
Paulin et al. 
BMC Medical Informatics and Decision Making          (2022) 22:166  
https://doi.org/10.1186/s12911-022-01901-x

RESEARCH ARTICLE

Using machine learning to predict 
subsequent events after EMS non‑conveyance 
decisions
Jani Paulin1*   , Akseli Reunamo2, Jouni Kurola3, Hans Moen4, Sanna Salanterä5   , Heikki Riihimäki6, 
Tero Vesanen6, Mari Koivisto7 and Timo Iirola8 

Abstract 

Background:  Predictors of subsequent events after Emergency Medical Services (EMS) non-conveyance decisions 
are still unclear, though patient safety is the priority in prehospital emergency care. The aim of this study was to find 
out whether machine learning can be used in this context and to identify the predictors of subsequent events based 
on narrative texts of electronic patient care records (ePCR).

Methods:  This was a prospective cohort study of EMS patients in Finland. The data was collected from three different 
regions between June 1 and November 30, 2018. Machine learning, in form of text classification, and manual evalua-
tion were used to predict subsequent events from the clinical notes after a non-conveyance mission.

Results:  FastText-model (AUC 0.654) performed best in prediction of subsequent events after EMS non-conveyance 
missions (n = 11,846). The model and manual analyses showed that many of the subsequent events were planned 
before, EMS guided the patients to visit primary health care facilities or ED next or following days after non-convey-
ance. The most frequent signs and symptoms as subsequent event predictors were musculoskeletal-, infection-related 
and non-specific complaints. 1 in 5 the EMS documentation was inadequate and many of these led to a subsequent 
event.

Conclusion:  Machine learning can be used to predict subsequent events after EMS non-conveyance missions. From 
the patient safety perspective, it is notable that subsequent event does not necessarily mean that patient safety is 
compromised. There were a number of subsequent visits to primary health care or EDs, which were planned before 
by EMS. This demonstrates the appropriate use of limited resources to avoid unnecessary conveyance to the ED. 
However, further studies are needed without planned subsequent events to find out the harmful subsequent events, 
where EMS non-conveyance puts patient safety at risk.
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Background
Non-conveyance by Emergency Medical Services (EMS) 
is a key element in reducing the workload for Emer-
gency Departments (ED) [1]. Globally the non-convey-
ance rates vary from 3.7 to 93.7% [2] and in Finland, 
the rate is around 40% [3–5]. The decision to discharge 
the patient at the scene is complex and is influenced 
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by many factors [2]. Under-triage is a threat to patient 
safety, but over-triage wastes the limited resources [6]. 
Many of the subsequent events are related to difficulties 
in clinical judgment [7]. EMS arrival time at night [8], 
older age and abnormal vital signs, for example, have 
been found to predict a subsequent event [8, 9]. How-
ever, patient safety is the priority in prehospital emer-
gency care [1, 7]. Machine learning has been seen as 
a promising method to improve the practice of health 
care [10], as previous studies have shown that artificial 
intelligence can be used to identify high risk patients 
[11–14].

In this study, the focus is to leverage natural language 
processing (NLP) and machine learning to computa-
tionally analyze the narrative texts of electronic patient 
care records (ePCR) in relation to non-conveyance 
decisions. Machine learning models are performance 
focused; they are powerful predictors, but the under-
lying reasons for their predictions are often not trans-
parent, especially for more complex models. Thus, 
multiple different model explainability or explainable 
artificial intelligence (XAI) techniques have been devel-
oped to shed more light on what happens inside such 
complex models [15]. Different text classification mod-
els are used in the presented work. A model explain-
ability technique is used as a means to calculate the 
importance of the input features (words in our case) 
relative to the predictions made by the model.

The Local Interpretable Model-agnostic Explanations 
(LIME) method is a popular model explainability tech-
nique developed by Ribeiro et al. [16], which uses ridge 
regression to create a locally fateful simpler model to 
explain single predictions made by a complex model. 
Coefficients of ridge regression are used as an impor-
tance measure of the input features (words in our case). 
LIME is model agnostic, thus it can be used to explain 
any model. This feature was important for us since the 
best performing model for classification of narrative texts 
of ePCRs is unknown.

Finally, the safety factors of EMS non-conveyance and 
the following subsequent events are unclear [2, 17, 18]. 
To the best of our knowledge, there are no existing stud-
ies that report on the use of machine learning to analyze 
narrative texts of EMS ePCRs. The aim of this study was 
to find out whether machine learning can be used in 
this context and to identify the predictors of subsequent 
events after a non-conveyance decision based on EMS 
care providers’ documentation. Machine learning in the 
form of a text classification algorithm was used to predict 
the events in terms of subsequent event or not, and the 
LIME model explainability technique and manual evalua-
tion were applied to shed light on possible commonalities 
between the cases.

Methods
Design
This is a prospective cohort study.

EMS in Finland
The emergency number 112 is in use for all emergencies 
and there are six regional emergency medical communi-
cation centers (EMCCs) administered by a national dis-
patch authority. After criteria-based protocol, medical 
calls are prioritized into four categories A to D, where A 
is the most urgent one.

In Finland, EMS is provided by the hospital districts 
and is a part of specialized care. Advanced Life Support 
units (ALS) with at least one paramedic-nurse with 4 
years bachelor-level education are the most common 
ones. EMS units operate typically 24/7. A non-convey-
ance decision is made based on standing order or by 
consulting EMS or primary care physician. Depending 
on the patients’ needs, the patients may be conveyed to 
central or regional hospitals, municipal healthcare cent-
ers or other primary care units by EMS personnel. When 
needed, patients are conveyed to university hospitals 
located in neighboring areas. Later in the text, the term 
ED (Emergency Department) refers to hospitals and spe-
cialized medical care and the term primary health care 
facility refers to primary care units.

Data
The EMS data from the hospital districts of South-Savo, 
Kanta-Häme, and Päijät-Häme were collected between 
June 1 and November 30, 2018 (Fig.  1). The study area 
comprises both urban and rural areas, with a total of 32 
municipalities. Altogether 482,805 inhabitants live in this 
area, which amounts to 8.8% of the Finnish population. 
The average population density is 26.1 people per square 
kilometer.

The non-conveyed patients (n = 11,861), which were 
discharged at scene by EMS after assessment and treat-
ment, were included in the analyses (Fig. 2). The patients 
were identified using unique 10-digit personal iden-
tity numbers and linked between registries. The more 
detailed description of the data collection, registries, 
non-conveyed patients and the rates of subsequent events 
(EMS re-contacts, primary health care facility or ED vis-
its and hospitalization within 48 h and 28 days mortality) 
after the non-conveyance missions were described previ-
ously [3, 8].

The data consists of the narrative texts of ePCRs of the 
non-conveyed patients including the scenario, status, 
previous diseases and medication, treatment, additional 
information and the reasoning for the non-conveyance 
decision. Each sample of individual care events con-
tains also a unique identifier and information about the 
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following events. The data from each patient was labeled 
with the labels: 0—“non-subsequent event”, or 1—“sub-
sequent event”. As part of the preprocessing, all text 

was lowercase and special characters were removed (all 
other characters were removed that were not alphabeti-
cal (UTF-8) or numbers). In total, the data consisted of 

Fig. 1  Study areas (published with permission, Paulin et al. [8])
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11 861 non-conveyed patients where 9 308 patients 
belonged to a class non-subsequent event (label 0) and 
2553 belonged to a class subsequent event (label 1). 
Finally, samples that did not contain any text were dis-
carded resulting in a dataset of 11 846 samples where 
9 296 patients belonged to the class “non-subsequent 
event” (label 0) and 2 550 belonged to the class “subse-
quent event” (label 1). In total, data contains 1.17 mil-
lion tokens. The minimum number of tokens is four and 
the maximum 479, and the median number of tokens is 
94. Figure 3 provides an example of the narrative text of 
ePCR without abbreviations and structured data.

Experimental setup
First, a performance evaluation was done for three can-
didate text classification models; long short-term mem-
ory-model (LSTM-model) with one LSTM-layer [19], 
Bidirectional-LSTM-model with two LSTM-layers [20] 
and FastText-model [21]. LSTM-model and Bidirec-
tional-LSTM-model are neural networks that contain 

LSTM cells; regular LSTM cells are unidirectional and 
bidirectional-LSTM cells include negative time direction 
[19, 20]. LSTM models are improved versions of recur-
rent neural networks and they are well suited for sequen-
tial data [22]. FastText uses word and word n-gram 
embeddings to create text embeddings which are used 
as input for a linear classifier [21]. Even though FastText 
is a lot simpler than non-linear LSTM-based models, it 
has been shown to be almost as good as neural network-
based methods in text classification [21]. These models 
were chosen as candidates to evaluate performance in 
different model complexity levels. An additional rea-
son to select these models for the experiment was their 
good performance in a similar task where the same mod-
els were used to classify sentences extracted from nurs-
ing entries to the right subject [23]. Traditional machine 
learning setup, splitting data to training, validation, and 
test set would have not been able to provide a realistic 
estimate of the performance, because a small test set is 
not able to describe true data distribution. Thus, fivefold 

TOTAL NUMBER OF 
EMS MISSIONS 

n=48,297

EMS PATIENTS
n=35,250

CONVEYED PATIENTS
n=20,376

NON-CONVEYED PATIENTS
n=14,874

EXCLUDED EMS PATIENTS
(in the second phase)
-conveyed patients (n=20,376)
-patient was conveyed to the hospital 
by means other than ambulance 
(n=3,013)
-cases that did not contain any texts 
(n=15)

INCLUDED NON-
CONVEYED PATIENTS

n=11,846

EXCLUDED EMS MISSIONS (in the first phase)
-mission was cancelled by emergency dispatcher
(n=2,999)
-technical problem (n=9)
-patient was missing (n=486)
-missing or unclear social security number 

(n=3,718)
-patient was registered twice or unclear (n=738)
-mission time was unclear (n=84)
-patient was dead (n=309)
-inter-facility conveyances (n=4,499)
-conveyance code was missing (n=204)
-mission code "N" (invalid code) (n=1)

Fig. 2  Flow chart
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nested cross-validation with five parameters was used 
to obtain as unbiased and robust evaluation of the per-
formance as possible. Nested cross-validation enables a 
simple and effective way to select models and evaluate 
performance [24]. LSTM-model and Bidirectional-LSTM 
models were implemented with Tensorflow [25] as back-
end. The area under the ROC-curve (AUC) was chosen 
as the performance measurement as it is able to measure 
performance reliably with skewed class distribution [26]. 
Detailed information about the models and nested cross-
validation are provided in Appendix 1.

Next, the best performing model—FastText—was opti-
mized with fivefold cross-validation. The whole dataset 
was used in optimization to capture as much information 
as possible for the explanations. In total 225 hyperparam-
eter combinations were tested and hyperparameters with 
the best mean AUC were chosen to be the parameters of 
the final explanatory model. The final model was trained 
with 90% of data and the remaining 10% was used in the 

explanatory analysis described below with parameters 
found in hyperparameter optimization. Detailed infor-
mation about hyperparameter optimization is provided 
in Appendix 2.

As a third step, the mentioned “explainable XAI” tech-
nique LIME was used to extract the importance of words 
relative to each prediction. The LIME package module 
used LimeTextExplainer with default parameters except 
top_labels was set to 1, num_feature to a number of 
tokens per sample, and num_samples was set to 10,000. 
10% of the tokens with positive coefficients were used as 
keywords. In addition, if the keywords were next to each 
other, they were combined to be keyphrases to retain the 
semantic information.

Finally, a manual analysis of the extracted keywords 
and keyphrases was performed. The evaluation was done 
to understand whether the algorithm’s results are clini-
cally understandable and relevant. 80 patients were ran-
domly chosen, 20 patients from four different scenarios: 

Fig. 3  An example of EMS notes
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subsequent or non-subsequent event for correct or 
incorrect model predictions. Domain experts evaluated, 
if they agreed with the result of the algorithm, if the key 
words found by the algorithm were relevant and if the 
result of the algorithm was justifiable by the narrative 
texts of ePCR using a three-class scale: 1 = I disagree, 
2 = unclear/more text is needed, 3 = I agree.

The cases were analyzed independently by two 
researchers (JP and HR). For the cases where the assess-
ments differed (n = 15, 19.5%), a third evaluator, TI, pro-
vided a third independent evaluation and these cases 
were discussed until consensus was reached. Inductive 
content analyses, which allow categorization and fre-
quency calculation of the words, phrases and expressions 
were also used as part of the manual evaluation [27].

Results
The text classification model based on FastText per-
formed best according to the nested cross-valida-
tion, with a mean AUC of 0.654 (Fig.  4). Best mean 
AUC (0.662) in hyperparameter optimization was 
obtained with parameters ’epoch’ = 20, ’lr’ = 0.1, and 
’wordNgrams’ = 5.

Manual evaluation showed that the results of the 
algorithm were clinically relevant. Also, narrative texts 
of ePCRs gave clues of the algorithm’s results. The 
extracted keywords by the model were partly irrelevant 

and manually challenging to identify and understand. For 
example, there were many conjunctions like “or”, “and”, 
“no”, “with” and “if”. The most understandable keywords 
were “tomorrow to health center” or “morning to ED”, 
and non-specific complaints like “malaise”. Overall, in the 
cases where the patient had a subsequent event and the 
model also predicted it, the manual evaluation showed 
the highest scores (Table 1).

Based on the content analyses, three categories were 
found to predict subsequent events after a non-convey-
ance decision. 4 in 5 of the subsequent event cases, EMS 
care providers and the patients had an agreement that the 
patient will visit primary health care facility or ED next 
or following days after the initial non-conveyance mis-
sion. There were also many who did not go even if they 
were instructed. The most frequent signs and symptoms 
as predictors were musculoskeletal-, infection-related 
and non-specific complaints. There were also some fre-
quent callers with minor problems. Psychological symp-
toms were common predictors, but the model did not 
predict them very well (Table 2). In 18.2% (14/77) of the 
cases, the narrative texts of ePCR were very short. Over a 
third (5/14) of these briefly documented cases led to sub-
sequent events. Moreover, there were three other cases, 
where subsequent events seemed inevitable, but these 
patients did not have it. The model missed four of these 
eight subsequent events. There were also some random 

Fig. 4  Performance of classifiers in nested cross validation
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factors like a great number of diseases or homecare pro-
viders’ or relatives’ anxiety, which could be related to 
subsequent events as well.

Discussion
The main findings are as follows. Machine learning (Fast-
Text-model, AUC 0.654) seems promising at predicting 
subsequent events after EMS non-conveyance decisions. 
In case of subsequent events, many of these patients were 
guided to visit primary health care facilities or ED next or 
following days after non-conveyance. Musculoskeletal-, 
infection-related- and non-specific complaints were the 
most frequent signs and symptoms as subsequent event 
predictors.

To the best of our knowledge, this is the first study 
where machine learning is used to search for predictors 
from narrative texts of ePCR in the context of EMS’ non-
conveyance. Our study demonstrated that the FastText-
model performed better than the two other LSTM-based 
neural network text classification models. This demon-
strates that non-linear classifiers do not generalize well 
to this data. This is likely due to the complexity of the 
task and the limited training data. The manual evalua-
tion indicated that the predictions made by the FastText-
model were understandable and clinically important, 
which increases the reliability of this study even if the 
keywords were partly unclear.

While these results are promising, the prediction of 
the subsequent event from an individual narrative text of 
ePCR in this context is a hard task even for the compre-
hensively optimized FastText model. This indicates the 
complexity of the original task and limited opportunities 
for observations that the EMS care providers face.

As mentioned earlier, 90% of the data was used for 
the training of the model and 10% was used for the 
explanatory analysis. It is likely that prediction perfor-
mance may increase with more data. Thus, more data 

and additional studies are needed. In addition, leverag-
ing transformer-based models pre-trained on Finnish 
electronic health records may have increased the per-
formance [28], but as their large size in practice pre-
vents the use of nested cross-validation in performance 
estimation, transformers based models were excluded 
from this study.

The keywords extracted by the model and the manual 
analyses showed that a number of the subsequent events 
were planned by EMS personnel. Therefore it seems that 
after assessment and treatment EMS personnel evalu-
ate that these patients do not need a doctor immediately 
but a subsequent visit for example in the next morning is 
appropriate. Related to this, previous studies have shown 
that there is a correlation between increased likelihood 
of non-conveyance and the following factors: non-urgent 
missions, EMS arrival time in the evening or at night, and 
the destination being in a rural area [3, 5], and the follow-
ing subsequent visits in primary health care [8]. Further-
more, EMS patients are often in good condition [3, 8]. 
This indicates that the resources were correctly directed 
by EMS and unnecessary conveyance to the ED was 
avoided. In many areas, access to primary health care is 
limited and EMS is the only 24/7 health care service [4]. 
A Finnish study indicated that after the evaluation almost 
half the non-conveyed patients were instructed to con-
tact primary health care during daytime [5]. The role of 
EMS has changed to include more non-critical patients 
instead of traditional high risk patient groups [3] like 
“first hour quintet” [29]. On the other hand, unnecessary 
EMS missions are discussed globally [30] and our study 
demonstrated there were many patients who skipped the 
subsequent visit to the doctor despite the guidance by 
EMS. However, the guidance by EMS indicates that EMS 
care providers were concerned about the patient’s con-
dition. It seems that the subsequent visit can wait for a 
while, but further contact is anyway required.

Table 1  The study group’s manual evaluation of the algorithm (1 = disagree, 2 = unclear, 3 = agree)

I agree with algorithm The key words are relevant The text gives clues of 
the algorithm’s result

The patient had subsequent event and the model predicted there 
will be one (n = 17)

1 = 0% (n = 0)
2 = 23.5% (n = 4)
3 = 76.5% (n = 13)

1 = 41.2% (n = 7)
2 = 17.7% (n = 3)
3 = 41.2% (n = 7)

1 = 0% (n = 0)
2 = 29.4% (n = 5)
3 = 70.6% (n = 12)

The patient had subsequent event, but the model did not predict 
one (n = 20)

1 = 55.0% (n = 11)
2 = 15.0% (n = 3)
3 = 30.0% (n = 6)

1 = 90.0% (n = 18)
2 = 10.0% (n = 2)
3 = 0% (n = 0)

1 = 40.0% (n = 8)
2 = 30.0% (n = 6)
3 = 30.0% (n = 6)

The patient didn’t have subsequent event, but the model predicted 
that there will be one (n = 20)

1 = 20.0% (n = 4)
2 = 20.0% (n = 4)
3 = 60.0% (n = 12)

1 = 50.0% (n = 10)
2 = 25.0% (n = 5)
3 = 25.0% (n = 5)

1 = 10.0% (n = 2)
2 = 25.0% (n = 5)
3 = 65.0% (n = 13)

The patient didn’t have subsequent event and the model did not 
predict one (n = 20)

1 = 15.0% (n = 3)
2 = 40.0% (n = 8)
3 = 45.0% (n = 9)

1 = 95.0% (n = 19)
2 = 5.0% (n = 1)
3 = 0% (n = 0)

1 = 5.0% (n = 1)
2 = 35.0% (n = 7)
3 = 60.0% (n = 12)
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Table 2  Predictors of subsequent events

The patient had subsequent event and the model predicted there will be one (n = 17)

The study group agree with model there will be subsequent event (n = 17)

Signs/symptoms n %

Musculoskeletal symptoms 6 35.3

Infection 3 17.6

Non-specific complaints 2 11.8

Abdominal pain 2 11.8

High blood pressure 1 5.9

Ear pain 1 5.9

Nasal bleeding 1 5.9

Frequent caller with minor problem 1 5.9

The agreement with the patient/guidance to visit primary health care or ED next or following days 76.5% of the cases (13/17)

The patient had subsequent event, but the model did not predict one (n = 20)

The study group agree with model there won’t be subsequent event (n = 7)

Signs/symptoms n %

Frequent caller with minor problem 3 15.0

Fall due to alcohol misuse 1 5.0

Urinary catheter blocked 1 5.0

Psychological symptom 1 5.0

Allergic reaction 1 5.0

The agreement with the patient/guidance to visit primary health care or ED next or following days 0% of the cases (0/7)

The study group disagree with model there won’t be subsequent event (n = 13)

Signs/symptoms n %

Psychological symptom 5 25.0

Musculoskeletal symptoms 3 15.0

Non-specific complaints 2 10.0

Convulsion 1 5.0

Violence/assault 1 5.0

Nausea 1 5.0

The agreement with the patient/guidance to visit primary health care or ED next or following days 76.9% of the cases (10/13)

The patients didn’t have subsequent event, but the model predicted that there will be one (n = 20)

The study group agree with model there will be subsequent event (n = 18)

Signs/symptoms n %

Musculoskeletal symptoms 11 55.0

Infection 2 10.0

Breathing trouble 2 10.0

Psychological symptom 1 5.0

High blood pressure 1 5.0

Diarrhoea 1 5.0

The agreement with the patient/guidance to primary health care or ED next or following days 66.7% of the cases (12/18)

The study group disagree with model that there will be subsequent event (n = 2)

Signs/symptoms n %

Musculoskeletal symptoms 1 5.0

Breathing trouble 1 5.0

The agreement with the patient/guidance to visit primary health care or ED next or following days 0% of the cases (0/2)
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Acute musculoskeletal symptoms were the most com-
mon signs and symptoms, which predicted the subse-
quent events after the patients were discharged at the 
scene. Understandably, these problems are often non-
urgent and therefore non-conveyance decisions and the 
instructions to visit the doctor are justified. Moreover, 
there were some frequent callers with minor problems. 
Other studies have found that one in three EMS patients 
is a frequent caller [5, 31]. On the other hand, infections 
and non-specific complaints were common predictors as 
well. Previous studies have reported that infections like 
sepsis are challenging to identify [32] and non-specific 
complaints predict many subsequent events in both the 
contexts of prehospital emergency care and EDs [33–35]. 
This raises the question of whether the non-conveyance 
decision of these patients is justified, even if many of 
these subsequent events were planned before as well. 
However, there should be a balance between safety mar-
gins and wasting limited resources. In addition, psycho-
logical symptoms were also common, but these patients 
were challenging for the algorithm to find, maybe due to 
varied signs and symptoms.

Based on our results, the narrative texts of ePCRs were 
very short in one of five missions and many of these led 
to a subsequent event. The model missed some of these 
cases probably due to limited information. More stud-
ies are needed to address the reasons for the inadequate 
documentation. Previous studies have reported new 

guidelines [36], checklists [37], educational interventions 
[38] and body-worn cameras to improve EMS documen-
tation instead of short-term memories, for example [39]. 
Finally, incomplete documentation is a major risk for 
subsequent events in prehospital emergency care [40, 
41].

Limitations
This study has limitations. The excluded patients [3], the 
challenges of exact time of the ED visits, the fact that the 
subsequent visits to primary health care includes chronic 
disease monitoring and generalizability of the rates of 
subsequent event and safety factors, were described pre-
viously [8].

In this study, the data were labeled in two groups, non-
subsequent event and subsequent event. Thus, all subse-
quent events were thought to be equivalent. The data set 
for the machine learning analyses was small (90% for the 
model training and 10% for the explanatory analysis), and 
the number of subsequent events was relatively small. 
Therefore, when the eighty missions were randomly cho-
sen for the clinical analyses, there were only seventeen 
cases to represent the combination of subsequent events 
and correct predictions by the model.

The performance of FastText was better than random, but 
still, the performance could be better. As we used all avail-
able data for optimization, the final explanatory analysis is 
slightly optimistic (0.008 higher AUC in the explanatory 

Table 2  (continued)

The patients didn’t have subsequent event and the model did not predict one (n = 20)

The study group agree with model there won’t be subsequent event (n = 15)

Signs/symptoms n %

Psychological symptom 4 20.0

Chest pain 3 15.0

Abdominal pain 2 10.0

Fall (elderly with minor conditions) 2 10.0

Musculoskeletal symptoms 1 5.0

Fall due to alcohol misuse 1 5.0

Toxic effect of carbon monoxide 1 5.0

Bicycle accident 1 5.0

The agreement with the patient/guidance to visit primary health care or ED next or following days 0% of the cases (0/15)

The study group disagree with model there won’t be subsequent event (n = 5)

Signs/symptoms n %

Non-specific complaints 2 10.0

Psychological symptom 1 5.0

Musculoskeletal symptoms 1 5.0

Symptoms of apoplexia 1 5.0

The agreement with the patient/guidance to visit primary health care or ED next or following days 60.0% of the cases (3/5)
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analysis compared to nested cross-validation results). LIME 
explains predictions in the local neighborhood of samples, 
thus it is hard to draw global conclusions from explana-
tions even when a large number of sample predictions have 
been explained. In addition, the LIME explanation may be 
an inaccurate representation of the original prediction and 
explaining predictions of an uncertain model may give a 
biased estimation of true phenomenon [42].

It is notable that the narrative texts of ePCRs are dif-
ficult to analyze computationally, but also manually. 
The texts are short, there are several abbreviations used, 
either formal or informal ones [40]. Further, the Finnish 
language is challenging from a natural language process-
ing perspective due to its many cases and inflections. In 
some cases, the patients had multiple types of signs and 
symptoms, but in the narrative texts, only the main one, 
or some combination, were described. In this study, only 
the narrative texts were analyzed, but in future, the texts 
can be combined to structured data like physiological 
parameters. Moreover, it is likely that there are factors 
related to the EMS non-conveyance decisions and the 
following subsequent events that were not found in this 
study. For instance, EMS care providers’ tacit knowledge 
is a typical thing that goes unrecorded.

Conclusions
This study shows that machine learning in the form of 
text classification can be used to predict subsequent 
events from narrative texts of ePCR after EMS non-
conveyance decisions. It is notable that these subsequent 
events do not necessary mean that patient safety is jeop-
ardized. This study shows that many subsequent visits 
to primary health care or EDs were planned beforehand 
by EMS personnel. This indicates reasonable use of lim-
ited resources to decrease ED crowding. However, more 
research is needed. The machine learning model could 
be tested for each subsequent event type separately and 
exclude planned subsequent events in order to find out 
the harmful subsequent events, where EMS non-convey-
ance puts patient safety at risk.

Appendices
Appendix 1: Details of models and hyperparameters tested 
in nested cross validation. Underlined hyperparameters 
were tuned
A Sequential LSTM model was implemented with Ten-
sorflow (version 2.2.0). Model performance was moni-
tored with a validation set (10% of training set of each 
cross-validation fold) to avoid overfitting. Addition-
ally, EarlyStopping with patience 20 and ReduceLROn-
Plateau with factor 0.5 and patience 2 callbacks were 
used. Maximum number of epochs was 10 and Adam 

(learning_rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, 
epsilon = 1e−07) was used as an optimizer and Binary-
Crossentropy was used as a loss function. Data was first 
transformed to numerical format with Tensorflow data-
sets (version 1.2.0) module SubwordTextEncoder (vocab-
ulary size 9949), then padded to maximum length of a 
batch. Batch size was set to 50. 5 different hyperparame-
ter combinations were used in each inner fold. Following 
parameters were tested where first number is the param-
eter combination number, second is number of units and 
third is the drop rate: {"1": [100, 0.1], "2": [300, 0.2], "3": 
[450, 0.3], "4": [200, 0.2], "5": [450, 0.4]}.

Layers and untuned 
parameters

Hyperparameters Values

Embedding(input_
dim = 9949 + 1,output_
dim = 200,mask_zero = True)

– –

Dropout drop_rate 0.1, 0.2, 0.3, 0.4

LSTM(dropout = 0.2,recur-
rent_dropout = 0.2,activa-
tion = ’sigmoid’)

Units 100, 200, 300, 450

Dense(units = 1, activa-
tion = ’sigmoid’)

– –

A Sequential Bidirectional-LSTM model was imple-
mented with Tensorflow (version 2.2.0). Model per-
formance was monitored with a validation set (10% of 
training set of each cross-validation fold) to avoid over-
fitting. Additionally, EarlyStopping with patience 20 and 
ReduceLROnPlateau with factor 0.5 and patience 2 call-
backs were used. Maximum number of epochs was 10 and 
Adam (learning_rate = 0.001, beta_1 = 0.9, beta_2 = 0.999, 
epsilon = 1e−07) was used as an optimizer and Bina-
ryCrossentropy was used as a loss function. Data was 
first transformed to numerical format with Tensorflow 
datasets (version 1.2.0) module SubwordTextEncoder 
(vocabulary size 9949), then padded to maximum length 
of a batch. Batch size was set to 50. 5 different hyperpa-
rameter combinations were used in each inner fold. Fol-
lowing parameters were tested where first number is the 
parameter combination number, second is drop rate of 
first dropout layer, third is the number of units in bidirec-
tional-LSTM, fourth is drop rate of second dropout layer, 
and fifth is number of units of LSTM layer: {“1”: [0.1, 200, 
64, 0.1], “2”: [0.2, 200, 100, 0.2], “3”: [0.3, 300, 64, 0.2], “4”: 
[0.2, 200, 64, 0.2], “5”: [0.2, 300, 200, 0.3]}.

Layers and untuned parameters Hyperparameters Values

Embedding(input_
dim = 9949 + 1,output_
dim = 200,mask_zero = True)

– –

Dropout Drop_rate 0.2, 0.3
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Layers and untuned parameters Hyperparameters Values

Biderctional-
LSTM(dropout = 0.2,recurrent_drop-
out = 0.2,activation = ’sigmoid’,return-
sequences = True)

Units 200, 300

LSTM(dropout = 0.2,recurrent_drop-
out = 0.2,activation = ’sigmoid’)

Units 64, 100, 200

Dropout Drop_rate 0.1, 0.2, 0.3

Dense(units = 1, activation = ’sig-
moid’)

– –

The FastText model was trained with the train_super-
vised() method with default parameters except ones in 
table below. Following parameters were tested where first 
number is the parameter combination number, second 
is learning rate, third is number of epochs and fourth is 
max length of word ngram: {"1": [0.6,40,5], "2": [0.3,40,3], 
"3": [0.7,30,4], "4": [0.2,50,5], "5": [0.4,40,2]}

Hyperparameter Value

lr 0.2, 0.3, 0.4, 0.6, 0.7

epoch 40, 50

wordNgrams 2, 3, 5

Appendix 2: Hyperparameters of FastText tested 
in optimization. Underlined hyperparameters were tuned
Parameters of FastText. All parameter combinations in 
the presented range were tested. Other than hyperpa-
rameters described below were default.

Hyperparameter Value

lr 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 
0.9

epoch 20, 30, 40, 50, 60

wordNgrams 1, 2, 3, 4, 5
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