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Abstract 

Background:  The rapid growth in the complexity of services and stringent quality requirements present a challenge 
to all healthcare facilities, especially from an economic perspective. The goal is to implement different strategies that 
allows to enhance and obtain health processes closer to standards. The Length Of Stay (LOS) is a very useful parame-
ter for the management of services within the hospital and is an index evaluated for the management of costs. In fact, 
a patient’s LOS can be affected by a number of factors, including their particular condition, medical history, or medical 
needs. To reduce and better manage the LOS it is necessary to be able to predict this value.

Methods:  In this study, a predictive model was built for the total LOS of patients undergoing laparoscopic appen-
dectomy, one of the most common emergency procedures. Demographic and clinical data of the 357 patients admit-
ted at “San Giovanni di Dio e Ruggi d’Aragona” University Hospital of Salerno (Italy) had used as independent variable 
of the multiple linear regression model.

Results:  The obtained model had an R2 value of 0.570 and, among the independent variables, the significant vari-
ables that most influence the total LOS were Age, Pre-operative LOS, Presence of Complication and Complicated 
diagnosis.

Conclusion:  This work designed an effective and automated strategy for improving the prediction of LOS, that can 
be useful for enhancing the preoperative pathways. In this way it is possible to characterize the demand and to be 
able to estimate a priori the occupation of the beds and other related hospital resources.
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Introduction
The appendix is a protrusion of the large intestine, 
located where the large intestine joins the small intestine. 
The appendix performs some immunological functions, 
but it is not a fundamental organ [1]. When something, 
such as undigested food residues obstruct the internal 
lumen, it inflames, causing the "appendicitis".

In emergency surgery, one of the most common con-
ditions that require a surgery is appendicitis [2]. Appen-
dicitis is primarily a disease of adolescents and young 
adults with a peak incidence in the second and third 
decades of life. There is a slight male preponderance of 
3:2 in teenagers and young adults. In adults, the inci-
dence of appendicitis is approximately 1.4 times greater 
in men than in women [3]. In general, the risk for men 
and women is estimated at 8.6% and 6.7%, respectively 
[4]. Then, on 100,000 case of acute appendicitis, a range 
between 114.44 and 481.60 require a surgical procedure 
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[5]. This value is a function of the socioeconomic level of 
the countries considered, in fact, the risk of appendicitis 
is rising sharply, especially in industrialized countries.

In the post-war period, thanks to the use of antibiot-
ics and in particular penicillin, mortality was reduced 
(from over 40–2%). In the case of uncomplicated diagno-
sis, mortality is 0.08–0.4% while it rises to 12% in the case 
of perforation [6]. The diagnosis of acute appendicitis is 
predominantly clinical, in that is based on the accurate 
evaluation of the data provided by the anamnestic collec-
tion and on the patient’s physical examination. It can be 
difficult, occasionally taxing the diagnostic skills of even 
the most experienced surgeon [7]. Early diagnosis is an 
essential condition for an effective treatment.

Appendectomy is a surgical procedure that can basi-
cally be performed in two ways: laparoscopic appen-
dectomy (LA) and open appendectomy (OA). Both 
procedures can be decisive, and the choice is conditioned 
in the first place by the patient’s age and the severity of 
appendicitis, also by the surgeon’s skills and the availabil-
ity of hospital resources [8].

Since its introduction in 1983, LA has quickly become 
a common and more adopted practice [9]. Nguyen et al. 
showed both an increased used of LA compared of OA 
and that patients undergoing LA have generally a no 
complicate diagnosis, a shorter length of stay (LOS) and 
fewer post-operative complications, without the increas-
ing of healthcare costs [10]. Kwok KayYau et al., instead, 
showed the efficacy of LA in the complicated appendici-
tis [11]. LA proves once again to be feasible and safe, with 
a significantly shorter operative time, lower incidence of 
wound infection, and reduced LOS compared with OA.

The LOS—measured in days—is defined as the differ-
ence between the date of admission and the date of dis-
charge of the patient. It is linked to the severity of the 
medical conditions, age of patient and any complication 
of the medical diagnosis, or the treatment received [12].

LOS is useful for planning admission and so a direct 
indicator of effectiveness and efficiency that has an 
impact on the organization and costs. For these reasons, 
in literature there are many works that have used LOS 
as an indicator of quality [13–15]. In all aspects of the 
healthcare sector, the extraction of clinical and organiza-
tional data for advanced analysis [16–19] and for process 
improvement [20–23] has proven to be a fundamental 
support in patient management.

LOS modeling is also not new in the literature. Verburg 
et al. [24] compared the performance of eight regression 
models when predicting intensive care unit LOS, failing 
to obtain optimal results for any of them, while Lee et al. 
[25] show the high performance of robust gamma mixed 
regression for the study of pediatric LOS. In addition to 
regression models, multiple linear regression was used 

to predict the LOS for patients undergoing valvuloplasty 
by considering their characteristics [26]. Austin et al. [27] 
use statistical analysis or analyzing LOS in a cohort of 
patients undergoing CABG surgery, while Scala et al. [28] 
show the benefits of implementing classifiers for predict-
ing LOS [29–33].

In this study, a predictive model of the hospital stay 
of patients undergoing laparoscopic appendectomy was 
constructed to study how certain clinical and demo-
graphic variables affect the LOS prediction. The present 
research work is an extension of our previous work [34] 
in which the dataset considered was extended both in 
terms of years of observation and comorbidities con-
sidered, also evaluating the impact of comorbidities. 
The model used is multiple linear regression, which has 
proven effective in different healthcare implementations.

Methods
The dataset, used in this study, included the information 
of 357 patients who have undergone an appendectomy in 
the five years 2016–2020 at the University Hospital “San 
Giovanni di Dio e Ruggi d’Aragona” of Salerno (Italy). The 
following variables was extracted from the hospital infor-
mation system QuaniSDO:

•	 Gender (Male / Female);
•	 Age;
•	 Comorbidities;
•	 Diagnostic Related Group (DRG);
•	 Date of admission, discharge and LC procedure;

From these, the independent and dependent variables 
of the MLR model were obtained. In particular, from the 
analysis of DRG it was possible to identify if a patient had 
Complications during surgery or Complicated diagnosis. 
From the date, the pre-operative LOS (date of LC proce-
dure—date of admission) and the total LOS was calcu-
lated. From the comorbidities, the following additional 
independent variables have been defined:

•	 Presence of comorbidities (yes / no);
•	 Heart Disease (yes / no);
•	 Diabetes (yes / no);
•	 Hypertension (yes / no);
•	 Obesity (yes / no);
•	 Peritonitis (yes / no);
•	 Cancer (yes / no).

Table 1 shows the distribution of the features into the 
sample.

The frequency of the groups of identified comorbidities 
on the population was calculated (Table 2). Frequency is a 
measure of the frequency of a disease or health condition 
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in a population at a particular point in time [35], in this 
case in the five years 2016–2020.

IBM SPSS (Statistical Package for Social Science) ver. 
27 was used to build a MLR model used to predict the 
total LOS [36].

Multiple linear regression
In the last years, several data analytics methodologies 
have been proposed for supporting different applications 
[37, 38]. One of the most used one is the Multiple Lin-
ear Regression, that is a statistical technique that uses 
several explanatory variables to predict the outcome of a 
response variable. Multiple linear regression represents 
an extension of the simple linear regression model that 
uses just one explanatory variable. In this work, MLR 

model was implemented to predict the value of depend-
ent variable Y (total LOS) starting from knowledge of 
several independent variables (Age, Gender, Pre-oper-
ative LOS, Complications during surgery, Complicated 
diagnosis, Presence of comorbidities, Heart Disease, Dia-
betes, Hypertension, Obesity, Peritonitis and Cancer).

The equation for a multiple linear regression is:

where Y is the total LOS, β0 is intercept value, xi are the 
twelve independent variables (pre-operative LOS, pres-
ence of complications, complicated diagnosis, gender, 
age, presence of comorbidities, heart disease, diabetes, 
hypertension, obesity, peritonitis and cancer) and βi are 
the estimated regression coefficients of respective inde-
pendent variables. ε is the model error, i.e. the variation 
of our estimate of Y with respect to the real value. Before 
creating the model, the following six hypotheses must be 
verified:

1.	 The linear relationship between the independent and 
dependent variable. It can be checked through the 
scatter plot.

2.	 Absence of multicollinearity. Multicollinearity deter-
mines important changes in the values of the regres-
sion coefficients. Tolerance = 1-R2

i  and Variance 
Inflation Factor (VIF) =  1

1−R2i
—where R2

i  is the pro-
portion of the variation in the dependent variable 
that is predictable from the independent variables—
are used to verify this assumption.

3.	 The independence of the residuals. In this case, the 
result of Durbin-Watson statistical test is analyzed.

4.	 The residuals have constant variance. It is possible to 
verify it by building the graph of "standardized resid-
uals" against the "standardized predicted value".

5.	 The residuals are normally distributed. To verify this 
assumption a quantile–quantile (Q-Q) plot can be 
used.

6.	 Presence of outliers. The Cook’s distance values 
always less than 1 guarantees the absence of outliers.

As a measure of the goodness of fit of a multiple regres-
sion model, the coefficient of determination, known as 
R2, is used. The linear determination index R2 represents 
the fraction of variance of Y which is explainable by the X 
regressors included in the model.

R2 shows how well the terms (data points) fit a curve or 
line but there is also Adjusted-R2 that indicates how well 

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + . . .+ β12x12 + ε

R2
=

Dev
[

Ŷ
]

Dev[Y ]

Table 1  Features of dataset

Features Dataset
(N = 357)

Gender

M 208 (58.3%)

F 149 (41.7%)

Age

Age ≤ 40 246 (68.9%)

40 < Age ≤ 65 80 (22.4%)

Age > 65 31 (8.7%)

Presence of comorbidities

Yes 82 (23%)

No 275 (77%)

Complications during surgery

Yes 29 (8.1%)

No 328 (91.9%)

Complicated diagnosis

Yes 146 (40.9%)

No 211 (59.1%)

Pre-operative LOS

Mean 0.72

LOS

Mean 4.83

Table 2  Frequency of comorbidities

Comorbidity Frequency (%)

Heart disease 2.2

Diabetes 1.7

Hypertension 5.0

Obesity 1.4

Peritonitis 2.5

Cancer 0.6
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terms fit a curve or line, but adjusts for the number of 
terms in a model. This is why in multiple linear regres-
sion with several predictors it is advisable to observe 
Adjusted-R2 [39].

where n represents the total sample size and m is 
the number of predictors. In most cases it turns out: 
0 ≥ R2 ≥ 1. The R2 and R2 tell whether the regressors are 
suitable for predicting the values of the dependent vari-
able in the sample of data used. If R2 (or R2 ) tends to one, 
the regressors produce good predictions of the depend-
ent variable, if R2 (or R2 ) tends to 0 the opposite is true. 
The level of significant α is equal to 0.05.

Results
Before building the MLR model, the six hypotheses were 
tested. The result of Durbin-Watson test was 1.505 and 
it was between the acceptable range of [1.5; 2.5] to dem-
onstrate the independence of residual. The Cook’s dis-
tance for each observation was less than 1, so there were 
not outliers in the dataset that negatively affect the esti-
mate of the coefficients. For the 2nd assumption, Table 3 
shows the values of VIF, and Tolerance obtained for each 
independent variable.

The VIF values were always less than 10 and the Toler-
ance values were always greater than 0.2, so the absence 
of multicollinearity was verified.

Figure 1 shows the Q-Q plot, a graph “observed value” 
against “expected normal value” used to test the normally 
distribution of the residual values.

As can be seen from the Fig.  1, the points are quite 
close to the line. There are few outliers, but which is 
proven not to affect the goodness of the coefficients 

Adjusted − R2
= 1−

n− 1

n−m− 1

(

1− R2
)

estimation. In fact, Cook’s distance was calculated for 
each point and the maximum value obtained was 0.8, 
which is well below the required threshold 1.

Figure 2 shows the graph of "standardized residuals" 
against the "standardized predicted value" used to ver-
ify that the variance of the residuals is constant.

The variance of residuals was not constant across 
predicted values, so there was a moderate violation 
of homoscedasticity, which was however considered 
acceptable. In fact, Table  4 shows that the analysis 
of variance is significant, i.e. there is indeed a linear 
dependence between the dependent variable and the 
regressor variable (p-value < 0.05). Then, the MLR 
model was implemented. Table  4 shows the perfor-
mance of the model.

The coefficient of determination (R2) was greater than 
0.5 so it can be considered a good preliminary model 
to represent the problem. The p-values below the alpha 
value are highlighted in bold.

Table  5 shows the coefficients of the model and the 
results of the t-test, used to study the significance of the 
regression coefficients (βi). P-values < 0.05 were consid-
ered statistically significant.

The p-value was less than 0.05 for the Pre-operative 
LOS, the Presence of complication, Complicated diag-
nosis and Age. Among these variables that significantly 
influence LOS, the pre-operative LOS has the highest 
coefficient in accordance with the definition of total 
LOS (pre-operative LOS + post-operative LOS).

Table 3  Collinearity statistics

Input variable Tolerance VIF

Pre-operative LOS 0.921 1.086

Presence of complications 0.484 2.066

Complicated diagnosis 0.869 1.151

Gender 0.895 1.117

Age 0.632 1.583

Presence of comorbidities 0.543 1.842

Heart disease 0.693 1.444

Diabetes 0.736 1.358

Hypertension 0.748 1.337

Obesity 0.915 1.093

Peritonitis 0.639 1.565

Cancer 0.943 1.060

Fig. 1  Normal Q-Q Plot of Standardized Residual
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Fig. 2  Plot of "standardized residuals" against the "standardized predicted value"

Table 4  Model summary and Fisher’s exact test

Model R R2 Adjusted—R2 Std. Error of the Estimate Sum of squares Degrees of 
freedom

Mean square F p-value

Regression 0.764 0.584 0.570 2.026 1984.572 12 165.381 40.272  < 0.0001
Residue 1412.678 344 4.107 -

Tot 3397.249 356 -

Table 5  Standardized and Unstandardized coefficients with p-values of the MLR analysis

Variable Unstandardized coefficients Standardized coefficients 
beta

t p-value

B Std. error

Intercept 7.542 0.760 – 9.919 0.000
Pre-operative LOS 0.941 0.066 0.516 14.240 0.000
Presence of complications − 3.949 0.573 − 0.344 − 6.887 0.000
Complicated diagnosis − 0.863 0.234 − 0.137 − 3.684 0.000
Gender − 0.160 0.230 − 0.026 − 0.696 0.487

Age 0.024 0.007 0.148 3.393 0.001
Presence of comorbidities 0.740 0.346 0.101 2.139 0.033

Heart disease 0.237 0.871 0.011 0.272 0.786

Diabetes − 1.861 0.972 − 0.078 − 1.913 0.057

Hypertension 1.053 0.563 0.075 1.857 0.064

Obesity − 0.911 0.954 − 0.035 − 0.954 0.341

Peritonitis − 0.649 0.856 − 0.033 − 0.758 0.449

Cancer − 1.998 1.480 − 0.048 − 1.350 0.178
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Discussion
The aim of this work was to build a predictive model, 
using the multiple linear regression, of the total LOS for 
patients undergoing a laparoscopic appendectomy at 
"San Giovanni di Dio e Ruggi d’Aragona" University Hos-
pital of Salerno (Italy) in the five-year period 2016–2020. 
Starting from a group of selected information (Gender, 
Age, Comorbidities, Diagnostic Related Group (DRG), 
Date of admission, Date of discharge and Date of LC 
procedure) the independent variables of the model were 
obtained. In particular, the analysis of the comorbidi-
ties made it possible to divide patients into subgroups by 
categories of pathologies with higher frequency in our 
sample.

A simple model has been obtained with a value of R2 
equal to 0.570. The value of R2, even if slightly, exceeds 
the value of 0.5 that support its use for this task. In fact, 
the linear models have the advantage of being easy to 
understand and use during the activities carried out by 
healthcare staff. The results of t-test demonstrate that 
Pre-operative LOS, Presence of complication, Com-
plicated Diagnosis and Age are the variables that most 
influence the total LOS. The Pre-operative LOS is a value 
that we expected because it is linked with the definition 
of LOS. The result of the influences is actually in line 
with what can be read from the literature on the topic. 
For example, Liu et al. [40] show how age is a factor influ-
encing procedures related to 18 different DRGs. Remain-
ing in the theme of appendectomy, Ponsiglione et al. [41] 
showed how in procedures performed in urgency there 
is a strong link between LOS and comorbidities, while 
Demir et  al. [42] highlight how both postoperative and 
total LOS of the patients undergoing appendectomy are 
more likely to be affected by patients’ demographic char-
acteristics and clinical needs. In addition, other variables 
not included in this study have significant effects on LOS. 
For example, Crandall et al. [43] showed as the operative 
time of day was a surprisingly important determinant of 
hospital LOS while Cheong et al. [44] highlighted a sig-
nificantly longer hospital stay was associated with open 
appendectomy, pediatric surgeon, and the Territories for 
simple appendicitis in pediatric patients.

The multi-year study showed a dependence of total 
LOS on age that was not evident in the previous model 
[30]. This information is important for the possible crea-
tion of pathways for specific age groups, for the manage-
ment of complications or for the standardization of the 
pre-operative phase, as already done by the hospital for 
femur fracture in patients older than 65 years [45].

This work demonstrated that the MLR represents a 
valid preliminary support to characterize the demand 
and to be able to estimate a priori the occupation of the 
beds and the use of other hospital resources.

Although the work is novel in terms of sample size and 
number of comorbidities analyzed, it is not without limi-
tations. In particular, the model is not validated through 
the use of datasets from other hospitals, the impact that 
other procedures, such as those related to possible com-
plications, may have on LOS is not included, and the 
value of R.2 is slightly above the 0.5 value and this makes 
it necessary to search for a more robust predictive model. 
For example, classification algorithms (such as Logistic 
Regression) could be a valid alternative [46].

Conclusion
In this work, the data of 357 patients undergoing LC at 
"San Giovanni di Dio e Ruggi d’Aragona" University Hos-
pital of Salerno (Italy) in the five-year period 2016–2020 
was study using MLR model, whose aim is to predict LOS 
on the basis of patients’ clinical and demographic vari-
ables. Among the independent variables, Pre-operative 
LOS, presence of complication, complicated diagnosis 
and age are the variables that most influence the total 
LOS. The results are in line with what can be found in 
the scientific literature, in which the impact of age, com-
plicated diagnoses, and complications is discussed for 
several clinical procedures including appendectomy. The 
model, in addition, has good performance that validates 
it as a prediction tool to be given for use by clinicians. 
The linear model, however, although very simple in its 
interpretation, could not be robust enough. Therefore, 
future developments will include validation of the model 
with multicenter studies as well as the use of advanced 
data processing tools.
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Stay.
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