 
the number of healthy subjects needed to create the 
new exercise model should not be too large (10–12 
subjects). With this small training data, the generali-
zation to an unseen subject is one of the challenges.

To overcome those challenges, the time segmentation 
and time normalization of our method largely rely on 
our previous work on unsupervised phase learning and 
extraction using neural network [22–25]. This technique 
allows us to effectively use a standard anomaly detection 
technique such as principal component analysis (PCA) 
reconstruction error [26]. In addition, the sequence of 
the extracted phase itself can also be a clue to enhance 
anomaly detection.

In the literature, the work of Murgia et al. [27] is clos-
est to our requirements. They model a cyclic movement 
of a page-turning task using mean and standard devia-
tion at each phase of the movement which forms a series 
of confidence intervals from the beginning to the end 
of one movement period. If the active range of motion 
(AROM) falls outside the confident range, compensa-
tion or a lack of movement will be highlighted. During 
the record, the subject needs to push a button to mark 
the beginning and the end of each period for segmenta-
tion and time normalization. Similar digital markers or 
rule-based techniques for automatic segmentation are 
commonly found in the analysis of upper limb move-
ments [15, 28]. However, they are designed to model one 
specific task which does not match our requirements. To 
make it more general in our study, the phase extraction 
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and the segmentation are done with data-driven tech-
niques instead.

Method
The method is composed of two stages. The first stage 
is the modeling stage in which all the parameters (e.g., 
neural network weights and biases for phase extraction, 
dimensionality reduction matrices from principal com-
ponent analysis, reconstruction-error normalization 
parameters) will be calculated from records of unseg-
mented repeated movement from a group of healthy sub-
jects. The second stage is the anomaly detection in the 
actual exercise sequence which can be seen in Fig. 1.

The method is designed to detect anomalies from two 
main clues that are 1) the fluctuation in the phase pro-
gression and 2) the deviation of kinematic features from 
the healthy norm.

All the contents in this method section are from the 
first author’s Ph.D. thesis [29].

Motion capture systems
The kinematic data of subjects’ movements are collected 
from three motion capture systems for comparison. The 
first system is Microsoft Kinect V2 with skeleton track-
ing capability from Kinect Software Development Kit 
2.0 (SDK) [30–32]. The second system is a combination 
of the Kinect and wrist-worn inertial measurement units 

with model personalization to enhance the pose tracking 
accuracy [33]. The third system is a marker-based multi-
camera motion capture system (Qualisys) [34]. These 
three systems with increasing level of tracking accuracy 
allow us to observe the effect of sensing noise on anom-
aly detection. For reference purposes, the first, the sec-
ond, and the third system will be called Kinect Alone, 
Kinect+IMU, and Marker-based respectively. Each sys-
tem records data at 30 frames per second.

The position of the Kinect camera with the table and 
the chair arrangements are illustrated in Fig.  2. The 
records are always done in a brightly lit and quiet room 
without external distraction.

Selected features
This study focuses on unilateral exercises of gross upper-
limb movements. Therefore, the selected features are lim-
ited to the upper torso, the right upper arm, and the right 
forearm. These features are

•	 upper-arm pointing direction (3D unit vector) using 
upper torso as the frame of reference [UA Pnt.],

•	 forearm pointing direction (3D unit vector) using 
upper torso as the frame of reference [FA Pnt.],

•	 upper torso frontal flexion [TS Ffx.],
•	 upper torso left/right turning angle [TS Turn],
•	 upper torso lateral flexion [TS Lfx.],
•	 forearm pronation/supination turning angle [FA 

Prn.],
•	 wrist position (X-component) in the core reference 

frame [WR X],
•	 wrist position (Y-component) in the core reference 

frame [WR Y],
•	 wrist position (Z-component) in the core reference 

frame [WR Z].

Each bullet is treated as one feature channel. The concept 
of feature channel will play a role in the Detect Anomaly 
from Reconstruction Error section.

The core reference frame is a static frame for each 
record defined at the first frame of recording when the 
subject is at a normal resting posture. The origin of core 
reference frame is defined as the middle point between 
two shoulder locations that is shifted downward (along 
the gravity direction) to the table level. The Y-axis of the 
core frame points in the upward direction (opposite to 
downward gravity). The Z-axis of the core frame points 
from the origin parallel to the ground towards the cam-
era. Then, the X-axis of the core frame can be calculated 
from Y-axis and Z-axis using a cross product.

For the forearm pronation, the zero-degree angle is 
defined by the pose that the thumb pointing direction is 
parallel to the plane perpendicular to the folding axis of 

kinematic data from motion capture system
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Fig. 1  A data flow diagram of all the key steps in anomaly detection. 
An anomaly can be detected by either an abnormality in a period 
waveform (flow on the left side) or a fluctuation of the extracted 
phase (flow on the right side)
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the elbow. More pronation from that reference angle will 
give a positive value and more supination from that refer-
ence angle will give a negative value.

For the upper torso turning angle, the zero-degree 
angle is defined by the pose of the upper torso that is 
facing toward the camera. Turning to the left causes the 
value to be more positive.

For the upper torso frontal tilt and lateral tilt, they are 
calculated using vertical direction from gravity as the ref-
erence. A positive angle for the frontal tilt means tilting 
forward. A positive angle for lateral tilt means tilting to 
the right side.

Azimuthal equidistant (AZEQ) projection
For the first two features, the data are distributed on a 
unit sphere. This curvy representation is problematic 
for our data reconstruction process. For example, linear 
reconstruction from principal component analysis (PCA) 
of spherical data will not stay spherical. Therefore, a new 
representation is proposed to ensure the validity of the 
reconstruction. At the same time, it must avoid the dis-
continuity of the data at the potential wrapping point to 
facilitate the learning process.

The solution as illustrated in Fig. 3 is to first rotate the 
spherical training data around the origin to make the 
mean of the training data stay on the positive side of the 

Z-axis (the top part of the sphere). Then, the azimuthal 
equidistant projection is applied to transform the data 
into a flat 2D space. By this projection, the point at the 
north pole will be at the origin of the new 2D space. The 
point at the south pole will be torn and stretched out to 
become a circle with a radius of π in the new 2D space. 
Since the warping point is at the south pole, the pre-rota-
tion of the training data to the north pole is necessary to 
minimise the chance of the data getting close the south 
pole.

This projection converts the 3-dimensional upper-arm 
pointing direction and the 3-dimensional forearm point-
ing direction into a form of a 2-dimensional vector which 
can be reverted into its original form. The conversion 
of each channel is parameterized by a 3-by-3 rotation 
matrix calculated from the training data.

Unsupervised phase learning and extraction
The next step is to extract a sequence of phases from 
the multi-dimensional time-series data of pose features. 
A learning method from our previous work [23] is used 
to learn a proper way to transform a small time-window 
of data of all feature channels into a phase value. The 
training is done in an unsupervised manner without the 
need for phase labels or pre-segmentation in the training 
data. The unlabeled data just need to be quasi-periodic 

Fig. 2  The table, chair, and the camera setup for Kinect Alone and Kinect+IMU motion capture system. This arrangement is also used in a 
marker-based motion capture volume to perform simultaneous records from all three motion capture systems
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time-series data and it can be multi-dimensional. The 
internal architecture of this learning method is multiple 
layers of fully-connected neural networks but the cost 
function used to train this network is specially designed 
to learn from the relation of every two consecutive sig-
nal windows in the training dataset. After the training, 
the weights and biases of the neural network will be 
used for phase extraction via a standard feed-forwarding 
method. The network outputs a phase represented by a 
point on a unit circle (x, y). It can be converted into 1D 
representation of phase by φ = arctan 2(y, x)%(2π) . Since 

the arctan 2 operator has a range of (−π ,π ] , the modulo 
operator (%) is used to turn it to a positive range of [0, 2π)
.

The output from the phase extraction is necessary for 
period segmentation and anomaly detection from phase 
fluctuation.

Phase sequence smoothing
Sometimes, noise and error from the pose extraction step 
could lead to an unreasonable phase warp. To mitigate 

Fig. 3  Trajectory of forearm pointing direction of COMB movement from multiple subjects. a Original 3D representation in the upper-torso 
reference frame. b Rotated to be around the north pole. c Result of azimuthal equidistant projection
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this problem, the series of extracted phases (2D repre-
sentation) will be smoothed by a simple moving average 
filter followed by a normalization to adjust it back on the 
unit circle.

Monotonically progressing phase assignment
By observation, the series of phases extracted from 
healthy movement always progress in the forward direc-
tion (i.e., counter-clockwise direction on a unit circle). A 
minor exception occurs only when the movement pauses. 
A pause can generate a tiny fluctuation around the same 
spot in the extracted phase sequence.

This observation leads to a key assumption, “if a series 
of phases in a period of movement is deviating from 
the closest monotonically progressing series, the source 
movement is also deviating from the normal movement”. 
According to the assumption, we need to find the clos-
est monotonically progressing series and compare them 
to the extracted phase. Notice that the phrase monotoni-
cally progressing is used instead of monotonically increas-
ing to agree with the wrapping nature of the phase. If a 
phase that almost reaches 2π progresses forward, it will 
wrap around and start from zero again.

In order to search for the exactly closest monotonically 
increasing series, it requires too much computational 
power and slows down the process. Therefore, an approx-
imation method is developed by limiting the value of the 
series to be discrete and evenly spread from 0 to 2π.

This problem can be solved by our proposed variant 
of the Dynamic Time Warping (DTW) algorithm called 
Circular Dynamic Time Warping (CDTW). The original 
DTW [35] is designed to compare two finite sequences 
that have similar waveforms from the beginning to the 
end but may have different time-warping structures. It 
assumes both finite sequences to have the same begin-
ning (at 0% progress) and the same ending (at 100% 
progress).

In our situation, there are two sequences to compare. 
The first sequence is the unsegmented smoothed phase 
sequence. This sequence can start and end at any phase 
value (from 0 to 2π ). In between, it is likely to have con-
tinuous phase progression (ramps up to 2π , wraps to 0, 
and keeps repeating) or some fluctuated phase progres-
sions in the case of an anomaly. The number of rounds 
progressing in this sequence is unknown. The sec-
ond sequence (template sequence), in the case of the 
original DTW, should be a monotonically progressing 
sequence that starts and ends with the same phase as the 
first sequence, and it should contain the same number 

of progressing rounds in between to match perfectly 
with the first sequence. However, in the case of CDTW, 
because the number of repetitions is unknown, the sec-
ond sequence is replaced with a single period from 0 to 
2π and the sequence is modified to have a wrapping point 
from 2π to 0.

This modification changes the structure of the mini-
mum distance table in the original DTW algorithm from 
a rectangle to a cylindrical tube. The length of the first 
sequence becomes the length of the tube. The length of 
the template sequence becomes the circumference of 
the tube. In every round of progress made in the first 
sequence, the warping result will go around the tube 
once. Figure  4 illustrates the differences between the 
table of DTW and CDTW. Algorithm  1 describes how 
the table of CDTW is calculated given that the distance 
function between two-phase values is defined as

and circularTemplate[i] = 2π i/n is the template 
sequence for our application. This sequence is used to 
associate the index with its phase value.

(1)

D(φa,φb) =
|(φa − φb)%(2π)|, if (φa − φb)%(2π) ≤ π

|(φa − φb)%(2π)− 2π |, otherwise

Fig. 4  Comparison of the data structure used in the original DTW 
and Circular DTW. Each black square represents a matching point 
between one sample in a template sequence and one sample in an 
unsegmented smoothed phase sequence (output of Algorithm 2). 
The original DTW is impractical as the proper number of rows is 
unknown before the calculation. The Circular DTW lets one finite 
template sequence be reused for multiple rounds as needed by 
bridging the first and the last row of the table
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After the table is calculated, Algorithm  2 is used to 
trace back from the last column to the first column to 
find how the time is warped throughout the smoothed 
phase sequence. From the timeWarpingPath output, 
any specific column j will be matched with one or more 
consecutive rows. Given that imid is the index at the 
middle of those consecutive rows, the approximately 
closest monotonically progressing (ACMP) phase 
assignment at the jth sample is 2π imid/n . An example 
of this assignment can be seen in Fig. 5.

In terms of computational performance, CDTW is 
similar to DTW with the time complexity of O(m ∗ n) 

given that n is the length of the circular template 
(n = 50 in this implementation) and m is the length of 
the extracted phase sequence.

Detect anomaly from phase progression
The approximately closest monotonically progressing 
phase sequence is compared to the original extracted 
phase sequence using Equation (1). The magnitude of 
the resulting sequence is used to infer anomaly in phase 
progression.

Period segmentation
Every point in the approximately closest monotonically 
progressing (ACMP) phase sequence with the value 
crosses 2π to a new round is considered as a separa-
tor between two consecutive periods. This segmenta-
tion breaks a long continuous exercise sequence into 
multiple sequences of unequal length. Each segmented 
sequence is expected to contain one round of exercise.

Detect anomaly from reconstruction error
The idea of this section is to reduce the dimension of a 
segmented period to a lower-dimensional space using 
PCA and reconstruct it back to the original form of the 
data to be compared for the error. However, there are a 
few processing steps before and after the PCA recon-
struction as illustrated in Fig. 6.

Azimuthal equidistant projection
The process previously described in Azimuthal Equi-
distant (AZEQ) Projection section will be applied to the 
upper arm and forearm pointing direction feature chan-
nels to reduce the number of dimensions per sample to 
two. All other feature channels will be unaffected and 
they will have one dimension per sample.

Time warping
Because the length of one segment can be arbitrary, each 
segmented period has to be warped into one standard 
length of n samples to allow the use of PCA reconstruc-
tion. The time-warping result from CDTW is used to 
determine how the segment is warped. If multiple con-
secutive samples from the original sequence are warped 
to the same slot in the standard length, the data will be 
averaged.

Period standardization
After the time warping, each feature channel can be seen 
as a high-dimensional vector with a constant number 
of dimensions. For the forearm pointing direction and 
upper-arm pointing direction feature channels, each 

Fig. 5  Top: An extracted phase sequence. Middle: Smoothed phase 
sequence. Bottom: Approximately closest monotonically progressing 
(ACMP) phase sequence (black) overlaid on top of the extracted 
phase sequence (light blue). The differences between them are 
obvious when the extracted phase fluctuates

reconstruction
error sequence

a segment with 
standard length (n)

a segmented 
feature sequence

with arbitrary length

Rotation & azimuthal 
equidistant projection

Time warping

Standardization
(translation & scaling)

Reconstruction
with PCA

Inverse
standardization

Inverse time warping

AZEQ backprojection
& inverse rotation

Comparison 
& scaling

Fig. 6  A data flow diagram of reconstruction error calculation. The 
process is done independently in each feature channel. The rotation 
and azimuthal equidistant projection are only applicable for the 
upper arm and forearm pointing direction feature channels
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channel becomes a 2n-dimensional vector. For other fea-
ture channels, each channel becomes an n-dimensional 
vector.

If the training data are processed until this point, it 
will produce a collection of such a vector in each fea-
ture channel. They are used to calculate standardization 
parameters (a vector of means and a vector of standard 
deviation) for each feature channel independently. These 
standardization parameters are used to translate and 
scale the data distribution in all the dimensions to have 
zero mean and unit variance.

Principal component analysis (PCA) reconstruction
In the training stage, a dimensionality reduction matrix 
( Ur ) will be created independently per feature channel 
to be used in the inference stage. Given that a standard-
ized period from one feature channel is flattened to a Nc

-dimensional vector (with Nc = 2n or n depending on the 
channel), a collection of such vectors from the training 

data will be fed to the standard PCA to extract all the Nc 
principal components. The smallest subset of the princi-
pal components that explains at least 95% of the variance 
in the training data will be used to form a dimensionality 
reduction matrix ( Ur ) for that channel. If Nd components 
are selected, the matrix Ur will be Nd-by-Nc in size.

During the inference stage, let c be a flattened Nc

-dimensional vector from a feature channel of a period 
and let Ur be a dimensionality reduction matrix of the 
channel. The reconstruction of the vector c can be calcu-
lated by

From right to left, the first matrix multiplication is done 
to project a vector to a lower-dimensional space. Then, 
the second multiplication is to reconstruct it back to Nc 
dimension.

This process acts as a dimensionality bottleneck that 
forces a group of correlated dimensions to share a single 
dimension to represent them. If a new unseen period is 
similar to the period in the training data the reconstruc-
tion should preserve the original data quite well. On the 
other hand, if the period contains anomalies or an incor-
rect movement that disagrees with the direction of the 
selected variances in the training data, the reconstruction 
will differ largely from the input.

Reconstruction error
According to the upward flow on the right side of Fig. 6, 
the reconstruction from PCA will be inverted all the way 
back to the original form and length to be compared to 
the original segmented sequence sample-to-sample as 
illustrated in Fig. 7.

For the first two feature channels (upper-arm and 
forearm pointing direction), the reconstruction error 
is measured by the angle between two 3D unit vectors 
(the original and the reconstruction). For other feature 
channels, the reconstruction error is the element-wise 
absolute difference. By this calculation, every sample 
will contain one reconstruction error per feature chan-
nel. However, the scales of error of each feature channel 
at different phases of the movement are largely differ-
ent. In order to use one threshold for all the recon-
struction error channels, they have to be scaled to a 
similar range.

The time-warping results from the training data can 
be used to associate a sample to one of the n discrete 
phases. By this method, the statistics of the reconstruc-
tion error of a feature channel around a specific phase 
can be calculated from the training data. We choose the 
mean square of the reconstruction error as the scaling 

(2)ĉ = U⊤
r Urc

Fig. 7  Reconstruction of forearm pronation channel from a 
segmented period of RECT movement. a For a normal movement, 
the reconstruction will be similar to the recorded data. b When an 
anomaly occurs, the reconstruction does not align well with the 
original data
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parameter to adjust all the reconstruction errors to a 
similar range before applying one global threshold.

Evaluation
The evaluation is done on two independent experiments. 
For the first experiment, a model is built from nor-
mal movements from healthy subjects (training group), 
and it is tested on a mixture of normal movements and 
simulated anomalies done by healthy subjects outside 
the training group. This experiment is done to quantita-
tively evaluate the anomaly detection method because it 
is possible to manually label those simulated anomalies. 
For the second experiment, a model is built from nor-
mal movements from healthy subjects, and it is tested on 
movements done by post-stroke subjects. As there is no 
standardized method to label anomalies in their move-
ments, the results from this experiment will be presented 
in a qualitative manner.

All the evaluation methods in this section are from the 
first author’s Ph.D. thesis [29].

Data collection
The data collection involves four repetitive exercises of 
right arm movements which are 1) rectangular drawing 
(RECT), 2) tap in loop (TAP), 3) hair combing (COMB), 
and 4) water pouring (POUR). All exercises are done in 
a sitting posture with a table and a Kinect V2 in front of 
the subject (Fig.  2). For RECT, a subject slides his right 
hand on a table to draw a rectangle. For TAB, a subject 
starts with his right hand on a table and raises the hand 
to touch his nose and left shoulder and puts the hand 
back on the table. For COMB, a subject starts with his 
hand on a table and lifts the hand to comb his hair and 
puts the hand back on the table. For POUR, a subject 
holds an empty cup and performs a pouring action into a 
bucket on the table and moves the hand back to the start-
ing position.

For each exercise, the data collection is composed of 
three groups.

Normal movements
Twelve healthy subjects (5 males, 7 females, 25–59 years 
old) are recruited to perform 100 repetitions per exercise 
per subject. All subjects are asked to mix slow, medium, 
and fast paces to their movements for data variations. 
Those variations are mixed in the record without any 
label. The speeds of the movements across multiple sub-
jects do not need to be controlled to be the same. This 
group of data is used to model the norm of each exercise.

Simulated mixture of normal and abnormal movements
Each subject in the same group of 12 healthy subjects 
also performed 40 normal repetitions with insertions of 
6 additional repetitions that contain simulated anoma-
lies. Examples of those simulated anomalies are jerks, 
shaking, overshooting, undershooting, limited range of 
motion, torso compensation, and unnatural joint coordi-
nation. Each anomalous event is labeled by marking the 
beginning and the end of the event for evaluation pur-
poses. This group of data is used to quantitatively evalu-
ate the method.

Movements from post‑stroke subjects
Fourteen stroke survivors (6 males, 8 females, 
44–86  years old) with their right arm affected are 
recruited to perform those four exercises. All subjects, 
except one, are over six months post-stroke. Their Fugl–
Meyer upper extremity motor sub-scores for shoulder–
elbow-coordination portion range from 19 to 41 with the 
highest total score of 42 (without wrist and hand por-
tions). This group of data is used to qualitatively evaluate 
the method. Each movement sequence is simultaneously 
recorded by three motion capture systems stated in 
Motion Capture Systems section.

Method validation
Experiment on simulated anomalies
To test the generalization capability for the subject out-
side the training data, the 6-fold cross-validation is used. 
In each round of validation, the normal movements from 
10 subjects will be used to build a model, and the mixture 
of normal and abnormal movements from the other two 
subjects will be used to test the model. The evaluation is 
repeated 6 times with different partitioning to cover all 
subjects in the testing step.

The testing output in a record will initially appear in 
two forms in any sample. The first one is the anomaly 
score from phase progression (1 dimension). One thresh-
old is needed to flag anomalies from this measure. The 
second one is the anomaly score from feature reconstruc-
tion errors (9 dimensions) from 9 feature channels. Since 
this measure is already scaled to have the same range, one 
threshold will be used against all dimensions. The abso-
lute value of all scaled reconstruction errors will be com-
pared against this threshold to flag anomaly. If at least 
one sample in an anomaly event is flagged, that anomaly 
will be counted as detected (true positive). If at least one 
sample in a normal period is flagged, the period will be 
counted as a false anomaly (false positive).
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To evaluate the capability of these proposed measures 
in distinguishing between normal and abnormal move-
ments, a receiver operating characteristic (ROC) curve 
will be plotted out by applying a grid of possible configu-
rations of the two thresholds. Then, the area under the 
curve (AUC) is used to evaluate the method. If AUC is 
equal to one, it means that the anomaly can be perfectly 
separated from the normal movement.

In addition, the whole evaluation process is repeated 
three times with three different sources of input 

features (i.e., Kinect Alone, Kinect+IMU, Marker-
based) to observe the effect of motion capture accuracy 
improvement in an anomaly detection task.

Experiment on post‑stroke subjects
Normal movements from all 12 healthy subjects are used 
to build the model. Then, the model is used to process 
the movement from post-stroke subjects to get sequences 
of extracted phase values and anomaly scores.

Fig. 8  Receiver Operating Characteristic (ROC) curve from using the proposed method on the 4 exercises retrieved from the 6-fold cross-validation 
on 12 subjects. By enhancing the accuracy of the Kinect skeleton tracking with our motion capture method (Kinect+IMU), the accuracy of the 
anomaly detection task is also improved to the level that is comparable to the Marker-based motion capture system. Each orange point marks the 
point on the curve where the F1-score is maximized
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Parameter configuration
For the phase learning [23], the neural network is modi-
fied to have 5 hidden layers with 30 hidden nodes in each 
layer. The window size for phase smoothing is 7. The 
standard length of time warping and PCA is n = 50.

Hidden Markov model as a baseline
The quantitative evaluation on simulated anomaly has 
been repeated on a Hidden Markov Model as a base-
line for comparison. Hidden Markov Model (HMM) is 
a common unsupervised learning tool that can be used 
to model time-series data for anomaly detection. It can 
learn a probabilistic model from a set of sequences of 
normal movements. Then, the learned model can be used 
to estimate the probability of a newly observed sequence 
with a short observation window. Any output probabil-
ity or score under a threshold is interpreted as detected 
anomaly.

For this experiment, HMM with Gaussian mixture 
emissions is chosen as it can model multi-dimensional 
data with continuous value. Each sample fed to the model 
has 11 dimensions. They are the normalized pose fea-
tures after the AZEQ projection step. The model is con-
figured to have 10 hidden states. Each probability density 
function to approximate the emission contains 5 Gauss-
ian kernels with unrestricted covariance matrices. We 
allow the training process to run for a maximum of 1,000 
iterations which takes around 13–52  min per model on 
Intel Core i7-6850K CPU. Each test sequence is a sliding 
window of 30 frames (1 s) with the stride of 1 frame. This 
implementation is done using hmmlearn Python library 
[36].

Results and discussions
Receiver operating characteristic (ROC) curve
Twelve ROC curves that are shown in Fig. 8 summarize 
the overall result. Our sensing system (Kinect+IMU) 
can achieve ROC curves that pass through the region 
with under 10% false positive rate and over 90% true 
positive rate (The grid on the top-left corner). This 
trend is observed in all four movements. Our proce-
dure reaches a near-perfect degree of separation with 
the area under the curve (AUC) of 0.9924 and 0.9985 
for COMB and TAP movements respectively. Never-
theless, a slight performance drop is found in the RECT 
and POUR movements with AUC of 0.9753 and 0.9827 
respectively. For each movement, a pair of thresholds 
for anomaly detection is selected based on the opti-
mum spot on the ROC curve with the highest F1-score. 
These thresholds can be seen on the plots of anomaly 
score sequence as horizontal gray dashed lines and the 
reported accuracies are generated from these optimum 
points. The details of those AUC and the optimal points 
are in Table 1.

As illustrated in Fig.  8, the performance trends 
observed from three different motion capture sys-
tems are very similar. The motion sequence extracted 
from the Kinect SDK alone has the worst performance. 
The Kinect+IMU system improved the ROC curve to 
closely match the results from the Marker-based motion 
capture system despite the fact that the Kinect+IMU 
system is much more compact and much more afford-
able. The combination of the proposed method and the 
Kinect+IMU setup is the most suitable to be deployed for 
home-based rehabilitation.

In comparison to the proposed method, results from 
the HMM method (Fig. 9 and Table 2) show that HMM 
is not robust enough for this application. It produces an 
excellent AUC of 0.9019 for TAP movement but the value 
drops below 0.8 for the rest of the exercises. Neverthe-
less, the HMM baseline with an average AUC of 0.7520 
performs worse than the proposed method with an aver-
age AUC of 0.9757.

Size of dimensionality bottleneck in reconstruction
To create a reconstruction process using principal com-
ponent analysis, the minimum number of dimensions 
needed to create the information bottlenecks to preserve 
95% of the variance in the training data in the three sens-
ing systems are largely different. On average, to explain 
95% of the variance in the training data, Kinect Alone, 
Kinect+IMU, and Marker-based need 36.7%, 16.4%, and 
9.0% of the original number of dimensions respectively. 
These numbers reflect the difference in data quality 
extracted from those sources.

Table 1  Evaluation result from the proposed method. Area 
under the curve (AUC) and accuracy at optimal points

*The optimal point is the point where the F-1 score is maximized (the orange 
points in Fig. 8)

Exercise Feature source AUC​ Optimal point accuracy*

Precision Recall F-1 score

RECT Kinect alone 0.9299 0.8302 0.6111 0.7040

Kinect + IMU 0.9753 0.9000 0.8750 0.8873

Marker-based 0.9851 1.0000 0.8611 0.9254

COMB Kinect alone 0.9624 0.9672 0.8082 0.8806

Kinect + IMU 0.9924 0.9702 0.8904 0.9286

Marker-based 0.9928 0.9306 0.9178 0.9241

TAP Kinect alone 0.9733 0.8906 0.7917 0.8382

Kinect + IMU 0.9985 1.0000 0.9583 0.9787

Marker-based 0.9994 0.9351 1.0000 0.9664

POUR Kinect alone 0.9282 0.8966 0.7222 0.8000

Kinect + IMU 0.9827 0.9688 0.8611 0.9118

Marker-based 0.9882 0.8590 0.9306 0.8933
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With the Kinect SDK alone, it needs many more 
dimensions at the bottleneck because of its noisier skel-
eton tracking. Especially for wrist-related and fore-
arm-related features, the wrist-worn IMU sensors have 
considerably enhanced the tracking quality of the fore-
arms and resulted in the required number of dimensions 
to decrease two to five times.

Still, the smallest number of dimensions at the PCA 
bottleneck always comes from the marker-based motion 
capture system regardless of the feature channels because 
of its highest accuracy.

Computational performance and bottleneck
The training for the phase extraction network with 
around 100,000 pairs of training samples takes under 
10 min on an Nvidia GTX 1080 Ti GPU to optimize for 
10,000 iterations. The inference process using the trained 
network to calculate an instantaneous phase takes less 
than 1 ms on a single CPU core (Intel Core i7-3370).

Throughout the entire pipeline, the slowest part is 
in the motion capture step of Kinect+IMU which takes 
about 1.5 s per frame on a CPU (Intel Core i7-3370) due 
to a complex numerical optimization method reported 

Fig. 9  Receiver operating characteristic (ROC) curve from using the Hidden Markov Model method on 4 exercises retrieved from the 6-fold 
cross-validation on 12 subjects. Each orange point marks the point on the curve where the F1-score is maximized
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in our previous work [33]. However, feature extractions 
from Kinect Alone and Marker-based systems can be 
done instantaneously. Other than the bottleneck in the 
motion capture step of Kinect+IMU, the rest of the cal-
culations are mostly linear such as linear interpolation 
and matrix multiplication which can be done instantane-
ously on a modern CPU.

Examples of the results
In the first experiment, some detection of simulated 
anomalies is illustrated in Figs. 10, 11 and 12. In the sec-
ond experiment on post-stroke subjects, some results are 
shown in Figs.  13,  14,  15, and  16. The collected move-
ments contain variations in the movement speed and 
anomalies. The details are explained in the captions.

How will it help a therapist in exercise monitoring?
By skimming through the proposed compact repre-
sentation of exercise movement, a therapist can eas-
ily determine the boundary of each repetition from the 

Table 2  Evaluation result from the Hidden Markov Model 
method. Area under the curve (AUC) and accuracy at optimal 
points

*The optimal point is the point where the F-1 score is maximized (the orange 
points in Fig. 9)

Exercise Feature source AUC​ Optimal point accuracy*

Precision Recall F-1 score

RECT Kinect alone 0.7575 0.3958 0.5278 0.4524

Kinect + IMU 0.6672 0.3025 0.5000 0.3770

Marker-based 0.6281 0.2476 0.7083 0.3669

COMB Kinect alone 0.7820 0.3438 0.7534 0.4721

Kinect + IMU 0.7040 0.2781 0.7123 0.4000

Marker-based 0.7506 0.4722 0.4658 0.4690

TAP Kinect alone 0.7605 0.2798 0.8472 0.4207

Kinect + IMU 0.9019 0.8500 0.7083 0.7727

Marker-based 0.8491 0.9286 0.5417 0.6842

POUR Kinect alone 0.7497 0.4459 0.4583 0.4521

Kinect + IMU 0.7675 0.7941 0.3750 0.5094

Marker-based 0.7057 0.7714 0.3750 0.5047

Fig. 10  Anomaly detection results from sequences of RECT exercises with three simulated anomaly events recorded by Kinect+IMU system. 
These anomalous areas (highlighted in yellow) are manually labeled. Top: The extracted phase (without smoothing), and the approximately closest 
monotonically progressing (ACMP) phase sequence from the CDTW algorithm. The difference between them (red) is the anomaly scores from 
the phase fluctuation. Middle: The normalized reconstruction errors from different kinematic feature channels in different colors. Bottom: The 
normalized features used for the phase extraction
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phase plot. The duration of phase sequence can also give 
an idea of how challenging the exercise is to a patient 
through how often the patient takes a break and how fast 
the phase progresses.

Furthermore, instead of inspecting a complex and high-
dimensional waveform from all the features, the therapist 
can quickly identify an anomaly from the relatively high 
reconstruction errors in some feature channels.

With the highlighted key areas to take note from the 
phase and reconstruction error plots, the therapist 
can efficiently select specific sections in the exercise to 
review the video record and provide feedback to the 
patient.

Conclusion
This study proposes a data-driven method to model 
repetitive movements with a compact representation. It 
allows a therapist to review long hours of rehabilitation 
exercises more effectively. Instead of looking through 
the whole exercise session, the therapist’s attention is 
directed to the section with high anomaly scores. The 
therapist’s expertise is then required to analyze the high-
lighted key areas and generate insightful feedback. This 
cooperation between the clinician and the machine could 
improve the quality of feedback generation and make 
telerehabilitation more scalable.

Fig. 11  Anomaly detection results from sequences of COMB exercises with three simulated anomaly events recorded by Kinect+IMU system. 
These anomalous areas (highlighted in yellow) are manually labeled. Top: The extracted phase (without smoothing), and the approximately closest 
monotonically progressing (ACMP) phase sequence from the CDTW algorithm. The difference between them (red) is the anomaly scores from 
the phase fluctuation. Middle: The normalized reconstruction errors from different kinematic feature channels in different colors. Bottom: The 
normalized features used for the phase extraction
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Fig. 12  Anomaly plots from a POUR exercise sequence with high phase fluctuation (from Kinect+IMU system). The subject was asked to add zigzag 
and jerky movements to her trajectory in the first and the second highlighted section respectively. Notice that the proposed CDTW algorithm is 
able to retrieve the approximately closest monotonically progressing (ACMP) phase sequence for a reasonable period segmentation despite the 
considerable fluctuation in the original extracted phase sequence

Fig. 13  Anomaly plots from a RECT exercise sequence (from Kinect + IMU system) by a post-stroke subject with Fugl–Meyer UE motor subscore 
of 40 out of 42. The exercise is done with ease resulting in a clean phase progression and low reconstruction error. Notice that his pace is gradually 
faster over time
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Fig. 14  Anomaly plots from a COMB exercise sequence by a post-stroke subject (from Kinect + IMU system). The first highlighted segment is a short 
pause at the midpoint between the table and the head which is an unusual pausing point. For the second and the third highlighted segments, the 
high reconstruction errors and the phase fluctuations are caused by an abnormal path of movement from the back of the head to the table. She 
moves her hand to the space in front of her belly first before moving to the table. However, in some repetitions (non-highlighted areas), she did it 
normally without receiving any external feedback

Fig. 15  Anomaly plots from a TAP exercise sequence by a post-stroke subject (from Kinect + IMU system). Her arm constantly shakes whenever 
the hand is lifted against gravity and has no anchor point to push against. This shaking pulls the wrist position out from the proper trajectory 
sometimes. In addition, her forearm pronation keeps rolling back and forth throughout the exercise resulting in high reconstruction errors (FA Prn., 
dark cyan)
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