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Abstract 

Background:  Meta-analyses aggregate results of different clinical studies to assess the effectiveness of a treatment. 
Despite their importance, meta-analyses are time-consuming and labor-intensive as they involve reading hundreds 
of research articles and extracting data. The number of research articles is increasing rapidly and most meta-analyses 
are outdated shortly after publication as new evidence has not been included. Automatic extraction of data from 
research articles can expedite the meta-analysis process and allow for automatic updates when new results become 
available. In this study, we propose a system for automatically extracting data from research abstracts and performing 
statistical analysis.

Materials and methods:  Our corpus consists of 1011 PubMed abstracts of breast cancer randomized controlled 
trials annotated with the core elements of clinical trials: Participants, Intervention, Control, and Outcomes (PICO). We 
proposed a BERT-based named entity recognition (NER) model to identify PICO information from research abstracts. 
After extracting the PICO information, we parse numeric outcomes to identify the number of patients having certain 
outcomes for statistical analysis.

Results:  The NER model extracted PICO elements with relatively high accuracy, achieving F1-scores greater than 
0.80 in most entities. We assessed the performance of the proposed system by reproducing the results of an existing 
meta-analysis. The data extraction step achieved high accuracy, however the statistical analysis step achieved low 
performance because abstracts sometimes lack all the required information.

Conclusion:  We proposed a system for automatically extracting data from research abstracts and performing statisti-
cal analysis. We evaluated the performance of the system by reproducing an existing meta-analysis and the system 
achieved a relatively good performance, though more substantiation is required.

Keywords:  Automatic meta-analysis, Natural language processing (NLP), Automatic data extraction, Named entity 
recognition (NER), Evidence-based medicine
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Introduction
A meta-analysis is a statistical analysis that combines 
the results of different studies that are all focused on 
same disease, treatment, or outcome to determine if a 

treatment is effective or not. Meta-analyses provide the 
best form of medical evidence and are an essential tool 
for enabling evidence-based medicine and clinical and 
health policy decision-making [1]. Meta-analyses are 
time-consuming, labor-intensive, and expensive as they 
require domain experts to manually search, read, and 
extract data from hundreds of research articles written in 
unstructured natural language. The number of research 
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articles is increasing exponentially and it is becom-
ing almost impossible to keep up with the high number 
of biomedical literature [2]. For instance, a recent study 
showed that more than 50,000 research articles related to 
the COVID-19 pandemic have been published and more 
articles are being published every day [3]. The large num-
ber of research articles increases the time required to 
conduct a meta-analysis. Previous research showed that 
on average it takes about 67 weeks, from registration to 
publication, to finalize a meta-analysis [4]. This poses a 
challenge for practitioners in the infectious disease field 
where informed decisions have to be made promptly. 
Moreover, most meta-analyses are outdated shortly after 
publication as they have not incorporated new evidence 
which might alter the results [5].

Automatic meta-analysis systems have the benefit of 
reducing the time-taken in conducting a meta-analysis 
so as to help in timely dissemination of medical evidence 
and allow for automatic updates when new evidence 
becomes available. According to surveys on automation 
of meta-analysis, different strategies for automating the 
various meta-analysis stages (searching the databases for 
relevant literature, screening, data extraction, and statis-
tical analysis) have been proposed [6, 7]. Marshall et  al. 
[7] suggests that systems for searching literature, identi-
fying randomized controlled trials (RCTs), and screening 
articles have attained a good performance and are ready 
for use. The systems for the data extraction and statistical 
analysis, on the other hand, are still not readily available.

Techniques for data extraction from research abstracts 
and full-text articles have been widely studied [6]. 
Although various methods for extracting different Par-
ticipants, Intervention, Control, and Outcomes (PICO) 
information from research articles have been proposed, 
fewer attempts have been made to extract detailed infor-
mation for the outcomes, especially numeric texts identi-
fying the number of patients having certain outcomes [8, 
9]. Extraction of numeric texts is important for statistical 
analysis to determine the effectiveness of the interven-
tion. Summerscales et  al. [9] used conditional random 
field-based approach to extract various named entities 
including treatment groups, group sizes, outcomes, and 
outcome numbers from research abstracts. Pradhan et al. 
[8] developed a Web application for extracting data from 
ClinicalTrials.gov, a clinical trials database. Although 
ClinicalTrials.gov is an important source of clinical trials 
data, it has a small number of studies and mainly focuses 
on clinical trials in the United States [8].

The goal of this work is to provide a system that auto-
mates data extraction in order to support meta-analysis 
statistical analysis. We utilize the current state-of-the-
art natural language processing (NLP) models to extract 
PICO information from research abstracts. We use 
abstracts because they are easily accessible and they 
provide a concise summary of the full-text article espe-
cially the main results. The proposed system (shown in 
Fig.  1) performs various steps including extracting data 
from research abstracts, parsing numeric outcomes to 

Fig. 1  Proposed system architecture
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identify the number of patients having specific outcomes, 
converting extracted data into a structured format for 
statistical analysis, and visualizing the results. We assess 
the performance of the proposed system by using it to 
reproduce the results of an existing meta-analysis. The 
results show potential in automating the tasks and hope 
to increase interest in research on automating the entire 
integrated meta-analysis process.

Materials
The corpus consists of 1011 abstracts of breast cancer 
randomized controlled extracted from the PubMed.1 
PubMed is a free search engine that gives access to the 
MEDLINE database2 that indexes abstracts of biomedical 
and life science research articles. An annotator marked 
text spans that describe the PICO elements, i.e., Partici-
pants (P), Interventions (I), Control (C), and Outcomes 
(O).

•	 Participants: text snippets that describe the charac-
teristics of the participants. These include the total 
number of participants, number of participants in 
the intervention group, number of participants in the 
control group, condition, age, ethnicity, location of 
the study, and eligibility.

•	 Intervention and Control: text snippets that identify 
the intervention and control treatments.

•	 Outcomes: text snippets that identify the outcomes 
in a study. These include outcomes that were meas-
ured, outcome measures, the number of events in the 
intervention group, and the number of events in the 
control group.

Outcomes can be classified into binary outcomes and 
continuous outcomes. Binary outcomes take two values 
such as the treatment was successful or not. Continu-
ous outcomes take multiple values such as pain which 
is measured on a numerical scale (pain scores on a scale 
0–10). Continuous outcomes are mostly reported as 
mean, standard deviation, median, or quartiles. The cor-
pus is annotated with different entities to capture the dif-
ferent types of outcomes and their values.

The corpus consists of 1011 manually annotated 
abstracts. Table 1 shows the frequency of each entity in 
the corpus. The tags iv, cv, bin, and cont represent inter-
vention group, control group, binary outcome, and con-
tinuous outcome respectively. Since binary outcomes 
numeric texts tend to be absolute values or percentage 
values, abs and percent are used to represent absolute 

and percentage values, respectively. Furthermore, for the 
continuous outcomes we use mean, sd, median, q1, and 
q3 to represent mean, standard deviation, median, first 
quartile, and third quartile values, respectively. The cor-
pus is publicly available on our github page.3

Methods
Proposed system architecture
The architecture of the proposed system is shown in 
Fig. 1. The proposed system consists of five major compo-
nents: research abstracts, data extraction, PICO elements 
normalization, creating structured data, and aggregation 
and visualization. The system input is free-text research 
abstracts. The research abstracts are passed to the data 
extraction module for pre-processing and extraction 
of PICO elements. The extracted PICO elements are 
then normalized using Unified Medical Language Sys-
tem (UMLS) and dictionary string matching techniques. 
After normalization, numeric texts are parsed to identify 
the number of patients having certain outcomes and con-
vert the data into a structured format for statistical analy-
sis. Finally, similar studies (same intervention and same 
outcome) are grouped together and the results are visual-
ized using forest plots which provide a summary and the 
extent to which results from different studies overlap.

Data extraction
Pre‑processing
The pre-processing step mainly involves acronym expan-
sion. In research articles, acronyms are frequently used to 
avoid repeating long terms and save space. Even though 
acronyms simplify writing and reading, they are a major 
obstacle to natural language text understanding tasks 
[10]. Generally, acronyms can have multiple common 
expansions which depend on a particular context. Acro-
nyms commonly occur in the words preceding their first 
occurrence in parentheses, for example, “Randomized 
controlled trials (RCT) of scalp cooling (SC) to prevent 
chemotherapy induced alopecia (CIA)”. In this study, we 
employ a rule-based method using regular expressions 
for acronym expansion. The first step in identifying acro-
nyms is to look for terms in parenthesis that are between 
two and ten characters long. Regular expressions are then 
used to find expansion candidates in the surrounding 
text.

PICO elements extraction
Data extraction aims to extract PICO elements from 
research abstracts. This task is formulated as a sequence 
labelling task, i.e., given a token, classify it as one of 

1  https://​www.​nlm.​nih.​gov/​bsd/​pmres​ources.​html.
2  https://​www.​nlm.​nih.​gov/​medli​ne/​medli​ne_​overv​iew.​html. 3  https://​github.​com/​socio​com/​PICO-​Corpus.

https://www.nlm.nih.gov/bsd/pmresources.html
https://www.nlm.nih.gov/medline/medline_overview.html
https://github.com/sociocom/PICO-Corpus
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pre-defined named entity recognition (NER) tags. As 
deep learning models have gained a lot of attention in 
NLP tasks, we adopt Bidirectional Encoder Representa-
tions from Transformers (BERT)-based models for this 
task. BERT has achieved state-of-the-art performance 
in various NLP tasks including NER and has also proven 
to be effective for small datasets [11]. BERT is a lan-
guage model pre-trained on huge amounts of unlabelled 
data and can be fine-tuned to specific tasks. It uses the 
encoder structure of the transformer, which is an atten-
tion mechanism that learns contextual relations between 
words (or subwords) in a text.

We chose three pre-trained transformer-based models, 
i.e., BioBERT [12], BlueBERT [13], and Longformer [14]. 
BioBERT is pre-trained on different combinations of gen-
eral and biomedical domain corpora. It is initialized with 
BERT [11] and further pre-trained on biomedical domain 
texts (PubMed abstracts and PubMed Central full-text 
articles). BlueBERT is also initialized with BERT and fur-
ther pre-trained on PubMed abstracts and clinical notes 
from MIMIC-III [15]. Longformer is initialized with the 
RoBERTa model [16] and further pre-trained with books, 
wikipedia, realnews, and stories.

Traditional transformer-based language models such as 
BioBERT and BlueBERT cannot attend to long sequences 
and are limited to a maximum of 512 tokens at a time. 
This is due to the self-attention operation which grows 
quadratically with sequence length. Modified trans-
former models, such as Longformer, have been created to 
overcome this problem. In Longformer model, the self-
attention pattern scales linearly with sequence length 
enabling it to process longer documents. It can attend 
to long sequences of up to 4096 tokens, which is 8 times 
longer than BERT.

PICO elements normalization
Meta-analysis involves combining similar studies to 
assess the effectiveness of the intervention (treatment). 
To automatically group similar studies together and com-
pare them within a meta-study, it is necessary to nor-
malize the extracted PICO elements. We focus on the 
normalization of the intervention, control, and outcome 
elements. Our corpus consists of RCTs related to breast 
cancer, hence all participants are breast cancer patients.

We utilize the UMLS Metathesaurus for the nor-
malization of intervention and control elements. UMLS 
comprehensively covers most of the interventions and 
control, especially medications, and hence we did not 
need to create a normalization dictionary manually. We 
use MetaMap [17], which is a state-of-the-art NLP tool 
that maps biomedical text to concepts in the UMLS 
Metathesaurus. For each text, MetaMap splits the text 

into phrases and identifies possible mappings for each 
phrase based on lexical look-up and variants.

A dictionary-based approach was employed for out-
come normalization. We extracted all the outcomes 
from the corpus and manually created a dictionary of the 
outcomes and their normalizations. For example, pain, 
breast pain, less pain, and mild pain are all normalized 
to pain. After creating the dictionary in this manner, we 
use dictionary string matching techniques to match out-
comes and their normalized versions.

The task of matching an outcome with its normaliza-
tion is defined as; given a predefined set of normalized 
outcomes N, and an input string o (outcome), find nor-
malized outcome n ∈ N  that is most similar to o. For this 
task, we utilize a technique that combines Term-Fre-
quency Inverse Document Frequency (TF-IDF), n-grams, 
and cosine similarity. TF-IDF creates features from text 
by multiplying the frequency of a term in a document 
(term frequency) by the importance (inverse document 
frequency) of the term in the entire corpus. In TF-IDF, 

Table 1  Corpus statistics

Category Sub-category # tags

Participants Total-participants 1094

Intervention-participants 887

Control-participants 784

Age 231

Eligibility 925

Ethnicity 101

Condition 327

Location 186

Intervention Intervention 1067

Control Control 979

Outcomes Outcome 5053

Outcome-measure 1081

Intervention events

bin-abs-iv 556

bin-percent-iv 1376

cont-mean-iv 366

cont-median-iv 270

cont-sd-iv 129

cont-q1-iv 4

cont-q3-iv 4

Control events

bin-abs-cv 465

bin-percent-cv 1148

cont-mean-cv 327

cont-median-cv 247

cont-sd-cv 124

cont-q1-cv 4

cont-q3-cv 4
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usually the term is a word, but depending on the corpus, 
n-grams have been shown to achieve high performance. 
For each outcome, we represent the outcome as a vector 
using TF-IDF and calculate the cosine similarity between 
the outcome vector and the normalized outcomes vec-
tors and select the normalized outcome with the highest 
cosine similarity score.

Even though BERT-based models are currently widely 
used for NLP tasks we utilized a traditional string match-
ing approach for outcome normalization. The current 
corpus contains many different outcomes which vary 
greatly with some occurring frequently and others occur-
ring less frequently. Although the BERT models achieve 
high performance for the outcomes with high frequency, 
they fail for the outcomes with less frequency. Therefore, 

we adopted the approach of TF-IDF with cosine similar-
ity, which achieves relatively good performance for both 
high-frequency and low-frequency outcomes.

Outcome event matching and creating structured data
Once PICO elements are extracted and normalized, stud-
ies with the same intervention and outcome are pooled 
together so as to compute the overall effect of the inter-
vention. Before calculating the overall effect of the inter-
vention, each study’s treatment effect is determined first. 
The effect is usually calculated using summary statistics 
such as risk ratio, odds ratio, or risk difference. In this 
study, the extracted and normalized PICO elements are 
converted into a structured format as shown in Fig. 2. To 

Fig. 2  A sample abstract with PICO elements highlighted. The top part shows the abstract while the bottom part shows the PICO elements 
transformed into a structured format
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compute the summary statistics, for each outcome four 
values are required, i.e., Ee, Ne, Ec, and Nc. Ee is the num-
ber of participants in the intervention group that demon-
strated effect of the treatment (intervention events), Ne 
is the total number of participants in the intervention 
group, Ec is the number of participants in the control 
group that demonstrated effect of the treatment (control 
events), and Nc is the total number of participants in the 
control group. The summary statistics (risk ratio, odds 
ratio, and risk difference) used in this study are intended 
for binary outcomes. Ee and Ec are absolute values that 
correspond to bin-abs-iv and bin-abs-cv respectively 
(Table 1). Ee and Ec can also be calculated from bin-per-
cent-iv and bin-percent-cv as explained in an example 
further down.

Extraction of the number of participants having cer-
tain outcomes is challenging because of lack of uniform-
ity in reporting of results in different articles. We use a 
rule-based approach for this task and assume that an 
outcome and its events are reported within the same sen-
tence. If only one outcome is present in a sentence, we 
assume that the intervention and control events reported 
in that sentence belong to that outcome. If two or more 
outcomes are present in a sentence, the first occurrence 
of intervention events and control events are assigned 
to the first outcome, the second occurrence of interven-
tion and control events are assigned to the second out-
come, and so on. For example, “Overall survival (100% 
treated, 90.6% controls at 5 years) and disease-free sur-
vival (96.2% treated, 86.8% controls at 5 years) were not 
significantly different in the 2 groups”, we extract (out-
come: overall survival, intervention events: 100%, con-
trol events: 90.6%) and (outcome: disease-free survival, 
intervention events: 96.2%, control events: 86.8%). In this 
example, only percentage values are reported and hence 
we require knowledge of the number of participants in 
the intervention and control groups to calculate the abso-
lute values (Ee and Ec). In some studies, the number of 
participants in the intervention and control groups (Ne 
and Nc) are reported in a different sentence within the 
abstract (as shown in the sample abstract in Fig. 2) while 
in other studies they are not reported at all. In the rule-
based approach, if the number of participants are not 
mentioned in the outcome sentence, we check if they are 
mentioned in the other sentences. Moreover, in some 
studies words instead of numbers are used, for instance, 
“Sixty-three percent achieved a complete response ...”, and 
hence we need to convert the words to numbers. Once 
the abstracts have been processed in this manner, we get 
structured data as shown in the bottom part of Fig. 2.

Meta‑analysis results visualization system
We developed a web-based visualization system4 for vis-
ualizing meta-analysis results. The system was developed 
using Python and R. R is a powerful and flexible tool that 
is commonly used when conducting meta-analyses. The 
calculations of summary statistics were implemented 
using meta [18], which is an R package commonly used 
when conducting standard meta-analysis. The results are 
visualized using forest plots which provide a summary 
and the extent to which results from different studies 
overlap. In the forest plot, the effect size of each study is 
shown and the average effect is shown at the bottom of 
the plot. Also, in the forest plot, each study is represented 
by a square whose area represents the weight of the study 
in the meta-analysis and horizontal line (95% confidence 
interval).

When using the visualization system, shown in Fig. 3, 
a user first uploads a csv file. The file must contain col-
umns for study_name, intervention, control, outcome, 
Ee, Ne, Ec, and Nc as shown in the bottom part of Fig. 2. 
After uploading the file, the user then selects a sum-
mary measure and a method for pooling the studies. 
The available summary measures include risk ratio, odds 
ratio, and risk difference which are commonly used for 
binary outcomes. The available pooling methods include 
inverse variance (Inverse), Mantel-Haenszel (MH), Peto, 
generalised linear mixed model (GLMM), and sample 
size method (SSW). For risk ratio and risk difference, 
only the Inverse or MH pooling methods are used. For 
odds ratio, inverse, MH, Peto, GLMM, or SSW pool-
ing methods are used. In addition, the user selects the 
interventions and outcomes for which they would like 
the results to be visualized. The system groups together 
similar studies depending on the selected intervention(s) 
and outcome(s), computes the summary statistics, 
and returns forest plots. Each forest plot is a summary 
of studies with the same intervention and the same 
outcome.

Results and discussion
Experimental settings
Our corpus consists of 1011 PubMed abstracts anno-
tated with PICO elements. The frequency of the ele-
ments is shown in Table  1. The dataset was split into 
80% training set and 20% test set. We developed BERT-
based models for data extraction (NER) and compared 
the performance of general-purpose (Longformer) and 
biomedical domain (BioBERT, BlueBERT) BERT mod-
els. The BioBERT and BlueBERT models cannot attend 
to sequences longer than 512 tokens (as discussed in the 

4  https://​aoi.​naist.​jp/​autom​etavi​suali​zation/.

https://aoi.naist.jp/autometavisualization/


Page 7 of 13Mutinda et al. BMC Medical Informatics and Decision Making          (2022) 22:158 	

“PICO elements extraction” section). BERT uses Word-
Piece tokenization and a word can be broken down into 
more than one sub-words. In the corpus, some abstracts 
were found to have more than 512 tokens. The default 
strategy for the BioBERT and BlueBERT models is to 
truncate long sequences and ignore the tokens after the 
maximum number is reached. Since truncation leads to 
loss of information, we split sequences longer than the 

maximum length into multiple chunks so as to preserve 
all the information. The split was done in a sentence-
wise manner, i.e., if the number of tokens in an abstract 
is more than 512, we split the abstract into individual 
sentences, then split the sentences into two halves to cre-
ate two almost equal chunks. If the number of tokens 
is greater than 1024, the abstracts are split into three 
chunks and so on.

Fig. 3  Visualization system interface
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In the experiments, we followed the standard pre-
trained BERT models for sequence classification. The 
pre-trained models were fine-tuned on our corpus. The 
fine-tuning was done by setting the maximum sequence 
length to 512 tokens for the BioBERT and BlueBERT 
models and 4096 tokens for the Longformer model. The 
number of epochs was set to 10, batch size was set to 2, 
and the learning rate was set to 2e-5 for the BioBERT 
model and 5e-5 for BlueBERT and Longformer models.

Data extraction results
The performance of the NER model was evaluated using 
Precision, Recall, and F1 score in the test set and the 
results are shown in Table  2. BioBERT_split and Blue-
BERT_split are the model results where sequences longer 
than 512 tokens were split into multiple chunks. The 
Longformer model did not require splitting of abstracts 
because the maximum sequence length for Longformer 
is 4096 tokens and there were no abstracts with tokens 
exceeding the maximum number.

The performance was relatively high with sub-cate-
gories such as total-participants and outcome-meas-
ure achieving F1-scores greater than 0.90. Most of the 
other sub-categories achieved F1-scores greater than 
0.80. F1-score was zero for the entities with lowest fre-
quency such as cont-q1-iv, cont-q1-cv, cont-q3-iv, and 
cont-q3-cv. In overall, BioBERT and Longformer mod-
els achieved the highest performance in almost all of the 
entities.

The Longformer model, which is a general purpose 
model, performed well compared to the biomedical 
domain BERT models (BioBERT and BlueBERT). One 
likely explanation is that the biomedical domain BERT 
models have a maximum sequence length of 512 tokens 
and longer sequences are truncated resulting in loss 
of important contextual information. The Longformer 
model has a maximum sequence length of 4096 tokens 
and could therefore build contextual representation of 
the entire context.

The splitting of long sequences was expected to 
increase model performance, however, there was no 
change in the model performance. This could be attrib-
uted to loss of useful contexts caused by splitting. How-
ever, in this study it is necessary to extract information 
from the entire abstract. The default strategy for BERT 
models is to truncate long texts hence leading to loss 
of important information. The purpose of splitting the 
abstracts into multiple chunks was to enable extraction of 
information from the entire abstracts. Even though split-
ting the abstracts did not improve the performance, we 
were able to avoid loss of information due to truncation.

Even though automatic extraction of PICO elements 
from abstracts has been studied widely, only a few studies 

have attempted extraction of numeric texts that identify 
the number of patients experiencing specific outcomes. 
We developed a rule-based approach (discussed in “Out-
come event matching and creating structured data” 
section) to parse numeric texts to identify the patients 
having certain outcomes. The rule-based approach was 
able to extract outcomes and their events from 77% 
of the outcome sentences in the gold test set. The rule-
based approach however cannot extract outcomes and 
their events in cases where the outcomes and events are 
reported in different sentences or in studies other than 
double-arm studies (one intervention group and one con-
trol group).

System evaluation
To evaluate the performance of the proposed system, we 
selected a published meta-analysis and used our system 
to reproduce the results. The selected meta-analysis was 
conducted by Feng et al. [19] and examines the effect of 
platinum-based neoadjuvant chemotherapy on resectable 
triple-negative breast cancer patients. The meta-analysis 
consists of nine studies, Alba et al. [20], Ando et al. [21], 
Gluz et  al. [22], Loibl et  al. [23], Sikov et  al. [24], Tung 
et al. [25], Minckwitz et al. [26], Wu et al. [27], and Zhang 
et al. [28].

The results are shown in Table 3. The NER model suc-
cessfully extracted data from the abstracts of the nine 
studies. There was a NER model prediction error in one 
study as shown in bold underlined text in Table 3. For the 
study Gluz et al. [22] and pathological complete response 
outcome, the model misclassified Ne as Nc and vice-
versa. In this study, the Ee and Ec values were reported 
as percentage values. The absolute values of Ee and Ec 
were therefore calculated based on the Ne and Nc values 
(as discussed in “Outcome event matching and creating 
structured data” section). Since the system extracted Ne 
and Nc values were incorrect, the calculated Ee and Ec 
values were also incorrect.

Although the NER model had high accuracy, there 
were other factors that prevented the full reproduction 
of the meta-analysis. The italic and underlined texts rep-
resent studies where extra post-processing steps were 
required. For instance, for the studies Loibl et al. [23] and 
Sikov et al. [24], and pathological complete response, the 
studies have multiple intervention and control groups. 
The Gluz et  al. [22] and Minckwitz et  al. [26] studies, 
for the pathological complete response outcome, the 
abstracts report results for different sub-groups. The 
current system considers only double-arm studies (stud-
ies with one intervention group and one control group) 
and does not perform subgroup analysis, and these will 
be one of our important future works. Moreover, in some 
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Table 2  NER models results

(a) BioBERT model results

BioBERT BioBERT_split

Sub-category Precision Recall F1 Precision Recall F1

Total-participants 0.95 0.95 0.95 0.94 0.94 0.94

Intervention-
participants

0.80 0.91 0.85 0.78 0.93 0.85

Control-partici-
pants

0.87 0.91 0.89 0.85 0.91 0.88

Age 0.66 0.97 0.79 0.66 0.96 0.78

Eligibility 0.75 0.77 0.76 0.77 0.74 0.76

Ethnicity 0.82 0.89 0.86 0.82 0.96 0.88
Condition 0.86 0.81 0.84 0.84 0.75 0.79

Location 0.75 0.85 0.80 0.73 0.81 0.77

Intervention 0.85 0.82 0.84 0.85 0.82 0.84

Control 0.78 0.80 0.79 0.77 0.76 0.77

Outcome 0.82 0.81 0.81 0.84 0.80 0.82

Outcome-
measure

0.79 0.90 0.84 0.81 0.88 0.84

bin-abs-iv 0.75 0.78 0.77 0.81 0.78 0.79

bin-abs-cv 0.79 0.87 0.83 0.77 0.80 0.79

bin-percent-iv 0.87 0.88 0.87 0.83 0.86 0.84

bin-percent-cv 0.88 0.90 0.89 0.87 0.82 0.84

cont-mean-iv 0.78 0.90 0.83 0.80 0.86 0.83

cont-mean-cv 0.86 0.86 0.86 0.81 0.84 0.83

cont-median-iv 0.70 0.80 0.75 0.70 0.86 0.78
cont-median-cv 0.76 0.81 0.78 0.83 0.74 0.78
cont-sd-iv 0.68 0.93 0.79 0.80 0.85 0.82

cont-sd-cv 0.76 0.84 0.80 0.72 0.85 0.78

cont-q1-iv 0.00 0.00 0.00 0.00 0.00 0.00

cont-q1-cv 0.00 0.00 0.00 0.00 0.00 0.00

cont-q3-iv 0.00 0.00 0.00 0.00 0.00 0.00

cont-q3-cv 0.00 0.00 0.00 0.00 0.00 0.00

(b) BlueBERT model results

BlueBERT BlueBERT_split

Sub-category Precision Recall F1 Precision Recall F1

Total-participants 0.94 0.91 0.92 0.95 0.92 0.94

Intervention-
participants

0.72 0.90 0.80 0.73 0.91 0.81

Control-partici-
pants

0.81 0.85 0.83 0.79 0.89 0.84

Age 0.67 0.97 0.79 0.66 0.97 0.79

Eligibility 0.73 0.74 0.73 0.73 0.70 0.72

Ethnicity 0.90 0.72 0.80 0.91 0.78 0.84

Condition 0.90 0.70 0.79 0.82 0.77 0.79

Location 0.77 0.67 0.71 0.76 0.76 0.76

Intervention 0.80 0.81 0.81 0.84 0.83 0.83

Control 0.72 0.68 0.70 0.78 0.71 0.74

Outcome 0.81 0.79 0.80 0.81 0.80 0.80

Outcome-
measure

0.73 0.84 0.78 0.76 0.86 0.81
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Table 2  (continued)

(b) BlueBERT model results

BlueBERT BlueBERT_split

Sub-category Precision Recall F1 Precision Recall F1

bin-abs-iv 0.77 0.75 0.76 0.67 0.76 0.71

bin-abs-cv 0.75 0.79 0.77 0.72 0.84 0.78

bin-percent-iv 0.74 0.85 0.79 0.79 0.81 0.80

bin-percent-cv 0.83 0.73 0.78 0.82 0.79 0.80

cont-mean-iv 0.72 0.74 0.73 0.61 0.81 0.69

cont-mean-cv 0.77 0.74 0.75 0.73 0.76 0.74

cont-median-iv 0.65 0.78 0.71 0.67 0.62 0.64

cont-median-cv 0.80 0.66 0.72 0.75 0.66 0.70

cont-sd-iv 0.62 0.68 0.65 0.59 0.60 0.59

cont-sd-cv 0.67 0.68 0.67 0.56 0.70 0.63

cont-q1-iv 0.00 0.00 0.00 0.00 0.00 0.00

cont-q1-cv 0.00 0.00 0.00 0.00 0.00 0.00

cont-q3-iv 0.00 0.00 0.00 0.00 0.00 0.00

cont-q3-cv 0.00 0.00 0.00 0.00 0.00 0.00

(c) Longformer model results

Sub-category Precision Recall F1

Total-participants 0.96 0.94 0.95
Intervention-partic-
ipants

0.79 0.92 0.85

Control-partici-
pants

0.89 0.89 0.89

Age 0.78 0.98 0.87
Eligibility 0.89 0.86 0.88
Ethnicity 0.75 0.83 0.78

Condition 0.83 0.79 0.81

Location 0.91 0.79 0.85
Intervention 0.86 0.85 0.86
Control 0.81 0.86 0.83
Outcome 0.85 0.86 0.86
Outcome-measure 0.85 0.95 0.90
bin-abs-iv 0.83 0.83 0.83
bin-abs-cv 0.84 0.85 0.84
bin-percent-iv 0.85 0.90 0.88
bin-percent-cv 0.88 0.85 0.87

cont-mean-iv 0.85 0.87 0.86
cont-mean-cv 0.78 0.91 0.84

cont-median-iv 0.65 0.76 0.70

cont-median-cv 0.75 0.76 0.75

cont-sd-iv 0.83 0.86 0.85
cont-sd-cv 0.77 0.92 0.84
cont-q1-iv 0.00 0.00 0.00

cont-q1-cv 0.00 0.00 0.00

cont-q3-iv 0.00 0.00 0.00

cont-q3-cv 0.00 0.00 0.00

Bold texts represent the best score for each sub-category
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studies, the total number of participants in the interven-
tion and control groups (Ne and Nc) were not reported 
in the abstracts. The studies where the numbers were 
not reported are indicated as NA in Table 3. In the Sikov 
et al. [24] and Tung et al. [25] studies, we were not able to 
calculate the absolute values for Ee and Ec because their 
calculation depends on the Ne and Nc values which were 
not reported in the abstracts.

Error analysis
We performed an error analysis and identified miclassi-
fied entities and boundary detection as the major types 
of errors.

•	 Misclassified entities: the model detected the correct 
boundaries for entities but assigned them the wrong 
classes. For example, the model sometimes misclas-
sified bin-abs-iv as bin-abs-cv and vice versa (as dis-
cussed in the “System evaluation” section).

•	 Boundary detection: this is where the model identi-
fies shorter or longer entities than those marked in 
the gold set. The boundary detection error was com-
mon in the outcome and eligibility entities. Human 
annotation could contribute to this error, because 
sometimes it is difficult to decide the start and end 
spans of some entities.

Limitations and future work
Our study has several limitations. This study uses 
abstracts only and as seen in the “System evaluation” 

section, abstracts sometimes lack information that is 
present in the full-text document. For instance, a man-
ual check of our corpus found that a significant number 
of abstracts do not mention the number of participants 
in the intervention and control groups. This presents 
a challenge when determining the number of patients 
having certain outcomes for statistical analysis. We also 
do not account for participants who drop out of a study 
and this might affect the final results. For future work, 
it is important to consider extracting information from 
full-text articles.

We proposed a rule-based system for matching out-
comes and their events (discussed in “Outcome event 
matching and creating structured data” section). The 
rule-based approach considers only double-arm stud-
ies, i.e., studies with one intervention group and one 
control group. Single-arm studies and studies with 
more than multiple intervention or control groups 
are ignored. In future, it is necessary to explore other 
approaches such as relation extraction.

In the statistical analysis step, we consider only binary 
outcomes. The summary statistics (odds ratio, risk ratio, 
and risk difference) used in our results visualization system 
are only focused on binary outcomes. Incorporating con-
tinuous outcomes and their summary statistics is impor-
tant future work. Moreover, some meta-analyses perform 
subgroup analysis where they compare the results of dif-
ferent subgroups of participants either by age or cancer 
type. Annotation and incorporation of such information 
is also necessary in future. Finally, we assessed the perfor-
mance of the proposed system by replicating the results 
of an existing meta-study. To substantiate the usefulness 

Table 3  Results of selected meta-analysis

Ee is the number of events in the intervention group, Ne is the number of participants in the control group, Ec is the number of events in the control group, and Nc 
is the number of participants in the control group. NA indicates where the information was not available in the abstract. Boldunderlinedtexts are NER model 
prediction errors while italic underlined texts are values where extra pre-processing was required

Study Outcome Gold values System extracted values

Ee Ne Ec Nc Ee Ne Ec Nc

Alba et al. [20] Pathological complete response 14 47 16 46 14 48 16 46

Ando et al. [21] 23 37 10 38 23 37 10 38

Gluz et al. [22] 70 154 52 182 44, 30 182 84, 81 154

Loibl et al. [23] 92 160 49 158 92, 168 160 49 158

Sikov et al. [24] 60 110 43 105 60%, 59%, 54% NA 44%, 48%, 41% NA

Tung et al. [25] 9 40 10 36 18% NA 26% NA

Minckwitz et al. [26] 90 158 67 157 129, 84, 45 137, 158 108, 58, 50 136, 157

Wu et al. [27] 24 62 8 63 24 62 8 63

Zhang et al. [28] 18 47 6 44 18 47 6 44

Alba et al. [20] Objective response rate 36 47 32 46 37 48 32 46

Wu et al. [27] 58 62 46 63 58 62 46 63

Zhang et al. [28] 42 47 34 44 42 47 34 44
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of the system, it is important to test it on larger and more 
complex meta-studies.

Conclusion
In this paper, we proposed a system for automating data 
extraction to support meta-analysis statistical analy-
sis. Our objective is to provide a system that automates 
data extraction and statistical analysis, to shorten the 
time it takes to carry out a meta-analysis and allow for 
automatic updates when new results becomes avail-
able. The proposed system extracts PICO elements from 
research abstracts, parses numeric outcomes to extract 
the number of patients experiencing certain outcomes, 
transforms the extracted information into a structured 
format, performs statistical analysis, and visualizes the 
results in forest plots. We evaluated the performance of 
the system by attempting to reproduce the results of an 
existing meta-analysis. The system extracted PICO ele-
ments from the studies with high accuracy. The statistical 
analysis step did not perform well owing to lack of some 
information in the abstracts and lack of uniformity in the 
research abstracts were some abstracts required extra 
pre-processing. These results however show that there 
is potential to automate these tasks and wish to motivate 
more research towards fully automating the entire meta-
analysis process.
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