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Abstract 

Background:  In developing countries where both high rates of smoking and endemic tuberculosis (TB) are often 
present, identification of early lung cancer can be significantly confounded by the presence of nodules such as those 
due to latent TB (LTB). It is very challenging to distinguish lung cancer and LTB without invasive procedures, which 
have their own risks of morbidity and even mortality.

Methods:  Our method uses a customized VGG16-based 15-layer 2-dimensional deep convolutional neural network 
(DNN) architecture with transfer learning. The DNN was trained and tested on sets of CT images set extracted from 
the National Lung Screening Trial and the National Institute of Allergy and Infectious Disease TB Portals. Performance 
of the DNN was evaluated under locked and step-wise unlocked pretrained weight conditions.

Results:  The DNN with unlocked pretrained weights achieved an accuracy of 90.4% with an F score of 90.1%.

Conclusions:  Our findings support the potential for a DNN to serve as a noninvasive screening tool capable of reli-
ably detecting and distinguishing between lung cancer and LTB.
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Background
One of the most common communicable causes of 
morbidity and mortality, pulmonary tuberculosis (TB), 
has been classified by the World Health Organization 
(WHO) as a global public health emergency since 1993 
[1]. According to the 2020 WHO report there were an 
estimated 10 million symptomatic individuals with TB 
worldwide of whom 1.4 million died [2], with nearly 70% 
of those suffering from the infection living in South-East 
Asia and Africa. Most of the morbidity and mortality 
related to TB is due to reactivation of the disease, which 
accounts for approximately 80% of all active TB cases [3] 
and is responsible for most disease spread. Nevertheless, 
although TB remains the leading cause of death among 

infectious diseases, it falls well below cancer in terms 
of total mortality [4]. Lung cancer is the most common 
cause of cancer-related death both in the United States 
and worldwide [5]. Most lung cancers (85–90%) are clas-
sified as non-small cell lung cancer (NSCLC), which is 
highly correlated with smoking and has a survival rate 
that is dramatically affected by the stage at detection. 
In contrast to developed nations where the incidence 
of smoking is falling, cigarette smoking is on the rise in 
developing nations many of whom have a high rate of 
endemic tuberculosis. In the 16 low and middle-income 
countries participating in the Global Adult Tobacco Sur-
vey, representing more than half of the world’s smokers, 
the active smoking rates were as high as 67% in men and 
29% in women [6]. Ten of these countries also appear on 
the WHO high-burden tuberculosis list [2].

In countries with both high rates of smoking and 
endemic tuberculosis, identification of early lung cancer 
can be significantly confounded by the presence of lung 
nodules due to latent TB (LTB). Unfortunately, these two 
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entities cannot be readily distinguished even by trained 
radiologists. This diagnostic equipoise leads to signifi-
cant delays in cancer diagnosis, a disease for which timely 
intervention is paramount, with concommitant increases 
in lung cancer mortality [7]. Treatment options for lung 
cancer are also very different than those for TB. Accord-
ingly, there is a critical need for improved methods of 
distinguishing between TB and lung cancer in the clas-
sification of suspicious lung nodules seen on CT.

This is a problem that would seem to be ideally suited 
to machine learning, and indeed a number of previous 
studies have taken this approach to the segmentation 
of lung nodule images [8–11], the detection of TB nod-
ules [12–14], and classification of lung nodules as either 
malignant or benign [15–18]. Little work has been done, 
however, on the use of machine learning to discriminate 
between TB and lung cancer. Feng et al. [19] was able to 
train a deep neural network (DNN) to classify TB granu-
lomas versus lung adenocarcinomas with an accuracy of 
up to 81%, but adenocarcinomas represent less than half 
of all lung cancers. The goal of the present study, there-
fore, was to develop a DNN capable of differentiating TB 
from lung cancer in general. We trained and tested the 
DNN on two large data sets, one taken from the National 
Lung Screening Trial and the other from the National 
Institutes of Allergy and Infectious Disease Tuberculosis 
Portal.

Materials and methods
Lung nodule datasets
De-identified data from the National Lung Screen-
ing Trial (NLST) and the National Institute of Allergy 
and Infectious Disease (NIAID) TB Portal were evalu-
ated under separate data-use agreements. All methods 
involved in the collection of these data were performed in 
accordance with the relevant guidelines and regulations. 
These date sets were individually approved as not requir-
ing additional approval by the Research Protections 
Office of the University of Vermont. We reviewed 297 CT 
scans from the NIAID dataset and selected 172 images 
with the same lung convolution kernel and slice width of 
2.5 mm in order to ensure consistent image quality. We 
used 3D Slicer software [20] to identify 436 separate 2D 
axial images of nodules having diameters between 6 and 
30 mm. The lower end of this range, 6 mm, represents the 
smallest nodules that have clinical importance in terms 
of lung malignancy and that thus require further inves-
tigation. The nodule images were cropped from each CT 
slice using a Python script and saved into 64 × 64 pixel 
gray scale images in JPG format. The images in the NLST 
dataset were processed similarly, yielding 517 malignant 
nodules cropped from 517 CT scans. Figure 1 shows two 
examples of cropped images, one malignant and one 

benign. Of the 953 nodules included in the study, 65% 
were used for training the DNN, 10% for validation, and 
25% for testing.

DNN architecture
Due to the limited size of the image dataset at our dis-
posal, we implemented a transfer learning methodology 
[21] that re-utilized weights determined by prior train-
ing on a very large but unrelated dataset. A customized 
VGG16 [22] network architecture was adapted as the 
testing platform. The weights in the convolutional layers 
of this architecture had been pre-trained using a dataset 
of over 14 million images belonging to 1000 disparate 
classes, which allowed it to achieve 92.7% accuracy plac-
ing it in the top 5 ImageNet performers. The input layer 
of our DNN was an array of size 3 × 64 × 64, designed to 
it could receive 3-channel RGB images. Since our nodule 
images had a single gray scale channel, we duplicated the 
gray scale array 3 times to match the input format of the 

Fig. 1  Examples of nodules undergoing classification. All nodules 
in the left sided panels are malignant, while the nodules in the 
right sided panels are tuberculous. The tuberculous nodule in the 
bottom right is morphologically “spiculated”, a characteristic typically 
associated with malignancy
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architecture. The input layer was followed by 13 convolu-
tional layers and 4 pooling layers. For each convolutional 
layer, the kernel size was 3 × 3 with a stride of 1 pixel. The 
output of each convolutional layer feds into an activation 
layer equipped with a rectified linear unit (RELU) acti-
vation function such that RELU(x) = Max(0,x), meaning 
that it simply replaced any negative values with zero. The 
pooling layers down-sample the output of the convolu-
tion layers over a 2 × 2 pixel window, with stride of 2. The 
customized VGG16 model consisting of two fully con-
nected layers that served as the multi-layer perceptron 
classifier. The two output nodes of the VGG16 yielded 
the final decision probabilities of TB versus malignancy.

The inferences made by the DNN were visualized by 
Gradient-weighted Class Activation Mapping (Grad-
CAM) [23] from two perspectives: (1) visualization of the 
existing pixel-space features learned by the convolutional 
layers, and (2) visualization of the decision-making pro-
cess as shown by the class-specific gradient information 
flowing into the final convolutional layer of the DNN to 
produce two types of coarse localization maps, including 
heat and saliency map, of the important regions in the 
image. The detailed Grad-CAM frame diagram can be 
found in Selvaraju et al. [23].

Our DNN was developed in Python code with the 
Keras package and Tensor Flow. Keras can leverage 
graphical processing units to accelerate deep learning 
algorithms. The DNN was trained on a NVIDIA nvdia 
2080 ti Graphic Card.

Results
We first locked the pretrained convolutional layers in the 
DNN (i.e., the convolutional weights were not allowed 
to change during training) and found that the following 
hyperparameter choices yielded the best training perfor-
mance: (a) 512 hidden neurons in each fully connected 
layer versus 256 or 64 hidden neurons; (b) an ADAM 
optimizer versus SGD; (c) a learning rate of 0.001 versus 
0.01 or 0.001; (d) a mini-batch gradient descent param-
eter adjustment scheme with a batch size of 16 versus 32 
or higher; (e) no dropout in the fully-connected layers; (f ) 
use of average pooling of the output from the convolu-
tional layers prior to input to the fully connected layers 
versus max pooling; and (g) no image data preprocess-
ing and augmentation for either the training or validation 
dataset. These hyperparameter choices were evaluated 
based on accuracy and loss performance in training, 
number of epoch rounds for converge in training, and 
performance results in testing. Figure 5 shows an exam-
ple of the evaluation result of ADAM optimizer versus 
SGD optimizer.

Figure  2 shows the training loss and accuracy of our 
DNN during both training (on 65% of the data) and 

cross-validation (on 10% of the data) after the hyperpa-
rameters were optimized and demonstrates that learning 
was characterized by steady improvement over multiple 
iterations. Training loss decreased toward 0.2 after 30 
epochs, while accuracy increased to nearly 0.9. Near 
the end of the training process, however, the validation 
loss and accuracy started to fluctuate, which is a sign of 
overfitting. Figure 3 shows the receiver operating charac-
teristic (ROC) curve. The area under the curve (AUC) is 
0.871.

Our transfer learning methodology was then further 
evaluated by step-wise unlocking of the pre-trained 
weights in the convolutional layers. The unlocking pro-
cess began with the last and most abstract convolu-
tional layer, followed the second-to-last layer, and so on. 
The DNN was retrained on 70% of the data after each 
unlocking step, and the following metrics were evalu-
ated using the remaining 30% test dataset: (a) accuracy; 
(b) precision; (c) sensitivity; (d) specificity; (e) F-score; 
and (f ) AUC. The results are shown in Table 1. Accuracy 
and AUC steadily improved as each additional layer was 
unlocked, the greatest improvements being obtained 
with the first 10 of the 16 layers. The changes in preci-
sion, sensitivity and specificity were not consistent nor 
monotonic with the numb er of unlocked layers, while 
balance between precision and sensitivity encapsulated 
by the F-score increased initially but then decreased in 
going from 10 to 15 unlocked layers. These findings indi-
cate that robustness and generalization ability of transfer 
learning improves when the weights in the more abstract 
downstream convolutional layers are allowed to respond 
to the data, whereas re-tuning pretrained weights in the 
first 5 layers, which extract simple features, does not 
improve performance.

Figure 4 indicates the image features that were impor-
tant to decision making for a cancerous nodule and a LTB 
nodule, as shown by GRAD-CAM. The attention heat 
maps shown in Fig. 4B highlight areas of importance. In 
Fig. 4C, the decision processes are also traced back from 
the last to the first convolutional layer to highlight all 
edge-related features, known as Saliency. Figure 4D fur-
ther demonstrates the association between pixel-space 
features in the images and the diagnostic decisions made 
by the DNN by combining the heat maps and the salien-
cies to produce images that highlight the contributing 
abstract features. The DNN correctly identified the top 
image as cancer and the bottom image as TB.

Discussion
DNN’s typically have very large numbers of adjust-
able weights that must be evaluated through training 
before achieving reliable classification. Machine learn-
ing algorithms thus normally require training with a 
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correspondingly large number of exemplars, sometimes 
in the millions. Furthermore, training requirements 
increase exponentially with as the size of the neural net-
work architecture increases in breadth and depth. In the 
medical field, this can present a significant challenge 
because collecting large amounts of annotated training 
data is often expensive, time-consuming, and possibly 
even unrealistic. We attempted to meet this challenge 
in the present study by utilizing a customized VGG16 
model with a transfer learning methodology in order 
to differentiate malignant from tuberculous lung nod-
ules. (More complicated deep learning models, such as 
VGG19 or google net, were not selected because they 
require even larger training data sets than VGG 16). The 
major advantage of this approach is that it allows rela-
tively rapid convergence to an adequately trained set of 

Fig. 2  Training and validation performance

Fig. 3  ROC Curve

Table 1  Transfer learning performance metrics with unlocked weight on testing dataset

# of Unlocked layers Accuracy Precision Sensitivity Specificity F1 AUC​

0 0.875 0.892 0.827 0.915 0.858 0.871

5 0.883 0.866 0.882 0.884 0.874 0.883

10 0.904 0.854 0.955 0.860 0.901 0.908

15 0.908 0.931 0.864 0.946 0.896 0.905
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weights with a relatively small dataset. Training our DNN 
architecture starting with randomly assigned weights 
would require hundreds of thousands to millions of nod-
ule images, a bar that cannot currently be met.

Despite our limited dataset, however, using a pre-
trained DNN with locked convolutional weights resulted 
in impressive levels of accuracy, precision, sensitiv-
ity, specificity, and F-score (Figs.  2, 3, Table  1). Using a 
smaller dataset of only 100 images, Feng et al. [19], dif-
ferentiated tuberculous granulomas from lung adeno-
carcinomas using approximately 100 example images 
and achieved an AUC on external validation of 0.809. 
Our data set was significantly larger, being drawn from 
multiple sources and inclusive of all malignant subtypes. 
Despite the greater data variance our DNN was able to 
achieve an AUC of up to 0.908. This demonstrates the 
strong potential for machine learning to function as a 
noninvasive diagnostic tool for differentiation between 
tuberculous and malignant lung nodules (Fig. 5).

Progressively unlocking the weights of the convolu-
tional layers, beginning with the most distal, led to con-
sistent improvements in AUC and accuracy, although 
this was most pronounced early on in the process. The 
downstream layers serve to extract increasingly abstract 
and complex image features that are likely more specific 
to the images being classified, so allowing these layers 
to be trained on the target images presumably leverages 
this specificity. The earlier convolution layers, in contrast, 
focus on more primitive features such as lines and simple 
angles that are likely common to images in general, so lit-
tle is lost in pre-training these layers on arbitrary data-
sets. In our case, the optimal balance between allowing 
specialized training and reducing training time appears 

to have been achieved by locking the first 6 convolution 
layers (Table 1).

During the hyperparameter optimization process, 
we noticed that random combinations of image aug-
mentation techniques such as rotations, horizontal and 
vertical flipping, or inversions negatively impacted the 
performance of the model. This is the opposite behavior 
from what one would normally expect from DNN train-
ing [24]. However the precise shape of a lung nodule as 
well as its orientation with respect to surrounding tis-
sue structures are features that are often key for distin-
guishing between classifications. It is therefore possible 
that conventional augmentation operations distorted the 
information inherent in these features to an extent that 
confounded the classifier. In any case, these findings sug-
gest that image augmentation techniques should be used 
sparingly, if at all, for medical image preprocessing when 
datasets are small.

This study has several notable limitations. First, the 
study was retrospective and thus prone to selection bias, 
particularly since the data from the NIAID were acquired 
as a convenience set. Second, the NIAID dataset con-
tained both active and latent TB cases so, even though 
LTB would have been in the majority, our results may 
have been affected by the presence of active TB nodules. 
Third, we only utilized axial CT slices of nodules, which 
neglects any information specific to slices at other orien-
tations and possibly also limits generalizability to these 
orientations. Fourth, despite using the largest dataset 
we could find, there was still only a limited numbers of 
exemplars compared to the huge number of adjustable 
parameters in the DNN. Fifth, we did not include benign 
nodules in our dataset so we do not know how such 

Fig. 4  GRAD CAM Visualization. Subplot A is the original image; B is the heatmap, C is the saliency and D is the combination of heatmap and 
Saliency result. Coloring toward the red indicates a higher importance for the final classification. The predicted diagnosis probabilities for cancer 
versus TB are shown on the right
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nodules would confound the classification of cancer ver-
sus TB, nor how successfully deep learning would be able 
to automatically segment such nodules in CT images. 
This last point goes beyond the scope of the present study 
but would be a good area for future investigation. Lastly, 
although the method we have developed performed 
extremely well, it nevertheless misclassified some nod-
ules. Visual inspection did not reveal any obvious reasons 
why this happened, so it presumably reflects the feature 
overlap that can occur between TB and malignant nod-
ules, which speaks to the inherent difficulty of this clas-
sification problem.

Conclusions
The problem of differentiating between tuberculous 
and malignant lung nodules in CT images is amenable 
to the discriminating ability of a deep convolutional 

neural network as evidenced by the accuracy of 90.8% 
achieved in the present study. The challenges posed by 
the inevitably limited size of the training dataset can 
be mitigated by transfer learning applied to the early 
convolutional layers; training the later layers on the 
target dataset imbues the network with the specificity 
required for optimum performance. Machine learn-
ing can thus be a noninvasive and effective tool for 
clinicians.

Abbreviations
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Fig. 5  SGD versus ADAM optimizer performance evaluation



Page 7 of 7Tan et al. BMC Medical Informatics and Decision Making          (2022) 22:161 	

Acknowledgements
None.

Author contributions
HT, MK and JB conceptualized and designed the study. HT developed the 
methodology and performed the data analysis. HT, MK and JB analyzed and 
interpreted the results. HT drafted the manuscript. All authors have read, pro-
vided feedback, edited, and approved the final manuscript. All authors read 
and approved the final manuscript.

Funding
HT received a Laurence H Coffin Award from the Department of Surgery, Uni-
versity of Vermont Medical Center in support of this work. CMK is supported 
by NIH Grant K23 HL133476. The authors also acknowledge funding from the 
NIH Centers of Biomedical Research Excellence (COBRE) Award P20 RR021905.

Availability of data and materials
The lung cancer database analyzed in this study is from NIH NLST Portal, 
https://​cdas.​cancer.​gov/​nlst/. The TB database analyzed in this study is from 
NIH NIAID TB Portal, https://​tbpor​tals.​niaid.​nih.​gov/. Both datasets are publicly 
available after registration and approval from the NIH.

Declarations

Ethics approval and consent to participate
This work utilizes de-identified data from two publicly available data sets, 
the NLST and NIAID TB Portal, acquired via data transfer agreements with the 
NIH. All methods involved in the collection of these data were performed in 
accordance with the relevant guidelines and regulations. These date sets were 
individually approved as not requiring additional approval by the Research 
Protections Office of the University of Vermont.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Medicine, Larner College of Medicine, University of Vermont, 
Burlington, VT, USA. 2 Interventional Pulmonary, University of Vermont Medical 
Center, Burlington, VT, USA. 

Received: 22 August 2021   Accepted: 8 June 2022

References
	1.	 Zumla A, George A, Sharma V, Herbert N, Ilton BM. WHO’s 2013 global 

report on tuberculosis: successes, threats, and opportunities. The Lancet. 
2013;382(9907):1765–7.

	2.	 World Health Organization (WHO). Global Tuberculosis Report 2020. 
https://​www.​who.​int/​tb/​publi​catio​ns/​global_​report/​en/.

	3.	 Shea KM, Kammerer JS, Winston CA, Navin TR, Horsburgh CR. Estimated 
rate of reactivation of latent tuberculosis infection in the United States, 
overall and by population subgroup. Am J Epidemiol. 2014;179(2):216–25.

	4.	 Hussain SA, Sullivan R. Cancer control in Bangladesh. Jpn J Clin Oncol. 
2013;43(12):1159–69.

	5.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 
2020;70:7–30. https://​doi.​org/​10.​3322/​caac.​21590.

	6.	 Giovino GA, Mirza SA, Samet JM, Gupta PC, Jarvis MJ, Bhala N, et al. 
Tobacco use in 3 billion individuals from 16 countries: an analysis of 
nationally representative cross-sectional household surveys. Lancet. 
2012;380(9842):668–79.

	7.	 National Lung Screening Trial Research Team, Aberle DR, Adams AM, 
Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortal-
ity with low-dose computed tomographic screening. N Engl J Med. 
2011;365(5):395–409.

	8.	 Li Y, Zhang L, Chen H, Yang N. Lung nodule detection with deep learning 
in 3D thoracic MR images. IEEE Access. 2019;7:37822–32.

	9.	 Zhang Q, Kong X. Design of automatic lung nodule detection system 
based on multiple-scene deep learning framework. IEEE Access. 2020;8:1.

	10.	 Ali I, Hart GR, Gunabushanam G, Liang Y, Muhammad W, Nartowt B, Kane 
M, Ma X, Deng J. Lung nodule detection deep reinforcement learning. 
Front Oncol. 2018;8:108.

	11.	 Warsavage T, Xing F, Baron AE, Feser WJ, Hirsch E, Miller YE, Malkoski 
S, Wolf HJ, Wilson DO, Ghosh D. Quantifying the incremental value 
of deep learning: application to lung nodule detection. PLoS ONE. 
2020;15(4):E0231468.

	12.	 Rajaraman S, Antani SK. Modality-specific deep learning model ensem-
bles toward improving TB detection in chest radiographs. IEEE Access 
Pract Innov Open Solut. 2020;8:27318–26.

	13.	 Hooda R, Mittal A, Sofat S. Automated TB classification using ensemble of 
deep architectures. Multim Tools Appl. 2019;78(22):31515–32.

	14.	 Gao XW, Yu Q. Prediction of multidrug-resistant TB from CT pul-
monary images based on deep learning techniques. Mol Pharm. 
2018;15(10):4326–35.

	15.	 Nasrullah N, Sang J, Alam MS, Mateen M, Cai B, Hu H. Automated lung 
nodule detection and classification using deep learning combined with 
multiple strategies. Sensors (Basel, Switzerland). 2019;19(17):3722.

	16.	 Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi 
M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screen-
ing with three-dimensional deep learning on low-dose chest computed 
tomography. Nat Med. 2019;25(6):954–61.

	17.	 Tran GS, Nghiem TP, Nguyen VT, Luong CM, Burie J-C. Improving accuracy 
of lung nodule classification using deep learning with focal loss. J Healthc 
Eng. 2019;2019:5156416.

	18.	 Xie Y, Xia Y, Zhang J, Song Y, Feng D, Fulham M, Cai W. Knowledge-based 
collaborative deep learning for benign-malignant lung nodule classifica-
tion on chest CT. IEEE Trans Med Imaging. 2019;38(4):991–1004.

	19.	 Feng B, Chen XM, Chen YH, Lu SL, Liu KF, Li KW, Liu ZS. Solitary solid 
pulmonary nodules: a CT-based deep learning nomogram helps differ-
entiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 
2020;30(12):6497–507.

	20.	 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol 
S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller 
JV, Pieper S, Kikinis R. 3D slicer as an image computing platform for the 
quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41.

	21.	 Zhuang F, et al. A comprehensive survey on transfer learning. Proc IEEE. 
2021;109(1):43–76. https://​doi.​org/​10.​1109/​JPROC.​2020.​30045​55.

	22.	 Simonyan K, Zisserman A. Very deep convolutional networks for 
large-scale image recognition. In: International conference on learning 
representations (ICLR). 2015.

	23.	 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra A. Grad-
CAM: visual explanations from deep networks via gradient-based locali-
zation. In: 2017 IEEE international conference on computer vision (ICCV), 
Venice, 2017, pp. 618–26. https://​doi.​org/​10.​1109/​ICCV.​2017.​74.

	24.	 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep 
convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Wein-
berger KQ, editors. Advances in neural information processing systems 
25. New York: Curran Associates, Inc.; 2012. p. 1097–105.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://cdas.cancer.gov/nlst/
https://tbportals.niaid.nih.gov/
https://www.who.int/tb/publications/global_report/en/
https://doi.org/10.3322/caac.21590
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/ICCV.2017.74

	Discriminating TB lung nodules from early lung cancers using deep learning
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Lung nodule datasets
	DNN architecture

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


