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Abstract 

Background:  Deep learning (DL) models are highly vulnerable to adversarial attacks for medical image classification. 
An adversary could modify the input data in imperceptible ways such that a model could be tricked to predict, say, an 
image that actually exhibits malignant tumor to a prediction that it is benign. However, adversarial robustness of DL 
models for medical images is not adequately studied. DL in medicine is inundated with models of various complex-
ity—particularly, very large models. In this work, we investigate the role of model complexity in adversarial settings.

Results:  Consider a set of DL models that exhibit similar performances for a given task. These models are trained in 
the usual manner but are not trained to defend against adversarial attacks. We demonstrate that, among those mod-
els, simpler models of reduced complexity show a greater level of robustness against adversarial attacks than larger 
models that often tend to be used in medical applications. On the other hand, we also show that once those models 
undergo adversarial training, the adversarial trained medical image DL models exhibit a greater degree of robustness 
than the standard trained models for all model complexities.

Conclusion:  The above result has a significant practical relevance. When medical practitioners lack the expertise 
or resources to defend against adversarial attacks, we recommend that they select the smallest of the models that 
exhibit adequate performance. Such a model would be naturally more robust to adversarial attacks than the larger 
models.
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Background
Deep learning (DL) has achieved state-of-the-art per-
formance in a variety of image classification tasks from 
natural image classification [1] to medical image analysis 
[2]. However, DL models are vulnerable to adversarial 

attacks—imperceptible input perturbations utilized to 
produce an incorrect model prediction [3]. This inherent 
weakness in DL poses a major security threat to medical 
DL models in that an attacker has the ability to alter the 
networks output. In fact, medicine may be uniquely sus-
ceptible to adversarial attacks [4].

Several defense techniques have been proposed to 
reduce model sensitivity to adversarial examples which 
include detection methods [5], defensive distillation 
[6], ensemble methods [7] and adversarial training [8]. 
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Adversarial training is considered one of the most effec-
tive defense techniques. It minimizes the cost of a net-
work trained on adversarial perturbations that maximize 
network error but suffers from performance degradation 
on unperturbed data [8]. Nevertheless, attaining adver-
sarial robustness of deep neural networks remains an 
ongoing research effort.

DL has been extensively utilized in the medical domain. 
Several DL based medical devices and algorithms in 
healthcare have been approved by the FDA to assist in 
diagnosing disease such as HealthPNX, Critical Care 
Suite & SubtleMR [9]. In fact, DL models have achieved 
remarkable performance for chest x-ray [2], dermos-
copy [10] and retinal fundus classification [11]. However, 
medical image based DL models are also vulnerable to 
adversarial attacks [4]. Adversarial attacks against health-
care systems could interfere with proper medical diagno-
sis and potentially cause misdiagnosis by imperceptibly 
altering medical imaging that serve as input to DL based 
medical devices and algorithms in healthcare. These 
modifications may result in erroneous medical treat-
ment and fraudulent billing to healthcare insurance pro-
viders [4]. Patient treatment plans can be changed by 
attacking Electronic Health Records (EHR), which is the 
digital version of patient medical records [12]. Attack-
ers can produce adversarial examples to generate a spe-
cific disease prediction from medical image DL models. 
In fact, universal adversarial perturbations can achieve 
misdiagnosis at a very low cost and high success rate [13]. 
Furthermore, medical image DL models are more vulner-
able to adversarial attacks than natural image DNNs, i.e., 
adversarial attacks can succeed more easily on medical 
images using less perturbation [14].

Generally, in the case of natural images, larger mod-
els are considered to be more robust against adversarial 
attacks. In classical machine learning, the principle of 
Occam’s Razor suggests choosing simpler models as they 
are expected to generalize better; however, larger Ima-
geNet architectures often produce state-of-the-art per-
formance in natural image classification [15]. As a result, 
Occam’s Razor may not be a reliable heuristic for DL 
model selection in an adversarial setting. In fact, capac-
ity is crucial for adversarial robustness [8], i.e., as capacity 
increases, natural image DL models become more resist-
ant to adversarial attacks. Nevertheless, there is a trade-
off between adversarial robustness and clean accuracy for 
natural image DL models [16]. However, the relationship 
between adversarial robustness and model complexity for 
medical image DL models has not been carefully studied.

DL models deployed in realistic clinical settings often 
employ large DL architectures such as Resnet [17] for 
medical image classifications. However, these large 
Resnets trained on medical images do not significantly 

exhibit greater performance than smaller models [18]. 
Instead, smaller, simpler models provide compara-
ble performance to large overly complex networks for 
unperturbed medical images. In fact, model complexity 
may have contributed to the high vulnerability of medi-
cal image DL models [14]. This was primarily attributed 
to a sharp loss landscape that was hypothesized to be 
the result of a highly complex network for a simple clas-
sification task. Instead, we provide evidence that shows 
how model complexity influences adversarial robust-
ness through decision boundary visualizations and sali-
ency maps—image representation highlighting attention 
regions that influence a model’s output the most [19]. 
A recent study [13] found that model architecture did 
not play a significant role in adversarial robustness for 
medical image DL models against universal adversar-
ial perturbations. However, they only evaluate perfor-
mance on state-of-the-art DL architectures, which are 
considered to be over-parameterized for medical image 
classification.

In this paper, we investigate whether simpler DL mod-
els of reduced complexity  can produce comparable or 
improved robustness to state-of-the-art large networks 
for medical image classification. With this in mind, we 
strive to understand “How does model complexity impact 
adversarial robustness for medical image DL models”? 
“Could models of reduced complexity offer greater robust-
ness for medical image DL models”?. To this end, we 
investigate the role of model complexity in adversarial 
robustness for standard and adversarially trained medical 
image DL models. In summary, our contributions are as 
follows:

•	 Consider a set of medical image DL models that 
exhibit similar performances for a given task. These 
models are trained in the usual manner but are not 
trained to defend against adversarial attacks. We 
demonstrate that, among those models, simpler 
models of reduced complexity show a greater level 
of robustness against adversarial attacks than larger 
models that often tend to be used in medical applica-
tions.

•	 On the other hand, we also show that once those 
models undergo adversarial training, the adversarial 
trained medical DL models exhibit a greater degree 
of robustness than the standard trained models for all 
model complexities.

Our findings have a significant practical relevance. 
When medical practitioners lack the expertise or 
resources to defend against adversarial attacks, we rec-
ommend that they select the smallest of the models that 
exhibit adequate performance. Such a model would be 
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naturally more robust to adversarial attacks than the 
larger models.

The remainder of this paper is organized as follows. In 
the Results section, we discuss adversarial robustness for 
medical image DL models of various complexity. In addi-
tion, we provide an interpretation on the role of model 
complexity through saliency maps and decision bound-
ary visualizations.  In the Methods section, we describe 
our experimental setup which includes details of our 
training method, attack methods, datasets and network 
architecture.

Results
We evaluate robustness of the medical image DL mod-
els of 5 different complexities against adversarial attacks 
launched by FGSM and PGD. The magnitude of the 
perturbation was increased for each set of attacks to 
introduce more perturbation. To this end, we consider 
a model with the highest performance at a given ǫ to be 
more adversarially robust.

Evaluation of standard trained models
The average accuracy versus ǫ of medical image DL mod-
els are shown in Fig. 1 for both FGSM and PGD attacks. 
First, we notice that each of the standard trained mod-
els produced comparable performance on unperturbed 
data samples. Second, we observe an inverse relationship 
between model complexity and adversarial robustness for 
all medical image datasets. Particularly, the CBR-LargeT 
network is the least complex among all networks that 
were evaluated but it demonstrates the greatest robust-
ness on all medical image datasets. In Table 1, the aver-
age accuracies of CBR-LargeT against PGD attacks were 
88.37%, 92.63% and 78.35% for Chest X-ray, Dermoscopy, 
and OCT datasets, respectively. Similarly, Resnet8 exhib-
its greater adversarial robustness compared to Resnet50. 
This surprising behavior conflicts with the common 
belief that larger DL model are required to produce 
greater adversarial robustness [8]. We show that it is pos-
sible to attain greater robustness with a standard 5 layer 
CNN compared to state-of-the-art Resnet50 models for 
standard trained networks on medical image datasets. 
Taken together, these results suggest that among stand-
ard trained models that offer similar performance, medi-
cal image classifications could benefit more from less 
complex networks for adversarial robustness.

Evaluation of adversarial trained models
The robustness of adversarial trained models was evalu-
ated with adversarial examples generated using the PGD 
attack method. Figure 2 shows accuracy versus ǫ of adver-
sarial trained models using PGD attack for Chest X-ray, 
Dermoscopy and OCT datasets. We observe an increase 

in robustness for all three datasets and a decrease in 
standard accuracy, i.e. performance on unperturbed 
images. The adversarial trained models outperform the 
corresponding standard trained networks by > 60%, > 73% 
& > 46% accuracy at ǫ = 10, 1 & 4 for Chest X-ray, Der-
moscopy & OCT datasets, respectively. Table 2 highlights 
the adversarial trained model performance on unper-
turbed and perturbed images. The “No Attack” section of 
Tables 1 and 2 exhibit a drop in performance from stand-
ard to adversarial trained models on unperturbed images. 
This behavior is in line with the conclusion made by pre-
vious work that discovered a trade-off between accuracy 
and robustness, i.e. as models become more robust to 
adversarial examples they perform worse on unperturbed 
images [16].

In Fig.  2 we observe that adversarial trained models 
produce greater robustness at the cost of standard accu-
racy (accuracy on unperturbed images) compared to 
standard trained models shown in Fig.  1. This is espe-
cially true for the network trained with the OCT data-
set shown in Fig. 2c, the Resnet 50 model produced the 
greatest standard accuracy and robustness. The models’ 
performance on unperturbed images is much higher than 
all other networks which resulted in greater robustness. 
The Chest X-ray adversarial trained model performance 
shown in Fig.  2a exhibits the opposite effect in that 
Resnet 8 produced the highest standard accuracy and it 
also provides the greatest robustness. The Dermoscopy 
adversarial trained models shown in Fig.  2b all exhibit 
similar standard accuracy but the Resnet 8 provides the 
greatest robustness. Based on our results, we conclude 
that for a given set of medical image adversarial trained 
models, the network with the highest standard accuracy 
will likely provide the greatest robustness. A previous 
study [20] has demonstrated that standard accuracy is 
correlated with robustness. On the other hand, if all net-
works provide similar standard accuracy then it is likely 
that the least complex network will provide the greatest 
robustness.

Interpreting the role of model complexity in adversarial 
robustness
To understand why simpler networks were more adver-
sarially robust than large overly complex networks, we 
analyzed the attention regions of saliency maps as model 
complexity increased. In addition, we visualize decision 
boundaries and adversarial example TSNE projections as 
model complexity increases.

Saliency maps
We first utilize saliency maps to understand why stand-
ard trained medical image DL models of reduced com-
plexity produce greater adversarial robustness. We 
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Fig. 1  Average accuracy and standard deviation of FGSM and PGD attacks on medical image DNNs. Column 1 & 2 are FGSM and PGD attacks, 
respectively. Row 1, 2, & 3 are Chest X-ray, Dermoscopy & OCT datasets, respectively. All networks exhibit similar performance on unperturbed data 
for a given dataset. The magnitude of the perturbation was increased by ǫ ∈ [0.01,10]. Models of reduced complexity exhibit greater adversarial 
robustness
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generate saliency maps for medical images before adver-
sarial attacks where ǫ = 0 and after PGD attack where 
ǫ = 1, 0.1 & 2 for Chest X-ray, Dermoscopy & OCT data-
sets, respectively. In Fig.  3, we observe that the atten-
tion regions of CBR-LargeT are more concentrated on 
the regions of interest, whereas Resnet 50’s attention 
regions are spread out in regions that do not contribute 
to the classification of disease. For standard trained mod-
els, the CBR-LargeT network is the least complex and 
most robust model shown in Fig. 3 for all datasets which 
means that its performance does not change much with 
small perturbations. Consequently, the clean and adver-
sarial saliency maps in Fig. 3a, c, e do not change much, 
it is the desired behavior. A previous study [21] reported 
that adversarial examples could be attributed to the pres-
ence of non-robust features (features that are weakly cor-
related with the true label) utilized by standard trained 
models which assign weight to features with non-zero 
correlation to obtain optimal performance. As a result, 
DL models learn to rely on non-robust features which 
adversarial perturbations can exploit causing major 
changes to the model output with small perturbations. 
Nonrobust features are considered useful since they con-
tribute to a standard models’ ability to generalize with 
high accuracy, removing them would result in a reduc-
tion of standard accuracy. Another study [22] demon-
strated that standard models trained with robust features 
(features that are strongly correlated with the true label) 
produce greater adversarial robustness. Robust features 
are useful and require larger perturbations to degrade 
model performance. In this paper, we demonstrate that 
CBR-LargeT can more accurately learn robust medical 
image features that are human perception aligned than 
Resnet 50. As a result, small adversarial perturbations 

rarely cause misclassification and adversarial saliency 
map attention regions are mostly unchanged when com-
pared to clean saliency maps. Whereas, the Resnet 50 
saliency maps in Fig. 3b, d, f are largely not human per-
ception aligned considering that the strongly correlated 
features are mostly not significant for classification of 
the disease. These models do not seem to learn enough 
accurate robust features as is the case for CBR-LargeT 
which indicates that Resnet 50 learns more non-robust or 
weakly correlated medical image features. As previously 
stated, small adversarial perturbations to non-robust fea-
tures can cause significant change to the model output. 
This can explain why some Resnet 50 adversarial saliency 
maps shown in Fig.  3 present very little change when 
compared to the corresponding clean saliency maps. We 
further examined the saliency maps of adversarial trained 
models in Fig.  4. We observe for all three datasets that 
adversarial training makes the attentions of especially 
more complex models focused. Now, the models focus 
within the anatomical regions contributing to the diag-
nosis rather than the anatomical regions of no interest or 
image background. This indicates that during adversarial 
training the model may help better identify the regions-
of-interest that contribute toward correct classifications 
for both adversarial and clean data samples. Saliency map 
visualizations were implemented using keras [23]. We set 
the filter indices to the predicted class of a network for a 
given data sample.

Decision boundary
We next generate decision boundary visualizations of 
the standard and adversarial trained models. To generate 
the decision boundaries we utilized the output of the last 
fully connected layer. The features were utilized as input 

Table 1  Model performance at ǫ that produce the largest margin between least and most robust networks.  Models of reduced 
complexity exhibit greater performance on perturbed medical images compared to larger, overly complex networks while 
maintaining comparable performance on unperturbed data

Attack CBR-LargeT Resnet-8 Resnet-20 Resnet-32 Resnet-50

(a) Chest X-Ray Accuracy(%), ǫ = 1
No Attack 96.43 + − 1.84 97.43 + − 1.01 97.46 + − 1.24 97.41 + − 0.98 96.90 + − 1.26

FGSM 88.83 + − 2.14 24.63 + − 11.12 15.13 + − 10.68 5.77 + − 3.30 9.37 + − 5.82

PGD 88.37 + − 2.31 15.07 + − 9.95 7.10 + − 9.26 0.43 + − 0.62 0.83 + − 1.23

(b) Dermoscopy Accuracy (%), ǫ = 0.1
No Attack 96.40 + − 0.95 95.53 + − 1.02 95.03 + − 1.16 95.07 + − 1.48 95.20 + − 0.85

FGSM 92.80 + − 1.48 66.30 + − 12.37 49.37 + − 5.70 53.23 + − 13.13 49.10 + − 7.28

PGD 92.63 + − 1.66 53.30 + − 10.61 38.17 + − 7.74 41.83 + − 15.77 43.63 + − 14.91

(c) OCT Accuracy (%), ǫ = 2
No Attack 96.30 + − 0.67 95.53 + − 1.08 95.03 + − 0.81 95.07 + − 1.05 95.20 + − 2.71

FGSM 88.58 + − 2.12 63.85 + − 6.56 63.00 + − 3.92 67.88 + − 3.94 68.65 + − 5.36

PGD 78.35 + − 10.70 55.85 + − 8.60 35.23 + − 9.30 37.98 + − 8.23 36.13 + − 11.56
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to t-distributed stochastic neighbor embedding (TSNE) 
[24] to reduce the input dimensionality and obtain a 2D 
projection of the data. Adversarial examples were gener-
ated from a subset of the test data for each ǫ and were 
combined with the entire dataset. We fit K-Nearest 

Neighbor classifiers (KNNs) [25] on the combined low 
dimensional data points (train, test, validate and adver-
sarial examples) produced by the TSNE projection. KNN 
calculates the euclidean distance between data points and 
predicts a label based on how close new data points are 
to samples that the model stored when fitting the data. 
The KNN models were utilized to predict the class of 
each point on the decision boundary visualizations which 
were implemented using the mlxtend library [26].

We visualize the decision boundary for CBR-LargeT 
and Resnet50 before adversarial attacks where ǫ = 0 and 
after PGD attack where ǫ = 1, 0.1 & 2 for Chest X-ray, 
Dermoscopy & OCT datasets, respectively. In Fig.  5b, 
we observe that data points cluster together more tightly 
along the decision boundary for Resnet 50 models as 
opposed to Fig.  5a, where the data points are sparsely 
projected across the boundary for CBR-LargeT. The 
Resnet 50 decision boundary is more complex and results 
in data samples that are closer to the decision boundary 
in the projected space, which increases medical image 
DL models’ sensitivity to input perturbations. Although 
Resnet 50 and CBR-LargeT consistently produced com-
parable performance on multiple subsets of the train and 
test datasets for unperturbed medical images, it is evident 
that CBR-LargeT provides greater adversarial robust-
ness as projected data samples are much further from 
the decision boundary. Large state-of-the-art DL mod-
els are overly complex for medical image classification, 
which result in highly sensitive networks that are more 
vulnerable to small adversarial perturbations as projected 
data points are closer to the decision boundary. In con-
trast, per Fig. 6 of decision boundaries from adversarial 
trained models, we observe that adversarial training in 
general produces more complicated decision boundaries 
for all three datasets. We also observe that the closer the 
data points are to the decision boundary edges the more 
vulnerable the network since it is less confident and small 

Fig. 2  PGD adversarial training on Chest X-ray, Dermoscopy and 
OCT datasets, respectively. Chest X-ray and Dermoscopy models 
demonstrate greater robustness with Resnet8. OCT models provide 
greater robustness with Resnet50

Table 2  Adversarial trained model performance of perturbed 
and unperturbed data

Attack Resnet-8 Resnet-20 Resnet-32 Resnet-50

(a) Chest X-Ray Accuracy (%),ǫ = 10
No Attack 94.01 88.27 84.92 89.90

PGD 82.14 74.05 72.96 61.11

(b) Dermoscopy Accuracy (%),ǫ = 1
No Attack 88.14 89.56 88.02 89.64

PGD 82.37 74.49 80.01 74.92

(c) OCT Accuracy(%),ǫ = 4
No Attack 78.12 71.01 62.77 88.67

PGD 47.28 62.56 57.06 67.95
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perturbations are able to easily increase the correlation 
of non-robust features toward another target class. This 
is evident in Fig.  6a for OCT dataset, Fig.  6b for Chest 
X-ray and Fig. 6b Dermoscopy datasets.

Discussion
We showed that highly complex medical image DNNs 
are more vulnerable to adversarial attacks than models of 
reduced complexity. A previous study [14] hypothesized 
that model complexity may contribute to the robustness 
of medical image DNNs but they only show that medi-
cal image DNNs have a sharp loss landscape compared 
to natural image DNNs. In this study, we demonstrated 
that smaller, simpler medical image DNNs provide 
greater adversarial robustness. Typically, larger DNNs are 
considered more robust for natural image classification, 
however, medical image DNNs do not require large state-
of-the-art networks for optimal performance. Adversar-
ial attacks can succeed more easily as model complexity 
increases for medical images. Standard trained DL mod-
els that perform well on ImageNet data are not guar-
anteed to provide adversarial robustness. In fact, large 
state-of-the-art DNNs are overly complex for medical 
image classification and result in data samples that are 
closer to the decision boundary as seen in the projected 
space which increase the sensitivity of medical image 
DNNs to input perturbations. Although, the high com-
plexity of DL model decision boundaries cannot be fully 
captured with current methods, due to the loss of infor-
mation in dimensionality reduction, the decision bound-
ary projection visualizations do provide insight into why 
our models demonstrate such sensitivity to small pertur-
bations. This was also shown using saliency maps by visu-
alizing how the attention regions changed as the model 
was under attack. As a guidance on model selection for 
a given set of standard trained medical DL model can-
didates we suggest that practitioners first evaluate the 
performance of each network on unperturbed medical 
images to realize networks of comparable performance 
and select the least complex model among the realized 
networks to produce the greatest robustness against 
adversarial attacks.

Conclusions
In our study, we investigated the role of deep learning 
model complexity in adversarial robustness for medical 
images and demonstrated that standard trained medical 

image DL models of reduced complexity are more robust 
to adversarial attacks than large overly complex net-
works. We show that medical image DL models are more 
adversarially robust as model complexity decreases. Our 
saliency map visualizations reveal that standard trained 
models of reduced complexity learn the features that con-
tribute to the classification of disease better. The decision 
boundary visualizations show that larger overly complex 
networks result in data samples that are closer to the 
decision boundary in the projected space which increase 
the sensitivity of medical image DL models to input per-
turbations. We therefore recommend deep learning prac-
titioners in the medical community to first evaluate the 
performance of a given set of DL models candidates on 
unperturbed medical images to realize networks of com-
parable performance and select the least complex model 
among the realized networks to produce the greatest 
robustness against adversarial attacks.

Methods
Medical image datasets
In this work, we use three publicly available medical 
image datasets to study adversarial robustness, which 
include Chest X-Ray, Dermoscopy and Optical Coher-
ence Tomography (OCT). The chest x-ray dataset [27] 
consists of 5,863 grayscale chest radiograph images used 
to diagnose thorax disease. It includes two classes, where 
each image is labeled as “Pneumonia” or “Normal”. The 
dermoscopy dataset [28] contains 17.8  K color images 
of skin lesions, which are used to diagnose melanoma 
skin cancer. It includes two classes, where each image is 
labeled as “Melanoma” or “NotMelanoma”. We consider 
all non-melanoma images to be part of the NotMela-
noma class [29]. The OCT dataset [27] consists of 84,495 
grayscale images with four classes—including “Choroidal 
Neovascularization (CNV)”, “Drusen”, “Diabetic macular 
edema (DME)”, and “Normal”. It utilizes light waves to 
take cross-section imagery of the retina to assist in diag-
nosing retina disease and disorders in the optic nerve.

Medical image deep learning models
Typically, large state-of-the-art ImageNet architectures 
such as Resnets are utilized for medical image classifica-
tion [30]. However, a recent study [18] found that simpler 
architectures such as CBR-LargeT provide comparable per-
formance to large ImageNet architectures on unperturbed 
medical images. To this end, we evaluate the role of model 

(See figure on next page.)
Fig. 3  Saliency maps of standard trained CBR-LargeT (a, c, e) and Resnet50 (b, d, & f ) for Chest X-ray, Dermoscopy & OCT datasets. Unperturbed 
images with predicted labels and corresponding saliency maps were visualized on row 1 (no attack) for (a–f), respectively. Imperceptibly perturbed 
images with predicted labels and corresponding saliency maps were visualized on row 2 (PGD attack) for (a–f), respectively. Saliency maps of 
CBR-LargeT are more concentrated on the regions of interest whereas Resnet50 includes attention regions that are more sporadic on areas that do 
not contribute to the classification of the disease
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Fig. 3  (See legend on previous page.)
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complexity using a family of four Resnet architectures and 
a five-layer Convolutional Neural Network (CNN). Resnets 
are large state-of-the-art DL architectures that consist of 
several blocks of residual modules and skip connections 
[17]. We adjust the complexity of the network by reducing 
the amount of residual modules and skip connections. The 
Resnet architectures included in our study are: Resnet50, 
Resnet32, Resnet20 and Resnet8. The CBR-LargeT archi-
tecture is a standard CNN that consists of five convolution 
layers, initially each layer has 32 filters and a 7 × 7 kernel 
size. The amount of filters are doubled at each convolution 
layer while the kernel size remains constant for all layers. 
All convolution layers are followed by batch normalization, 
ReLu activation and a max pooling layer with 3 × 3 window 
and 2 × 2 stride. All networks utilize softmax activation at 
the output layer.

Training procedure
We initiated training of each DL model with random ini-
tialization of model parameters as a previous study [18] 
demonstrated that utilizing pretrained ImageNet weights 
(transfer learning) for medical image DNNs did not sig-
nificantly improve model performance. We used the Adam 
optimizer with a batch size of 32 and a learning rate sched-
uler. Checkpoints were utilized to store the model with the 
highest validation accuracy during the training procedure. 
All medical images were resized to 224 × 224 and normal-
ized between 0 and 1. Each dataset was randomly shuffled 
and split ten times to generate multiple subsets of the train, 
test and validation set. Each network was trained ten times 
for a given dataset to assess the average performance of all 
models across multiple subsets of the data.

Adversarial attack methods
In this section, we provide an overview of adversarial 
attack methods utilized to generate adversarial examples. 
The attack methods include L-BFGS, Fast Gradient Sign 
Method, One-Step Target Class Method, Basic Iterative 
Method and Projected Gradient Descent Method [31]. 
The fast gradient sign method [32] is a fast and easy way 
to generate adversarial examples while the projected gradi-
ent descent method [8] is one of the strongest adversarial 
attack methods. In this study, we employ both methods 
using the least likely class as they are commonly utilized to 
evaluate the robustness of deep neural networks.

Fast gradient sign method
FGSM is a max-norm constrained adversarial attack 
method that solves for the perturbation that maximizes the 
classification loss [32]. This method is a single step attack, 
which perturbs the image in a single step as

where ǫ is the magnitude of the perturbation which con-
strains the amount of perturbation allowed in each pixel 
of an image, xadv is the perturbed adversarial sample, 
(L(·)) is the classification loss function, ∇XL is the gradi-
ent with respect to the unperturbed sample (x), θ is the 
DL model weights, and (ytrue) is the true label.

One‑step target class methods
The One-Step Method is an extension of FGSM that max-
imizes the probability of a specific target label that is not 
likely to be the true label for a given input sample. The goal 
is to solve for a perturbation that minimizes the cost func-
tion for the true label and the target label [33]. This method 
perturbs the input image as

where ǫ is the magnitude of the perturbation which con-
strains the amount of perturbation allowed in each pixel 
of an image, θ is the DL model weights, xadv is the per-
turbed sample of a single iteration, ∇XL(θ,x,ytarget) is the 
gradient (∇x) of the loss function (L(·)) with respect to 
the input data sample (x) and target label (ytarget).

Least likely class method
The Least Likely Method utilizes the least likely predicted 
class of a trained network for a given data sample to gener-
ate an adversarial example [34]:

where argminy{p(ytrue|x)} is the minimum probability (p) 
of the true label (ytrue) for a given data sample (x).

Projected gradient descent method
PGD is one of the strongest first-order attack methods and 
is an extension of FGSM. It iteratively attempts to produce 
an optimal perturbation from a random point within an 
L-∞ ball, which defines a space around the original data 

(1)xadv = x + ǫsign ∇xL θ , x, ytrue

(2)xadv = x − ǫsign
(

∇XL
(

θ , x, ytarget
))

(3)yLL = arg min
y

{

p
(

ytrue|x
)}

Fig. 4  Saliency maps of adversarially trained (AT) Resnet8 (a, c, e) and Resnet50 (b, d, f) for Chest X-ray, Dermoscopy & OCT datasets. Unperturbed 
images with predicted labels and corresponding saliency maps were visualized on row 1 (no attack) for (a–f), respectively. Imperceptibly perturbed 
images with predicted labels and corresponding saliency maps were visualized on row 2 (PGD attack) for (a–f), respectively. Saliency maps of 
Resnet50 are more concentrated on the regions of interest whereas Resnet8 include attention regions that are more sporadic on areas that do not 
contribute to the classification of the disease

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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point that has a radius normally equivalent to epsilon [8]. 
PGD iterates as follows:

where xt is the adversarial example at the t-th iteration, 
Q(·) is the projection function to project adversarial 
examples back onto the L-∞ ball after each iteration, α is 
the step size and θ is the DL model weights.

Generating adversarial examples
In our study, we generate adversarial examples with 
targeted FGSM and PGD attacks using the least likely 
class method for the target label. The magnitude of the 
perturbation was increased by ǫ ∈ [0.01,10] for each set 
of attacks. In addition, for PGD attacks we utilize 20 
iterations with a step size α = (ǫ ∗ 0.1) for each attack 
and corresponding epsilon. Adversarial attacks can be 

(4)xt+1 =
∏

x+s

(xt + αsign(∇xL(θ , x, ytarget)))

deployed in a white-box or black-box attack setting. 
In the black-box attack setting the attacker has zero 
knowledge of the training data, architecture or model 
parameters. In the white-box attack setting the attacker 
has full knowledge of the target system, i.e., the attacker 
knows the training data, architecture and model param-
eters. The white-box attack setting allows security prac-
titioners to perform a worst-case evaluation of the deep 
learning model under attack. To this end, we focus on a 
white-box attack setting as the source architecture and 
model parameters were known and utilized to generate 
adversarial examples. Adversarial examples were gener-
ated with a subset of the test data that the model was 
not previously exposed to during training and valida-
tion. Approximately, 150 data samples were randomly 
selected from each class of the test set to generate 
adversarial examples without data sample replacement. 
The FGSM and PGD attacks were implemented using 
the Cleverhans library [35].

Fig. 5  Decision boundary projection of standard trained CBR-LargeT and Resnet50 for Chest X-ray, Dermoscopy & OCT datasets. Unperturbed 
samples were projected on column 1 (no attack) and perturbed samples were projected on column 2 (PGD attack) for (a, b), respectively. The more 
complex decision boundary in (b) resulted in samples that were closer to the decision boundary in the projected space which increased medical 
image DNN sensitivity to input perturbations
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Adversarial training
Adversarial training was first introduced in 2015 [32], 
wherein they included adversarial examples into the 
training procedure to generate robust models. How-
ever, these trained models were still vulnerable as model 
robustness is directly related to the strength of adver-
sarial samples being used during training. To address this 
in 2017, a new adversarial training algorithm that uses 
multi-step based PGD adversaries was proposed [8]. This 
achieves state-of-art robustness against L-infinity attacks 
on MNIST and CIFAR-10 dataset. A min–max formula-
tion was used in training DL models [8]:

where minθ ρ(θ) represents the classification task, 
E(x,ytarget) represents the empirical loss on the sample dis-
tribution px,ytarget. The above saddle-point formulation is 
a composition of inner maximization and outer minimi-
zation problem. The former aims to find an adversarial 

(5)

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[

max
δǫS

L(θ , x + δ, ytarget)

]

version of x, using Eq.  (4), to provide high adversarial 
loss, while the latter attempts to find model parameters 
θ to minimize the empirical classification loss. A previous 
study [8] found that robustness against PGD adversary 
provides robustness against all first-order adversaries and 
DL models with larger capacity can fit adversarial sam-
ples better. Motivated by the model performance using 
Eq. (5) on computer vision datasets, in this study we aim 
evaluate the performance of medical DL models using 
Eq.  (5) against adversarial and clean samples across dif-
ferent model capacities.

In our study, ResNet architectures of varying capaci-
ties—8, 20, 32, 50 layers were trained to generate adver-
sarial trained models. The final layer for all the models 
were softmax with two neurons for Chest X-ray and 
Dermoscopy datasets, and four neurons for the OCT 
dataset. The networks were trained against adversarial 
perturbations that are max norm bounded. Each model 
was trained using initial weights from standard training 
of its counterpart network capacity, with learning rate of 
0.001 and trained until the loss of the network would not 

Fig. 6  Decision boundary projection of adversarially trained (AT) Resnet8 and Resnet50 for Chest X-ray, Dermoscopy & OCT datasets. Unperturbed 
samples were projected on column 1 (no attack) and perturbed samples were projected on column 2 (PGD attack) for (a, b), respectively. The 
complexity of adversarial trained decision boundaries increased compared to the corresponding standard trained model decision boundary in 
Fig. 5
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further reduce or increase accuracy. To generate attacks 
during adversarial training, ǫ was set to 3/255, 1/255 and 
10/255, with the step size set to ǫ/10 and perturbation 
steps of 7, 5 & 5 for Chest X-ray, Dermoscopy & OCT 
datasets, respectively.
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