
Bi et al. 
BMC Medical Informatics and Decision Making          (2022) 22:212  
https://doi.org/10.1186/s12911-022-01889-4

RESEARCH ARTICLE

Research on early warning of renal damage 
in hypertensive patients based on the stacking 
strategy
Qiubo Bi1†, Zemin Kuang2†, E. Haihong1*   , Meina Song1, Ling Tan1, Xinying Tang3 and Xing Liu4 

Abstract 

Background:  Among the problems caused by hypertension, early renal damage is often ignored. It can not be 
diagnosed until the condition is severe and irreversible damage occurs. So we decided to screen and explore related 
risk factors for hypertensive patients with early renal damage and establish the early-warning model of renal damage 
based on the data-mining method to achieve an early diagnosis for hypertensive patients with renal damage.

Methods:  With the aid of an electronic information management system for hypertensive out-patients, we collected 
513 cases of original, untreated hypertensive patients. We recorded their demographic data, ambulatory blood pres-
sure parameters, blood routine index, and blood biochemical index to establish the clinical database. Then we screen 
risk factors for early renal damage through feature engineering and use Random Forest, Extra-Trees, and XGBoost 
to build an early-warning model, respectively. Finally, we build a new model by model fusion based on the Stack-
ing strategy. We use cross-validation to evaluate the stability and reliability of each model to determine the best risk 
assessment model.

Results:  According to the degree of importance, the descending order of features selected by feature engineering 
is the drop rate of systolic blood pressure at night, the red blood cell distribution width, blood pressure circadian 
rhythm, the average diastolic blood pressure at daytime, body surface area, smoking, age, and HDL. The average preci-
sion of the two-dimensional fusion model with full features based on the Stacking strategy is 0.89685, and selected 
features are 0.93824, which is greatly improved.

Conclusions:  Through feature engineering and risk factor analysis, we select the drop rate of systolic blood pres-
sure at night, the red blood cell distribution width, blood pressure circadian rhythm, and the average diastolic blood 
pressure at daytime as early-warning factors of early renal damage in patients with hypertension. On this basis, the 
two-dimensional fusion model based on the Stacking strategy has a better effect than the single model, which can 
be used for risk assessment of early renal damage in hypertensive patients.
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Background
According to the 2020 international society of hyper-
tension global hypertension practice guidelines, 
hypertension is related to cerebrovascular disease and 
ischemic heart disease. It is also a major risk factor for 
the incidence and death due to chronic kidney disease 
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[1]. Hypertension can affect the function of organs in 
the whole body, and the kidney is most easily affected.

In China, the number of uremic patients caused by 
hypertension reaches 1.5 million every year [2]. Fur-
thermore, among the problems caused by hypertension, 
early renal damage is often ignored because of unclear 
symptoms. The typical symptoms and signs of chronic 
renal failure gradually appear as time goes by. It can not 
be diagnosed until the condition is severe and irrevers-
ible damage occurs. Identifying such patients early and 
making correct interventions is a critical challenge for 
clinicians because it is related to delaying the progress 
of renal damage and reducing medical expenses and is 
closely related to the prognosis of patients. Therefore, 
we need to pay great attention to the early renal dam-
age in hypertensive patients.

In clinical practice, it is hard to realize the early diag-
nosis of the high-risk population of hypertensive renal 
damage and guide different patients to choose the most 
suitable scheme to receive treatment in time. Because 
of few or no symptoms in the early stage of chronic 
kidney disease (CKD), most patients with renal dam-
age fail to get a timely diagnosis. Many hypertensive 
patients who look healthy may have developed CKD, 
and current methods fail to diagnose these patients 
fully. We intend to establish an early-warning model 
based on data mining to evaluate the risk of early renal 
damage by integrating the relevant factors. The fac-
tors including cardiovascular risk factors, blood pres-
sure parameters, biochemical blood indicators, and 
related biomarkers [3–5]. Then we can use the model to 
identify the high-risk patients early to make a definite 
diagnosis and give timely treatment. Then we should 
explore an effective management mode of early hyper-
tensive renal damage to control the risk factors of this 
population and reduce the incidence rate and harm of 
CKD.

Methods
In order to achieve the early diagnosis of a high- risk 
population with hypertensive renal damage, we will 
screen the early-warning risk factors of early renal 
damage by feature engineering [6]. Based on these risk 
factors, we use a data mining approach to establish 
an early-warning model of renal damage, which fuses 
three machine learning sub-models: XGBoost, Random 
Forest, and Extra-Trees by Stacking strategy [7–9]. The 
specific steps are as follows. (1) data preparation; (2) 
exploratory data analysis; (3) feature construction; (4) 
feature selection; (5) model optimization and fusion; (6) 
model evaluation. The specific process of model con-
struction is shown in Fig. 1.

Data preparation
From November 2011 to May 2013, Beijing Anzhen Hos-
pital of Capital Medical University (Beijing Institute of 
Heart Lung and Blood Vessel Diseases), Third Xiangya 
Hospital of Central South University (Hunan Hyperten-
sion Research Center), and Chenzhou No.1 People’s Hos-
pital of Hunan Province (Translational Medicine Institute 
of University of South China) received 513 patients with-
out complications who have initially diagnosed hyperten-
sion. They aged between 35 and 64, including 319 males 
and 194 females. None of the patients had ever taken 
any antihypertensive drugs before their visit. Accord-
ing to their albumin- to-creatinine ratio(ACR) levels, 
the patients are divided into two groups: positive group 
(30-300mg/g), which is the early renal damage group, 
and control group (< 30mg/g), which is the normal renal 
function group. The number of patients in the two groups 
is 191 and 322, respectively.

In the comparison of the data of the two groups 
of patients, the levels of fasting blood glucose(FBG), 
triglyceride(TG), uric acid(UA), and red cell distribu-
tion width(RDW) in the positive group are greatly 
higher than those in the control group. Furthermore, 
the differences between the two groups are statistically 
significant (P <0.05). The levels of sex ratio, body mass 
index(BMI), high-density lipoprotein(HDL), low-density 
lipoprotein(LDL), blood urea nitrogen(BUN), and serum 
creatinine(Scr) are similar. The differences are not statis-
tically significant (P > 0.05). See Table 1.

Exploratory data analysis
Exploratory data analysis is a data analysis method 
[10, 11] to explore data structures utilizing mapping, 

Fig. 1  The steps of model construction
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tabulation, equation fitting, calculation of characteris-
tic quantity, and other means for existing data under the 
minimum prior assumption, specifically including sta-
tistical characteristics of data fields, missing situation, 
distribution, correlation and so on, to facilitate the later 
feature engineering and model construction.

We conducted exploratory data analysis on the col-
lected hypertension patient data. First, we count the 
number, missing values, mean, standard deviation, 
median, minimum, maximum, 25% quantile, 50% quan-
tile, and 75% quantile of individual attributes. Then 
according to the statistical results, we select the appro-
priate attributes for the distribution statistics. Finally, we 
count the P-value of a single attribute, ACR and the cor-
relation coefficient between multiple attributes. The rele-
vant processing results are shown in Tables 2, 3, 4, and 5.

The features with more missing values (> 40%) and unim-
portant can be deleted. Features with fewer missing values 
can be filled. We can use statistics to fill in mean, median, 
and mode. It is recommended to use the median for contin-
uous values, excluding the influence of some large or small 
outliers. For discrete values, we can use mode to fill in.

Feature construction
Based on the information obtained from data analysis 
and combined with the understanding of hypertensive 
renal damage, we analyze and construct the following 
features.

1.	 Personal information features: height, weight, 
age, sex, BMI, smoking or not, and body surface 
area(BSA).

2.	 Ambulatory blood pressure features: 24-h average 
SBP, 24-h average DBP, 24-h average heart rate, day 
average SBP, day average DBP, day average heart rate, 
night SBP drop rate, night DBP drop rate, blood pres-
sure circadian rhythm, night average DBP, and night 
average SBP.

3.	 Blood biochemical and routine features: HDL, TG, 
FBG, UA, LDL, RDW, and BUN.

Feature selection
Feature selection is also called feature subset selection or 
attribute selection. It refers to selecting a subset of fea-
tures from all features to make the constructed model 
best [12]. In the application of data mining, the number 
of features is usually large, among which there may be 
uncorrelated features, and there may be interdependence 
between the features. It is easy to increase the model 

Table 1  The Comparison of clinical and biochemical data

Bold indicates that the levels of FBG, TG, UA and RDW in the early renal injury 
group are significantly higher than those in the normal renal function group, 
and the difference between the two groups is statistically significant (p < 0.05)

Variable Control group Positive group P value

Age 46.37 ± 7.54 47.61 ± 8.14 0.083

Female ratio 36% 40.8% 0.277

BMI (kg/m2) 26.03 ± 3.50 25.63 ± 3.26 0.187

HDL (mmol/L) 1.13 ± 0.22 1.10 ± 0.21 0.096

LDL (mmol/L) 3.13 ± 0.87 3.25 ± 0.77 0.136

BUN (mmol/L) 4.80 ± 1.17 4.87 ± 1.07 0.504

Scr (µmol/L) 70.19 ± 13.13 69.63 ± 12.91 0.641

FBG (mmol/L) 5.63 ± 0.67 5.76 ± 0.64 0.027
TG (mmol/L) 1.45–2.12 1.52–2.34 0.047
UA (µmol/L) 337.99 ± 46.87 351.50 ± 49.66 0.002
RDW (%) 12.39 ± 0.63 13.32 ± 0.85  < 0.001
ACR (mg/g) 15.87 ± 8.72 74.88 ± 56.42  < 0.001

Table 2  Missing value statistics

Variable N Missing value %

Hcy 190 323 63.0

2hPBG 219 294 57.3

RVD 313 200 39.0

RVOT 317 196 38.2

WBC 322 191 37.2

RBC 323 190 37.0

Hb 323 190 37.0

Plt 323 190 37.0

A_peak_max 325 188 36.6

EA 325 188 36.6

IVST 330 183 35.7

LVDS 330 183 35.7

LVM 330 183 35.7

LyVII 330 183 35.7

LVH 330 183 35.7

FS 330 183 35.7

E_peak_max 330 183 35.7

LVPWT 331 182 35.5

EF 331 182 35.5

LVEDD 332 181 35.3

SBP_cv_24 h 396 117 22.8

DBP_cv_24 h 396 117 22.8

Ald 413 100 19.5

PRA 415 98 19.1

Ang2 415 98 19.1

hs-CRP 481 32 6.2

ALT 493 20 3.9

AST 494 19 3.7
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training time and cause a curse of dimensionality [13]. In 
addition, the model will also become complicated, and its 
generalization ability will decline.

For feature selection, we use the following methods:

1.	 Using the variance selection method, we calculated 
the variance of each feature and then eliminated the 
feature with variance more minor than the threshold.

2.	 We calculated the correlation coefficient and P-value 
between each feature and the target value using the 
correlation coefficient method.

3.	 Using the variance inflation factor to determine the 
correlation between variables to perform multicollin-
earity detection.

4.	 Using the random forest as the base model to train to 
get the importance of different features for selection.

Model optimization and fusion
We use the K-Fold function for cross-validation in the 
scikit-learn(Python package) to divide the data into 
five sets of train sets and test sets to perform 5-fold 
cross-validation [14]. It can effectively avoid the risk of 
overfitting caused by limited data volume. The data dis-
tribution in the train set and test set is similar to the 
distribution of all data.

In order to determine the best prediction model, we 
use Random Forest, Extra-Trees, and XGBoost to train 
the data. During model training, we use grid search to 
adjust and optimize model parameters. Grid search is 
a model parameter optimization method [15] whose 
essence is an exhaustive method. We select a small 
finite set for each parameter to explore and carry out 
the Cartesian product on these parameters to obtain 
several sets of parameters. Then, grid search uses each 
set of parameters to train the model and picks out the 
best set of parameters [16].

After the above model training is completed, we use 
the Stacking method to integrate the above models to 
build a new model to improve the prediction effect. The 
Stacking model fusion strategy is based on the idea of 
K-fold cross-validation, whose essence is a hierarchi-
cal model integration framework to stack the learning 
ability of different models for different features. How-
ever, as the number of layers increases, there is a risk 
of overfitting. Therefore, we usually use a two-layer 
model to reduce the number of data repeat training. 
The first layer model comprises several base learners 
whose input is the original train set. Moreover, the sec-
ond layer model uses the output of the first layer model 
as the train set to retrain. The structure of the Stacking 
model fusion strategy is shown in Fig. 2.

We use the two-dimensional fusion model based 
on the stacking strategy. The first layer model uses 
the combination of random forest, extra trees, and 

Table 3  Data distribution statistics

Variable Distribution Frequency Percentage %

ACR​ 0 322 62.8

1 191 37.2

BMI 24–28 235 45.8

 < 24 149 29.0

 > 28 129 25.1

Blood pressure type Dipper 246 48.0

Non-dipper 231 45.0

Reverse-dipper 27 5.3

Deep-dipper 9 1.8

HFBG No 369 71.9

Yes 144 28.1

HTG No 301 58.7

Yes 212 41.3

LDL-C No 410 79.9

Yes 103 20.1

Proteinuria No 322 62.8

Yes 191 37.2

Sex Male 319 62.2

Female 194 37.8

Age 35–44 225 43.9

45–54 182 35.5

55–64 106 20.7

RDW  < 12.2 129 25.1

12.2–12.7 146 28.5

12.7–13.2 114 22.2

 > 13.2 124 24.2

Table 4  Multi-collinearity analysis

Bold means that the VIF value is greater than 5, indicating that there is 
multicollinearity

Variable Tolerance VIF

cDBP 0.333 3.007

24hDBP 0.010 96.394
Day DBP 0.004 262.553
Night SBP drop rate 0.006 176.494
Night DBP drop rate 0.007 150.070
NightDBP 0.003 353.446
SBP_cv_24 h 0.581 1.720

DBP_cv_24 h 396 1.762

cPP 0.311 3.212

24hPP 0.023 42.607
Day PP 0.005 213.029
Night PP 0.004 226.067
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Table 5  Data statistical analysis

Variable Average Standard 
deviation

Median Min Max 25% Quantile 50% Quantile 75% Quantile

ACR​ 37.84 2.00 24.90 0.00 295.70 12.80 24.90 36.55

Age 46.83 0.34 46.00 35.00 64.00 40.00 46.00 53.00

BMI 25.88 0.15 25.56 17.48 40.32 23.53 25.56 28.08

Height 168.40 0.38 170.00 145.00 192.00 161.00 170.00 175.00

WT 73.70 0.57 73.00 42.00 138.00 65.00 73.00 81.00

ald 0.16 0.00 0.16 0.01 0.35 0.13 0.16 0.19

Ang2 75.33 1.43 66.92 27.63 229.29 57.89 66.92 84.85

ALT 30.96 1.11 23.00 3.00 222.00 16.00 23.00 36.00

AST 25.35 0.49 22.00 10.00 107.00 19.00 22.00 28.00

BUN 4.82 0.05 4.70 0.84 9.90 4.00 4.70 5.60

Scr 69.98 0.58 71.00 42.00 97.00 59.00 71.00 80.00

TC 5.14 0.04 5.13 3.44 7.89 4.51 5.13 5.72

cPP 52.55 0.48 51.00 25.00 92.00 45.00 51.00 59.00

hs-CRP 2.40 0.22 0.98 0.05 52.15 0.44 0.98 2.17

24hDBP 87.80 0.39 87.00 64.00 122.00 82.00 87.00 93.00

cDBP 99.93 0.39 100.00 69.00 130.00 93.00 100.00 105.50

cv_24 h 11.23 0.14 11.00 1.23 20.27 9.33 11.00 13.00

DBP 91.26 0.40 91.00 64.00 125.00 85.00 91.00 97.00

NightDBP 80.75 0.43 80.00 58.00 118.00 74.00 80.00 86.00

Night SBP drop 11.45 0.30 11.83 -10.00 30.43 6.82 11.83 16.34

Rate

day PP 48.86 0.40 48.00 29.00 81.00 42.00 48.00 54.00

NightSBP 126.86 0.56 126.00 97.00 171.00 118.00 126.00 134.00

Night DBP drop 9.44 0.25 9.87 -9.09 25.76 5.93 9.87 13.36

Rate

Night PP 46.10 0.40 45.00 27.00 81.00 39.50 45.00 52.00

eGFR 105.02 1.09 102.06 61.63 268.03 88.72 102.06 116.34

FS% 37.51 0.43 37.00 23.00 107.00 33.00 37.00 40.00

FBG 5.68 0.03 5.54 3.75 8.78 5.24 5.54 5.99

Hb 150.01 0.88 151.00 85.00 195.00 140.00 151.00 161.00

Clinic heart rate 78.44 0.41 80.00 52.00 104.00 72.00 80.00 84.00

Day avg heart rate 78.44 0.39 78.00 50.00 109.00 73.00 78.00 84.00

Night avg heart rate 65.08 0.35 65.00 42.00 101.00 60.00 65.00 70.00

24hSBP 135.68 0.49 134.00 111.00 175.00 128.00 134.00 141.50

cSBP 152.47 0.53 150.00 123.00 193.00 143.00 150.00 159.00

24hCV 12.29 0.19 11.63 5.00 26.58 9.49 11.63 14.48

hPP_24 h 47.88 0.39 46.00 19.00 79.00 42.00 46.00 53.00

24 h avg heart rate 74.28 0.37 74.00 48.00 106.00 69.00 74.00 79.00

DaySBP 140.12 0.49 139.00 113.00 180.00 133.00 139.00 146.00

LVH 0.47 0.03 0.00 0.00 1.00 0.00 0.00 1.00

LVESD 29.77 0.22 30.00 2.00 44.00 27.00 30.00 32.00

LVEDD 47.29 0.26 47.00 9.70 65.00 45.00 47.00 50.00

LVPWT 9.63 0.10 9.60 6.80 30.00 9.00 9.60 10.00

LVMI 110.57 1.33 108.62 54.41 266.19 94.22 108.62 123.41

RVED 20.30 0.17 20.00 12.00 33.00 18.00 20.00 22.00

RVOTD 28.14 0.36 28.00 16.00 73.00 25.00 28.00 30.00

A_peak_max 75.12 1.09 73.00 26.00 159.00 60.00 73.00 88.00

E_peak_max 79.04 1.13 77.00 30.00 143.00 65.75 77.00 92.00

E/A 1.12 0.02 1.15 0.50 3.39 0.77 1.15 1.36
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XG-Boost as the base learner to train the data, and the 
second layer model uses XGBoost to train the output of 
the first layer model.

Result
Risk factors
The steps of feature selection are shown in Fig. 3. After 
feature selection, we select eight features. According to 
the order of importance from high to low, they are as fol-
lows: drop rate of systolic blood pressure at night(night 
SBP drop rate), red blood cell distribution width(RDW), 
blood pressure circadian rhythm, average diastolic blood 

Table 5  (continued)

Variable Average Standard 
deviation

Median Min Max 25% Quantile 50% Quantile 75% Quantile

EF% 65.82 0.34 66.00 33.00 79.00 62.00 66.00 70.00

2hPBG 7.49 0.15 6.99 3.73 16.30 5.90 6.99 8.20

TG 1.85 0.02 1.79 1.00 3.89 1.46 1.79 2.22

LDL-C 3.18 0.04 3.20 1.17 5.92 2.62 73.20 3.74

HDL 1.12 0.01 1.10 0.56 1.91 0.96 1.10 1.26

UA 343.02 2.13 343.80 226.20 471.10 307.25 343.80 376.95

WBC 6.46 0.10 6.23 2.82 16.82 5.29 6.23 7.31

Plt 237.15 2.96 231.00 115.00 476.00 201.00 231.00 267.00

RBC 4.96 0.03 4.97 3.73 8.04 4.63 4.97 5.28

RDW 12.74 0.04 12.70 11.00 16.00 12.20 12.70 13.20

Hcy 15.06 0.83 11.80 5.90 114.20 9.00 11.80 15.83

Fig. 2  The structure of Stacking model fusion strategy

Fig. 3  The steps of feature selection

Table 6  The importance of features

Order Feature name Importance

1 Night SBP drop rate 0.39149

2 RDW 0.20044

3 Blood pressure circadian rhythm 0.15787

4 Day average DBP 0.07692

5 BSA 0.05067

6 Smoking 0.04294

7 Age 0.04236

8 HDL 0.03732

Table 7  The comparison of fivefold cross validation for full 
features vs selected features

Feature Avg precision Avg recall Avg F1 score

Full features 0.89685 0.79086 0.82250

Selected features 0.93824 0.84595 0.88086
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pressure at daytime(day average DBP), body surface 
area(BSA), smoking, age, and HDL. The importance of 
features is shown in Table 6. Besides, we have compared 
full features with selected features results based on the 
Stacking strategy are shown in Table 7. It shows that the 
selected eight features are of great significance for pre-
dicting renal damage.

Model
The precision, recall, F1 score results of 5-fold cross- 
validation for each model are shown in Table 8. In single 
model training, the effect of Random Forest and XGBoost 
is similar. Compared with Random Forest, Extra-Trees, 
and XGBoost, the two-dimensional fusion model based 
on the Stacking method has the highest precision, recall 
rate, F1 value. The first layer of the fusion model is con-
sists of XGBoost, Extra-Trees, and RF. And the second 
layer of the fusion model is XG-Boost.

The precision of each fold in 5-fold cross-validation 
for each model is shown in Fig.  4. The recall is shown 
in Fig. 5. The F1 score is shown in Fig. 6. The Precision-
Recall curve of each model is shown in Fig. 7. From the 
training results of each fold, we can find that the training 
effect of the fusion model based on the Stacking method 
in each fold is in the top two. It shows that the fusion 
model based on the Stacking method integrates the 

learning ability of different models for different features 
to improve the prediction effect on all data. In addition, 
as can be seen from Fig. 7, the stacking effect is the best 
of all models.

Discussion
Risk factor analysis
In screening CKD patients and monitoring renal func-
tion in the treatment, the main clinical index is serum 
creatinine. But serum creatinine assessment is not 
sensitive to detecting early subclinical changes and 
predicting renal function decline after treatment. In 
the preclinical stage of CKD, we need new monitoring 
indicators to evaluate such patients. Early renal damage 
can be judged by microalbuminuria and glomerular fil-
tration rate (GFR). However, the role of urinary micro-
albumin has not been deemed significant due to red 
measurement errors. GFR is affected by many factors. 

Table 8  The results of fivefold cross validation for each model

Model Avg precision Avg Recall Avg F1 score

RF 0.92746 0.83227 0.86792

ExtraTrees 0.92378 0.80968 0.84462

XGBoost 0.93522 0.82510 0.86564

Stacking 0.93824 0.84595 0.88086

Fig. 4  The precision of each fold

Fig. 5  The recall of each fold

Fig. 6  The F1 score of each fold
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Even though nuclear medicine method measurement is 
a gold standard, it is seldom carried out due to the com-
plexity of cost and operation. The estimated GFR can 
not reflect the real renal function because the formula 
is complicated, and the results of different formulas are 
pretty different. This part of the study aims to under-
stand the early renal damage of untreated hypertension 
patients, screen the relevant risk factors, and find out 
specific high-risk factors. It also provides quantitative 
indicators (early warning signals) for early renal dam-
age hypertension patients and cardiovascular clinicians 
to prevent CKD’s progress better.

Abnormal blood pressure indexes
The comparison results between the two groups show 
that the patients in the early renal damage hyperten-
sion group are older than those in the control group. 
Moreover, their HDL and BSA are lower, and their blood 

pressure index is higher than the control group. Espe-
cially the nighttime blood pressure level and blood pres-
sure variability. Further analysis shows that abnormal 
blood pressure rhythm in the two groups is quite differ-
ent. In the early renal damage group, the proportion of 
non-dipper type, reverse-dipper type, and deep dipper 
type account for 75.9%, 14.1%, and 3.1%, respectively, 
while the normal rhythm is more petite than 10%. In con-
trast, 72.4% of the patients in the control group have nor-
mal blood pressure rhythm. The blood pressure circadian 
rhythm analysis indicates that the difference in nighttime 
blood pressure drop rate between the two groups is sta-
tistically significant. The drop of nighttime blood pres-
sure is weakened in the early renal damage group.

Cheng Dong et  al. [17] found that the drop of blood 
pressure at night was a significant predictor of renal dam-
age in hypertensive patients. Mingling et al. [18] studied 
the albuminuria and blood pressure level of hypertension 

Fig. 7  The Precision-Recall curve of each model
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patients in five different regions in China. It found that 
poor blood pressure control was an essential factor for 
proteinuria. Effective blood pressure control was criti-
cal in reducing proteinuria, improving endothelial func-
tion, and renal protection. Our study finds that SBP, DBP, 
and PP(clinic, 24-h, day, night) in the ACR positive group 
are higher than those in the control group (P < 0.05) to 
indicate that the higher the blood pressure level, the 
higher the incidence of ACR. In addition, our study also 
concludes that the drop rate of nighttime systolic blood 
pressure and the average diastolic blood pressure in the 
daytime are risk factors for ACR occurrence. Further-
more, it shows that controlling blood pressure levels is 
significant for patients with hypertension.

Abnormal blood pressure rhythm
People’s blood pressure is higher in the day and lower 
at night. That is to say, the blood pressure drops during 
sleep at night and is the lowest in the early morning; the 
blood pressure starts to rise in the early morning and then 
presents the first peak. In normal people and patients 
with arytenoid rhythm hypertension, sympathetic activ-
ity, cardiac output, and blood pressure decrease during 
sleep. Huijuan et al. [19] found that compared to patients 
with dipper hypertension, patients with non-dipper and 
anti-dipper hypertension were closely related to early 
renal damage indicators. It indicated a close relationship 
between the abnormal circadian rhythm of blood pres-
sure and early renal damage. Zeming et  al. [20] found 
that the abnormal blood pressure circadian rhythm was 
the important factor causing the early-stage renal dam-
age, reverse-dipper make early-stage renal damage was 
more significant than in the control group. Nighttime 
systolic blood pressure levels and blood pressure circa-
dian rhythm had crucial clinical significance for earlys-
tage renal damage in patients with hypertension.

This study suggests that the ambulatory blood pressure 
level of patients with early renal damage of hypertension 
increases with the increase of urinary microalbumin, 
which is manifested by the increase of nighttime blood 
pressure, significantly the increase of nighttime diastolic 
blood pressure. The study also finds that the early renal 
damage of hypertension is often accompanied by abnor-
mal blood pressure circadian rhythm, and it has existed 
in hypertensive patients without microalbuminuria.

In comparison with the control group, the patients 
with dipper and non-dipper rhythm, the patients with 
anti-dipper rhythm have higher ACR, night SBP, night 
DBP, and night PP. While the decrease of eGFR is more 
prominent than the control group. It suggests that anti-
dipper rhythm plays a relevant and independent role in 
the occurrence and development of early renal damage 
in hypertension, regardless of whether the clinic blood 

pressure level and dynamic blood pressure level are the 
same. In addition, nighttime blood pressure level and cir-
cadian rhythm are positively correlated with ACR but not 
with eGFR. It suggests that the anti-dipper blood pres-
sure circadian rhythm is independently correlated with 
microalbuminuria in patients with hypertension. Our 
study finds that all patients in the anti-dipper rhythm 
group have early renal damage, which may be due to 
a small sample size or a biased selection. However, it is 
enough to show that the early renal damage in the anti-
dipper rhythm group is more severe than in the control 
group. In the future, we need larger samples and more 
evidence to confirm the causal relationship between the 
anti-dipper rhythm and early hypertensive renal damage.

Red blood cell distribution width
A series of studies confirmed the correlation between 
RDW(Red cell Distribution Width) and hypertension. 
Tanindi et  al. [21] found that hypertensive patients had 
higher RDW levels and higher systolic and diastolic 
blood pressure than prehypertensive patients. Perlstein 
et  al. also found that the systolic blood pressure level 
and the proportion of hypertensive patients were signifi-
cantly increased in people with higher RDW [22]; Formal 
et  al. found that RDW is closely related to the delay in 
the reduction of the nighttime blood pressure in hyper-
tensive patients, which is an independent predictor of 
nighttime non-dipper blood pressure [23]. Correlation 
between RDW and renal function has also been reported. 
Ujszaszi et  al. [24] observed that RDW was indepen-
dently associated with decreased renal function in renal 
transplant patients and considered it as a potential new 
auxiliary parameter for clinical evaluation for patients 
with chronic kidney disease. Recently, Solak et al. found 
that RDW was significantly increased in patients with 
CKD from stage 1 to stage 5, which was closely related 
to endothelial dys- function in patients with chronic kid-
ney disease [25]. However, the above studies are limited 
to the CKD population, and their results may be affected 
by drug and disease progression.

This study finds that RDW is associated with early 
renal damage in hypertensive patients, and the ACR 
ratio also tends to increase as RDW increases. Com-
bined with the data in this group, hypertensive patients 
have different degrees of early renal damage. RDW is a 
sensitive indicator for the diagnosis of early renal dam-
age in hypertensive patients, and RDW is a common item 
of routine blood examination. The method is convenient, 
fast, and inexpensive. Of course, RDW, as an indicator 
of risk assessment of early renal damage in hypertensive 
patients, still needs evidence support from prospective 
studies in the future.
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Model analysis
When we use the Stacking method for model fusion, 
the corresponding results may be different when the 
model combination of each layer is different. In order 
to determine the best combination of models, the first 
layer model uses the random combination of Random 
Forest, Extra-Trees, and XGBoost as the basic learner, 
and the second layer uses XGBoost(from the figure of 
precision and recall, the RF is unstable and the gener-
alization ability is weak, so XGBoost is used). Then, we 
carry out 5-fold cross-validation on the data. Through 
comparison, we can find that the average precision of 
two-dimensional fusion model based on Random For-
est is the best. However, the random combination of 
Random Forest, Extra-Trees, and XG- Boost is the 
most stable. And the F1 and recall of two- dimensional 
fusion model based on XGBoost, Random Forest and 
Extra-Trees is the best. Therefore, the random combi-
nation of Random Forest, Extra-Trees, and XGBoost is 
the best. The results of 5-fold cross-validation for each 
model combination are shown in Table 9.

Limitations
There are some limitations in current research. In 
the aspect of screening risk factors of renal damage 
in hypertension, due to the inherent limitations of a 
case-control study, to further clarify the relationship 
between the above risk factors and early renal damage 
in hypertensive patients, it needs to be further con-
firmed by more centers, larger samples, and prospec-
tive studies. In establishing an early warning model 
of renal damage, a small sample is a severe limitation, 
which will affect the precision and generalization abil-
ity of the model. However, the small sample and data 
imbalance are common in clinical research. How to 
apply the model to clinical research still needs further 
exploration.

In order to overcome the limitations of this study, we 
should collect more data about hypertensive patients 
with early renal damage to validate and optimize the 
model. Moreover, we may solve small sample limita-
tions by few-shot learning. In addition, we could fuse 
other models with better effects to get the better result 
[26].

Conclusion
This study mainly carries out the application research 
of data mining combined with routine clinical items in 
early warning of renal damage in hypertensive patients. 
We then use feature engineering and risk factor analy-
sis to screen for risk factors such as the drop rate of sys-
tolic blood pressure at night, red blood cell distribution 
width, blood pressure circadian rhythm, and the aver-
age diastolic blood pressure at daytime as early renal 
damage’s warning sign. On this basis, the early-warn-
ing model of early kidney damage constructed by the 
Stacking model fusion strategy has a better effect than 
the single model. This model can diagnose renal dam-
age in hypertensive patients and has important signifi-
cance for screening high-risk populations. We can try 
to fuse the better model and test its prediction effect 
in the future. At the same time, the methods and ideas 
of this research can also provide new methodologi-
cal references for similar early-warning research and 
evaluation.
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