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Abstract 

Background:  Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, is 
significantly underdiagnosed in the general population. Diagnosing FXS is challenging due to the heterogeneity of 
the condition, subtle physical characteristics at the time of birth and similarity of phenotypes to other conditions. The 
medical complexity of FXS underscores an urgent need to develop more efficient and effective screening methods 
to identify individuals with FXS. In this study, we evaluate the effectiveness of using artificial intelligence (AI) and elec-
tronic health records (EHRs) to accelerate FXS diagnosis.

Methods:  The EHRs of 2.1 million patients served by the University of Wisconsin Health System (UW Health) were the 
main data source for this retrospective study. UW Health includes patients from south central Wisconsin, with approxi-
mately 33 years (1988–2021) of digitized health data. We identified all participants who received a code for FXS in the 
form of International Classification of Diseases (ICD), Ninth or Tenth Revision (ICD9 = 759.83, ICD10 = Q99.2). Only indi-
viduals who received the FXS code on at least two occasions (“Rule of 2”) were classified as clinically diagnosed cases. 
To ensure the availability of sufficient data prior to clinical diagnosis to test the model, only individuals who were 
diagnosed after age 10 were included in the analysis. A supervised random forest classifier was used to create an AI-
assisted pre-screening tool to identify cases with FXS, 5 years earlier than the time of clinical diagnosis based on their 
medical records. The area under receiver operating characteristic curve (AUROC) was reported. The AUROC shows the 
level of success in identification of cases and controls (AUROC = 1 represents perfect classification).

Results:  52 individuals were identified as target cases and matched with 5200 controls. AI-assisted pre-screening 
tool successfully identified cases with FXS, 5 years earlier than the time of clinical diagnosis with an AUROC of 0.717. A 
separate model trained and tested on UW Health cases achieved the AUROC of 0.798.

Conclusions:  This result shows the potential utility of our tool in accelerating FXS diagnosis in real clinical settings. 
Earlier diagnosis can lead to more timely intervention and access to services with the goal of improving patients’ 
health outcomes.
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Background
In recent years the application of AI in medicine has 
shown tremendous success [1]. Application of compu-
tational models within clinical practice guidelines can 
reduce the time required for diagnosis, decrease the 
cost of screening, and eliminate many factors slowing 
the diagnostic process [2–4]. AI research in the devel-
opment of diagnostic tools has shown high levels of 
success for different conditions including cancer [5, 6], 
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cardiovascular diseases [7], glaucoma [8], allergy [9], and 
others [10]. Some studies showed that it can improve care 
beyond current limits of clinical practice [11] by predict-
ing future events that are usually not identified by physi-
cians until after they happen.

Despite significant success in research, the application 
of AI in health care has remained mostly at the design 
and development stage [12]. Concerns about account-
ability, patients’ privacy, risk of bias, EHR infrastruc-
ture readiness, and regulatory barriers are among the 
main reasons for slow adoption of AI in clinics. Clinical 
workflows, user needs, trust, safety, and ethical implica-
tions must be considered in the design, development, 
and deployment of AI-assisted medicine [12]. The initial 
design of many AI systems is often limited to one patient 
population specific to one location and context [12]. To 
determine broader clinical utility, effectiveness and gen-
eralizability, it is necessary to evaluate and validate the 
algorithm on real-world independent data [13, 14]. Here 
we discuss the possibility of using AI for the identifica-
tion of individuals with FXS, an underdiagnosed genetic 
condition [15] with substantial lifelong impact on health 
and well-being of patients and their families [16].

We have generated quantitative evidence of success-
ful implementation of a pre-screening approach in two 
health care systems (the Marshfield Clinic and the Uni-
versity of Wisconsin Health System). In this paper, by way 
of background, first we discuss the importance of early 
diagnosis of FXS and its potential impact on patients’ 
outcome. Second, we focus on current diagnostic prac-
tices and the gap between implementation of professional 
recommendations and actual clinical practice. Next, we 
describe our AI-assisted pre-screening tool, developed 
using the EHRs of the Marshfield Clinic Health System 
[16]. Finally, we perform external validation by test-
ing our AI model on the EHRs of a second independent 
patient population, UW Health, a health care system that 
includes longitudinal EHRs of more than 2 million peo-
ple. UW Health does not significantly overlap in patient 
population or geography with the Marshfield Clinic.

Importance of early diagnosis of FXS
FXS is the most prevalent inherited cause of intellectual 
disability and autism. The reported prevalence of FXS 
varies by race/ethnicity and geographical location [17] 
and is estimated to be as high as 87,000 in the United 
States and 1,400,000 worldwide [17–19]. FXS is not cura-
ble, and no approved pharmacological treatment is avail-
able for this syndrome, although many treatments are 
currently in the development phase. It is associated with 
a wide range of symptoms and co-occurring medical con-
ditions, with variable expressivity and penetrance [16], 
including social anxiety [20], intellectual and learning 

disability [21], behavioral problems [22], attention-def-
icit/hyperactivity disorder [23], sleep difficulties [24], 
language deficits [25], motor problems [26], sensory inte-
gration challenges [27], seizures [26, 28], heart valve dis-
orders [16, 19], endocrine and metabolic problems [16, 
19], digestive issues and genitourinary disorders [16, 19]. 
Early behavioral intervention is beneficial in improve-
ment of patients’ functional outcome [29–31].

This inherited genetic condition impacts multiple 
members and generations of a family. Family members 
might have the “premutation” of the gene which increases 
their risk for a wide range of medical conditions as well as 
having children with FXS. A study of families of children 
with FXS showed that 25 percent of these families had 
a second child with FXS before the first child received a 
clinical diagnosis [32, 33]. Premutation carriers are often 
diagnosed as the result of cascade testing after a family 
member is diagnosed with FXS. Therefore, the under-
diagnosis or late diagnosis of FXS could also impact 
multiple generations in the family. In recent years, FXS 
clinics have been helpful in providing specialized medi-
cal services and genetic counseling to patients and their 
families. However, these clinics are not accessible to most 
potential patients. The prevalence of the syndrome and 
its significant impact on the health of patients and family 
members make diagnosis of FXS a public health priority 
[16, 18, 19, 26–35].

Current state of diagnostic practice
Diagnosing FXS is challenging due to the clinical hetero-
geneity of the syndrome. It has no evident physical phe-
notype at birth and the phenotypic characteristics vary 
among patients [16, 19]. Additionally, the X-linked nature 
of FXS results in variation in clinical phenotypes between 
the sexes, with females often experiencing milder symp-
toms than males due to X-inactivation. Furthermore, the 
similarity of phenotypes with other conditions leads to 
misdiagnosis, causing additional challenges and delay in 
referral for genetic diagnosis.

Current approaches in identifying individuals with FXS 
are not efficient and guidelines for diagnosis are often 
not implemented. The American Academy of Pediatrics, 
the American College of Medical Genetics and Genom-
ics, the American Academy of Neurology, and the Child 
Neurology Society provide clear guidelines recommend-
ing that any individual with developmental delay, intel-
lectual disability, and autism of unknown cause, or other 
conditions suggestive of FXS should be tested [36–39]. 
However, a recent study of individuals with a confirmed 
diagnosis of autism showed that only 13.2% of partici-
pants were tested for FXS, highlighting a significant dis-
crepancy between professional recommendations and 
clinical practice [40].
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Offering cascade testing to family members of a diag-
nosed person is instrumental in identifying cases within 
the family, especially in individuals with milder symp-
toms [41]. However, this approach is also imperfect as it 
relies on the diagnosis of an affected person, disclosure 
of information within the family and understanding of 
genetic risk associated with the condition [42].

Another diagnostic strategy is screening for the sub-
set of women who could pass FXS to their offspring (i.e., 
screening women with a premutation) [36]. The Ameri-
can College of Obstetricians and Gynecologists and the 
American College of Medical Genetics and Genomics 
recommend screening for women with a family history 
of fragile X-related disorders who are considering preg-
nancy or currently pregnant [36, 43]. However, many 
individuals with the premutation are not aware of a fam-
ily history of the condition, as it is often undiagnosed or 
sometimes not disclosed within the family. Therefore, 
this approach is not effective in identifying most women 
at risk of having children with FXS.

A recent study performed by our team showed that 
a significant gap exists between the current estimated 
prevalence of the condition and the number of individu-
als actually diagnosed with FXS. Our study showed that 
at least 70 percent of cases do not receive referral for 
genetic testing and thus are not getting the proper diag-
nosis [15]. That study provided quantitative evidence of 
the urgent need to improve current approaches. There 
is an unmet need to develop new pre-screening practices 
that encompass the complexity of FXS and can detect 
potential cases without relying on information about 
family history or genetic testing.

Initial development of an AI‑assisted pre‑screening model
Our team developed an AI-assisted pre-screening model 
which is able to identify FXS cases 5  years prior to the 
time of clinical diagnosis based only on patients’ prior 
medical history. The model was created using de-identi-
fied longitudinal EHRs collected from patients served by 
the Marshfield Clinic Health System [16]. The patients 
included in the EHR data were representative of the 
general population of patients living in northern, cen-
tral, and western Wisconsin. Most of these patients live 
in rural areas and their overall socioeconomic status is 
lower than the national average [44]. The EHRs included 
an average of approximately 40  years (1979–2018) of 
medical data per participants. The goal was to “predict” a 
diagnosis of FXS 5 years before the clinical diagnosis was 
entered into the medical record using only other diagnos-
tic codes that were previously entered into the EHRs. To 
minimize possible noise, other errors, and missing data 
in EHRs, the analysis was restricted to diagnostic codes 
that appeared at least twice for a given participant (Rule 

of 2), and that were observed in at least 5 individuals. 
These criteria ensured the presence of sufficient evidence 
of positive diagnosis and reduced the chance of misinter-
preting rule-out tests [45]. Therefore, a comprehensive 
high-quality dataset was used for the construction of this 
model.

To develop the pre-screening tool, all individuals in the 
Marshfield Clinic EHRs clinically diagnosed with FXS (55 
patients; 11 females and 44 males) were identified and 
5500 sex-age matched controls (1:100 ratio) representa-
tive of the general population were randomly selected. A 
subset of cases who were diagnosed after age 10 and their 
matched controls were selected for the prediction analy-
sis. This criterion was applied to ensure the availability 
of sufficient data prior to the diagnosis of FXS. A super-
vised machine learning approach called random forest 
[16, 46, 47] was employed to construct the model. Ran-
dom forest is a non-linear classifier that is able to detect 
important multivariate interactions in the data and can 
find combinations of diagnostic codes that differentiate 
cases form controls [46]. To measure the success of clas-
sification, AUROC is reported [48]. The receiver operat-
ing characteristic (ROC) curve represents how well the 
model was able to correctly identify FXS cases and con-
trols. ROC curve plots the false-positive rate versus the 
true-positive rate for every possible decision rule cutoff 
(threshold) between 0 and 1. An AUROC of 1.00 shows 
100% success in classification meaning that classifier was 
able to successfully assign all of the cases to the correct 
class. An AUROC of 0.5 represents random classifica-
tion. The resulting predictive model was able to identify 
FXS patients with an AUROC of 0.798 without relying on 
any genetic or familial data. Our next step, reported here 
for the first time, was to evaluate the performance of this 
model in a new unseen dataset, i.e., an external validation 
study.

Methods
Study population
For this external validation study, de-identified EHRs 
from 2,084,289 patients (1,018,259 males, 1,063,894 
females, 2136 unknown) served by UW Health were 
mined. Although both the Marshfield Clinic and UW 
Health provide primary, secondary, and tertiary care 
with specialists in pediatrics, genetics, and neurology to 
patients residing in the State of Wisconsin, the two health 
care systems differ in many ways. They work indepen-
dently and do not overlap geographically. UW Health 
has more than 80 locations and serves patients from 
south central Wisconsin, with an average of 33  years 
(1988–2021) of patient health data. It is a university sys-
tem with the overall socioeconomic status of the patient 
population higher than national average [49]. Whereas 
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the Marshfield Clinic uses a locally developed propri-
etary electronic medical records system, UW Health uses 
a medical records system developed and maintained by 
Epic. These differences enable us to evaluate the pre-
screening model beyond system-specific diagnostic 
practices.

For the present analysis of UW Health EHRs, to elimi-
nate the possibility of any selection bias, we identified all 
individuals who received the FXS code (ICD10 = Q99.2 
or ICD9 = 759.83) on at least two occasions [16]. Cases 
were solely identified based on their medical records. We 
did not recruit patients for further genetic testing. All 
individuals without a diagnosis of FXS were considered 
as potential controls. As in the initial study, a subsample 
of UW Health participants who matched cases on age 
and sex with a ratio of 1 to 100 was randomly selected as 
the control group.

Evaluation of the performance of the pre‑screening tool: 
external validation
As in the initial development of the pre-screening tool in 
the Marshfield population, we again restricted the input 
variables to ICD codes that appeared at least twice for 
a given participant, and that were observed in at least 5 
individuals. Only FXS cases diagnosed after age 10 (and 
matching controls) were included in the analysis. To 
evaluate the generalizability of the classifier across the 
two health care systems, we used the model trained on 
the Marshfield sample to identify FXS cases in the UW 
Health population. The AUROC was again used as the 
measure of the classifier’s success when applied to the 
UW Health data, and the Mann–Whitney–Wilcoxon test 
(Mann–Whitney U test) was used to measure whether 
the classifier performed significantly better than random 
(AUROC of random classification would equal to 0.5). 
We also created an independent model trained and tested 
on the UW-Heath sample and reported the performance 
of the ten-fold cross validated model. Furthermore, we 
created a timeline representing the order and median age 
of being diagnosed with key known conditions associ-
ated with FXS including speech and language disorders, 
developmental delay, attention deficit hyperactivity dis-
order, and intellectual disability.

Results
External validation on UW health population
87 participants (60 males and 27 females) were identified 
as having a clinical diagnosis of FXS (i.e., rule of 2) in the 
UW Health EHRs, with a median age of 30 (age range at 
the time data were extracted: 4–84 years) and the median 
age at diagnosis of 13 (range less than 1–84 years). There 
were no significant differences between cases from UW 
Health and Marshfield regarding age at the time of data 

extraction (p value = 0.88) and age of FXS diagnosis (p 
value = 0.70). To ensure the availability of sufficient data 
prior to the diagnosis of FXS, we created a predictive 
model focusing only on the individuals who received the 
diagnosis at age 10 or older. 52 UW Health FXS cases 
met this criterion (21 females and 31 males) and 5200 
age-sex controls were selected for the analysis. 35 cases 
who were diagnosed before age 10 were not included in 
the analysis.

As shown in Fig. 1a, the model trained on the Marsh-
field sample successfully identified cases in the second 
independent health care system, i.e., UW Health, with 
AUROC = 0.717, p value = 2.9e−05. Additionally, for rep-
lication purposes, we developed an independent model 
analyzing EHR data only from the UW Health sample, 
using a ten-fold cross-validated random forest classifier. 
As shown in Fig. 1b, we were able to successfully identify 
cases from controls in this population, with AUROCs of 
0.795 (p value = 1.20e−09). The performance of the repli-
cated modeling approach on the UW Health population 
is almost identical to the performance of the initial model 
on the Marshfield Clinic population (AUROC = 0.798).

Timeline of key co‑occurring conditions
We created a timeline representing the order and median 
age of being diagnosed with key known conditions asso-
ciated with FXS, based on these 52 cases in UW Health 
(Fig. 2). The overall timeline shows that these cases were 
diagnosed with developmental delay and speech/lan-
guage disorder at a median age of 5, ADHD at age 7.5, 
anxiety disorder at 10, and intellectual disability at 16. 
However, they did not receive the FXS diagnosis until 
the median age of 31.5 years. A similar pattern was previ-
ously reported in the Marshfield population.

Discussion
It is critical to provide sufficient evidence that new 
knowledge discovered in initial research is robust and 
reliable [50]. In this retrospective study, we validated the 
performance of an AI-assisted pre-screening tool in pre-
dicting FXS diagnosis using an independent population-
based source of EHRs.

By incorporating a combination of co-occurring con-
ditions, an AI-assisted pre-screening tool was devel-
oped and validated to identify potential cases at least 
5  years earlier than the time of clinical diagnosis. The 
success of the AI-assisted pre-screening model on an 
independent set of new samples validates the generaliz-
ability of our approach and provides strong evidence of 
the possibility of using this approach in the identifica-
tion of undiagnosed cases. All data used in this study 
are directly collected in a medical setting and are in fact 
real world data from actual patients, providing further 
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proof of its potential utility in real world clinical appli-
cations. The AUROCs of the predictive models created 
and evaluated using the Marshfield cases and the UW 
Health cases were almost identical (0.798 vs. 0.795), 
representing the high level of reproducibility of results 
in different health care systems. The EHR systems in 
the two health care systems were completely different 
(Epic vs. a locally-developed electronic medical records 

system), further strengthening the validation and 
reproducibility of the modeling approach.

The two populations used for this research were com-
parable in terms of genetic background. Similarity of 
two populations reduces the systematic differences that 
potentially can confound the outcomes and negatively 
impact the interpretability of the results. Next, hav-
ing provided sufficient evidence that the pre-screen-
ing approach is effective and robust, validation efforts 
should expand beyond these two health care systems to 
other populations, especially those from non-European 
ancestry [51–53].

Most previous studies of patients with FXS are based 
on a national volunteer survey of families of children 
with FXS and therefore do not fully represent adults, 
higher- functioning children, low-income families, 
families from diverse racial and ethnic groups, and oth-
ers who do not volunteer for research. In this study, 
we included all individuals who received a diagnostic 
code for FXS. The socioeconomic status of patients in 
our research varies, with many of those served by the 
Marshfield Clinic being from low-income families. 
They were diagnosed at various stages of life, possibly 
due to different clinical circumstances (i.e., pediat-
ric concerns, cascade testing and others). Therefore, 
our study is more representative of the general patient 
population.

The sex-age matched controls were randomly selected 
from the general population and there were no addi-
tional confounding effects compromising the outcome 
of the study. Therefore, the current study provides an 

Fig. 1  Artificial intelligence-assisted diagnosis. Receiver operating characteristic curve of classifier performances identifying individuals with 
FXS using their EHR data 5 years prior to receiving clinical diagnosis. Cases and controls are matched on sex and year of birth with 1:100 ratio. a 
Prediction of FXS status of UW Health subjects, using Marshfield model (AUROC = 0.717, p value = 2.9e−05), b Prediction of FXS status of UW Health 
subjects, cross-validated model (AUROC = 0.795, p value = 1.2e−09)

Fig. 2  Timeline of median age of diagnosis for key conditions 
associated with FXS. S/LD speech and language disorders, DD 
developmental delay, ADHD attention deficit hyperactivity 
disorder, ID intellectual disability, AI-FXS, artificial intelligence 
assisted-prediction of FXS diagnosis, DX-FXS clinical diagnosis of FXS 
as reported in the medical report. Our AI-assisted approach is able to 
identify cases 5 years earlier than the time of clinical diagnosis
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independent unbiased evaluation of our AI-assisted 
pre-screening tool.

The pre-screening model is not intended to be a 
replacement for genetic testing, but it can serve as a tool 
to automatically alert physicians about the presence of 
multiple FXS-related phenotypes in the patient’s medical 
records. By prompting the physician to further evaluate 
such individuals and refer them for genetic testing and 
counseling, our approach could accelerate the diagnostic 
process and be instrumental in identifying un-diagnosed 
individuals in the population and addressing their health 
conditions.

The incorporation of our pre-screening model in the 
medical system would not require any changes in the 
current diagnostic workflow. We only used previously 
collected data and therefore no additional data collec-
tion would be needed. By accelerating the diagnosis, 
our approach could optimize the interaction between 
patients and physicians leading to provision of more 
timely treatment and care. Given the difficulty of imple-
menting the professional recommendations for uniform 
screening, identification of potential cases who would 
benefit from prompt genetic testing is critical.

Furthermore, FXS testing is performed by a sim-
ple blood test and does not require any invasive proce-
dures. Currently, in many cases, genetic testing for FXS 
is recommended as a rule-out test, and thus that a nega-
tive result can still be informative in patients’ diagnostic 
journey.

There are limitations to the current study that should 
be noted. Patients from both systems reside in the State 
of Wisconsin where the majority of the population is 
White (87.0%) [54]. Therefore, additional studies on more 
racially diverse populations are required as next steps to 
evaluate the generalizability of the findings. The case–
control matching on age and sex with ratios representa-
tive of estimated prevalence of FXS [17, 18, 55–57] was 
not possible and in both studies a ratio of 1–100 was used 
to select controls. Additional studies on larger popula-
tions will provide more precise information on the per-
formance of the model.

Conclusions
Our AI-assisted pre-screening approach can facilitate 
and accelerate the clinical diagnosis of FXS and decrease 
the duration of the diagnostic odyssey and degree of 
stress experienced by patients and their families. The 
reproducibility of the results provides a high level of 
confidence in the potential positive impact of these find-
ings, if incorporated in clinics and points of care. Our AI-
assisted pre-screening tool could significantly improve 
the diagnostic process and could provide substantial ben-
efits for patients, families and the health care system.
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