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Abstract 

Introduction:  The COVID-19 pandemic overwhelmed healthcare systems with severe shortages in hospital resources 
such as ICU beds, specialized doctors, and respiratory ventilators. In this situation, reducing COVID-19 readmissions 
could potentially maintain hospital capacity. By employing machine learning (ML), we can predict the likelihood of 
COVID-19 readmission risk, which can assist in the optimal allocation of restricted resources to seriously ill patients.

Methods:  In this retrospective single-center study, the data of 1225 COVID-19 patients discharged between Janu‑
ary 9, 2020, and October 20, 2021 were analyzed. First, the most important predictors were selected using the horse 
herd optimization algorithms. Then, three classical ML algorithms, including decision tree, support vector machine, 
and k-nearest neighbors, and a hybrid algorithm, namely water wave optimization (WWO) as a precise metaheuristic 
evolutionary algorithm combined with a neural network were used to construct predictive models for COVID-19 read‑
mission. Finally, the performance of prediction models was measured, and the best-performing one was identified.

Results:  The ML algorithms were trained using 17 validated features. Among the four selected ML algorithms, the 
WWO had the best average performance in tenfold cross-validation (accuracy: 0.9705, precision: 0.9729, recall: 0.9869, 
specificity: 0.9259, F-measure: 0.9795).

Conclusions:  Our findings show that the WWO algorithm predicts the risk of readmission of COVID-19 patients more 
accurately than other ML algorithms. The models developed herein can inform frontline clinicians and healthcare 
policymakers to manage and optimally allocate limited hospital resources to seriously ill COVID-19 patients.
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Introduction
The coronavirus disease 2019 (COVID-19) or acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) is a 
highly transmissible and widespread infection that, in 
its severe form, causes serious damage to the respiratory 
tract and in some individuals leads to pneumonia, multi-
organ failure (MOF), and even death [1, 2]. The unknown 

clinical course and behavior of COVID-19 contributed 
to ambiguous discharge criteria for hospitalized patients 
[3].  Furthermore, the variability and dynamic nature of 
the virus and its new variants led to resistance to treat-
ment and vaccinations [4–6]. According to reports, about 
5% of definitive COVID-19 cases require hospitalization 
care services, and the rate of hospital readmission due 
to this disease varies from 2 and 10% in different stud-
ies [7, 8]. This rate varies depending on age, body mass 
index, underlying diseases, sex, vaccination, disease 
severity, and SARS-CoV-2 (COVID-19) variant types 
(Alpha, Beta, Delta, Omicron) [9–11]. After second-and 
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third-dose vaccination, this rate considerably decreased 
[12].

Hospital readmission is defined as the admission of a 
patient to a hospital at a specific time within 30 to 60 days 
after discharge from the hospital. Readmissions represent 
important and costly events that impose a heavy burden 
on patients’ families and the healthcare systems [13, 14]. 
Hospital readmissions are mostly accountable for the 
reputation of the healthcare settings, causing notoriety 
and indicating clinicians’ carelessness [15]. Hospital read-
mission has received increasing attention as the main 
performance indicator for evaluating the quality of care 
given to patients [16, 17]. Studies report that over 60% of 
hospital readmissions are potentially preventable. How-
ever, due to the varied and complex natures of factors 
causing disease recurrence and readmissions, caregiv-
ers cannot process all the information to precisely detect 
endangered patients [18]. Thus, increasing attention is 
being paid in the scientific community to this problem 
from a data analysis viewpoint [19].

Hospital readmission is known as a key indicator of the 
quality of service during the COVID-19 pandemic [20]. 
As the prevalence of COVID-19 increased and many 
communities became severely impacted, the healthcare 
systems of many countries failed to meet the growing 
needs of patients [21]. Many patients in such conditions 
were discharged after admission with relative recovery. 
Meanwhile, due to the unknown and aggressive nature 
of the disease, the readmission rate of patients increased 
[22, 23]. Readmission imposes additional costs on health-
care organizations and patients [22]. It also reduces the 
quality indicators of service delivery and raises the rate 
of serious complications and death during the pandemic 
[24, 25].

The use of clinical evaluation methods to predict dis-
ease re-infection and readmission is usually expensive, 
difficult, and lacks optimal predictive accuracy as it does 
not use cumulative patient data [26]. Scoring indices and 
conventional statistical models can only analyze simple 
and linear relationships between variables. Nevertheless, 
the unknown and multidimensional nature of COVID-19 
requires innovative technologies such as artificial intelli-
gence (AI) to analyze the nonlinear and complex relation-
ships between variables [26–35]. Machine learning (ML), 
which is a major branch of AI, reveals new and practical 
patterns from huge raw datasets [36, 37]. ML algorithms 
diminish uncertainties and ambiguities related to new 
diseases such as COVID-19 by providing diagnostic and 
predictive models based on valid and scientific evidence 
[38, 39]. The multifaceted interaction between readmis-
sion and possible risk factors makes the precise predic-
tion of readmission difficult. ML approaches can deal 
with high-dimensional clinical data to produce precise 

patient risk stratification models and shape healthcare 
decisions through the customization of care [36, 39].

Numerous studies have examined the application 
of ML and deep learning (DL) methods to predict the 
disease recurrence, reinfection, and patient deteriora-
tion among recovered COVID‐19 patients [40–44]. ML 
methods are more accurate than conventional statistical 
models for predicting hospital readmission in COVID-
19 hospitalized patients [45–47]. Therefore, this study 
aimed to apply ML algorithms to predict the likelihood of 
hospital readmission of COVID-19 patients. The current 
study sought to answer two questions: What are the most 
important predictor variables affecting the readmission 
of COVID-19 patients? and Which ML model is more 
effective for predicting readmission in these patients?

Materials and methods
Study design
The current research was a retrospective study on the 
data of 2854 patients discharged from a 400-bed aca-
demic hospital in Abadan, Iran, from January 9, 2020 to 
October 20, 2021. The patient data were extracted from 
the COVID-19 hospital-based registry database. The 
implemented registry system is a comprehensive web-
based application software that records patient data for 
clinical and research purposes in five main sections: 
demographic, diagnostic and therapeutic, paraclini-
cal, and history and information. Patients aged less than 
18  years, those who were admitted for non-COVID-19 
conditions, died during hospitalization, were discharged 
against medical advice, or had incomplete case records 
with > 70% missing data were excluded from the study.

The study was conducted in three phases. In the first 
phase, the primary raw dataset was preprocessed. In 
the second phase, important features for predicting the 
risk of hospital readmission in COVID-19 patients were 
selected using meta-heuristic algorithms (MHAs). After 
identifying the most important features, three tradi-
tional ML algorithms and a meta-heuristic algorithm for 
water wave optimization using a neural network were 
trained. Finally, the developed models’ performances 
were compared, and the best algorithm was determined. 
The study protocol was approved by the Abadan Univer-
sity of Medical Science Ethics Board (ABADANUMS.
REC.1400.136),https://​ethics.​resea​rch.​ac.​ir/​Propo​salCe​
rtifi​cateEn.​php?​id=​24611​8&​Print=​true&​NoPri​ntHea​
der=​true&​NoPri​ntFoo​ter=​true&​NoPri​ntPag​eBord​er=​
true&​Lette​rPrint=​true).

Data preparation
We clustered certain classes to decrease the number 
of classes of these variables. Records with more than 
70% of missing data were excluded from the analysis. 

https://ethics.research.ac.ir/ProposalCertificateEn.php?id=246118&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true
https://ethics.research.ac.ir/ProposalCertificateEn.php?id=246118&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true
https://ethics.research.ac.ir/ProposalCertificateEn.php?id=246118&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true
https://ethics.research.ac.ir/ProposalCertificateEn.php?id=246118&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true
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For the remaining missing values, presuming that the 
missing data were distributed randomly, the imputa-
tion technique which is a common method to deal 
with missing values was adopted [19]. To manage noisy 
data, the normal range of each variable was first defined 
using the opinion of two infectious diseases special-
ists, a virology expert, and a hematology expert. Then, 
we specified all the values that were outside the defined 
range and filled them by referring to patient records 
or the responsible doctor. Because the p-value cut-off 
point was < 0.05 in this study, the median substitution 
was used instead of the mean for the missing values. In 
other words, we did not fill them with the mean values 
due to the uneven distribution of variables.

Data balancing
A major barrier to the use of ML algorithms is the 
problem of imbalanced data, which happens when 
classes are not categorized equally. In the selected 
dataset, the amount of data in outcome classes is sig-
nificantly imbalanced and contains more samples 
related to the non-readmission class (1136 cases), while 
the readmission class is much smaller (only 89 cases). 
Accordingly, the developed models often deliver biased 
results towards the overriding class, and the ML mod-
els are much more likely to categorize new observations 
into the majority class. Herein, to handle class imbal-
ance, the synthetic minority over-sampling technique 
(SMOTE) was employed in the Imbalanced-Learn tool-
box to balance the dataset. We performed a Kolmogo-
rov–Smirnov statistical test to check the normality and 
skewness of the data, the results of which showed that 
the data followed a normal distribution.

Predictor and outcome variables
Predictor variables
The data for analysis included six categories of predic-
tor variables extracted from the hospital’s COVID-19 
dataset. Sixty variables were categorized as demographic 
characteristics (six variables), clinical manifestation (14 
variables), medical history and comorbidities (eight vari-
ables), laboratory results (28 variables), treatment (one 
variable), and radiological indicators (two variables).

Outcome variable
It calculated whether the patient was readmitted on the 
last visit within 30 days after being discharged from the 
hospital on the penultimate visit (coded 1) or not (coded 
0). The detailed descriptions of all the variables are listed 
in Table 1.

Feature selection
Feature selection can be performed to enhance the pre-
diction precision and reduce the algorithm’s run time 
by selecting the most important variables, thereby alle-
viating the model’s computational intricacy [48]. In this 
study, the efficiency of several feature selection methods 
was compared to identify the best predictors. To this 
end, six well-known MHAs, including horse herd opti-
mization algorithm (HOA), particle swarm optimization 
(PSO), genetic algorithm (GA), grey wolf optimization 
(GWO), differential evolution (DE), and Harris hawks 
optimization (HHO) were utilized for feature selection. 
In this phase, all the experiments were carried out using 
MATLAB 2019. To evaluate the performance of MHAs 
in identifying the most effective factors, three perfor-
mance evaluation metrics of the mean fitness value, clas-
sification accuracy using k-nearest neighbors (KNN), and 
the number of selected features were calculated.

Table 1  A list of variables and their corresponding category utilized in predicting COVID-19 readmission risk

Type Category Variables

Inputs Demographic characteristics Age, sex, height, weight, blood group, hospitalization length of stay (LOS)

Clinical manifestation Dry cough, nausea, headache, gastrointestinal (GI) manifestation, Chill, loss of taste and smell, rhinor‑
rhea, sore throat, contusion, high body temperature, muscular pain, vomiting, dyspnea

Past medical history and comorbidities Cardiac disease, smoking, pneumonia, hypertension (diastolic/ systolic), alcohol addiction, diabetes, 
and other underline diseases

Laboratory results Red-cell count, hematocrit, hemoglobin, absolute lymphocyte count, blood calcium, blood potas‑
sium, absolute neutrophil count, alanine aminotransferase (ALT), magnesium, prothrombin time, 
alkaline phosphatase, platelet count, hypersensitive troponin creatinine, white cell count, aspar‑
tate aminotransferase (ASP), blood glucose, total bilirubin, erythrocyte sedimentation rate (ESR), 
C-reactive protein(CRP), albumin, thromboplastin time, lactate dehydrogenase (LDH), D-dimer, blood 
phosphorus, blood sodium, and blood urea nitrogen (BUN), oxygen saturation

Radiological factors Pleural fluid, consolidation

Treatment Oxygen therapy

Output Readmission: yes (1), no (0)
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Model development
We trained four ML algorithms, namely KNN, water 
wave optimization (WWO), support vector machine 
(SVM), and decision tree (DT) in the WEKA application. 
Each method is described below.

SVM
The SVM is a supervised algorithm associated with data-
sets having data class labels. This algorithm can detect 
the pattern and assign the sample to specified output 
classes. With a high dimension of dataset, this algorithm 
has a proper classification potential. Contrary to artificial 
neural networks (ANNs), it is not stopped at the local 
maximum during the training process. This algorithm 
focuses on the line discriminating various class labels 
with high capability when there are complicated data-
bases and patterns and enhancing the line. Generally, 
the SVM aims to find the hyperplane in categorizing the 
dataset sample to obtain the best classification perfor-
mance in n-dimensional datasets. This capability of SVM 
contributes to its good performance compared to other 
approaches [49–51].

KNN
This algorithm, similar to the SVM algorithm, can be 
used for classification and regression. It is a supervised 
ML algorithm when considering an output class for the 
dataset. For a specific value of K, an object belongs to the 
classes according to its nearest samples. This algorithm 
does not need to assume the data pattern before classify-
ing the objects. The KNN is classified as a lazy algorithm 
because the learning process is not concurrent with the 
algorithm training. In the training process, the data are 
stored and will be categorized when training the new data 
instances. Some advantages of this algorithm include its 
lack of training time because of being lazy, simple imple-
mentation with specified K and Euclidean distance, lost 
value imputing, and excellent performance thanks to its 
independence from new data instances [52–54].

DT
Decision trees are ML algorithms and have a potential 
structure for induction and interpretation in the ML 
process. This algorithm consists of three node types in 
their structural tress: roots, internal nodes, and external 
nodes named leaves. The root node in DT belongs to the 
dataset attribute with high capability in discriminating 
the output classes, i.e., the most crucial variable in the 
study. The internal nodes link the root to external nodes 
in trees; therefore, this structure can trace the tree from 
the root to leaves mediated by internal nodes to obtain 
the IF–THEN rules. The external nodes or leaves are 
places where the samples can be classified. In reality, the 

number of leaves constitutes the number of induction 
rules extracted from the tree. The benefits of this induc-
tion structure include simplicity for interpretation, easy 
implementation because of less complicated calculations, 
and less need for data normalization [55–58].

Proposed method
In this study, using a meta-heuristic algorithm for opti-
mizing water waves, a model is presented for predicting 
the risk of readmission of COVID-19 patients. In the pro-
posed model, the novel WWO algorithm was adopted to 
minimize the classification error. This algorithm cannot 
make predictions alone, so it is combined with the ANN 
algorithm. In other words, the proposed model uses the 
WWO evolutionary algorithm to promote the accuracy 
and effectiveness of predicting the readmission risk of 
COVID-19 patients. In optimization problems, modeling 
natural and biological phenomena is an effective method. 
This algorithm uses the existing relationships between 
water waves and their feedback to the environment to 
solve optimization problems. In the WWO algorithm, 
like any metaheuristic or evolutionary algorithm, sets of 
initial solutions are encoded in the form of a population. 
In this meta-heuristic algorithm, each problem solution 
is identified as a wave, and sets of waves are considered 
as the initial population of the problem. In a WWO algo-
rithm, each solution to a problem or wave is encoded 
with properties such as wave height or wavelength. In the 
WWO algorithm, the solutions to the problem are first 
encoded as waves and several waves are randomly scat-
tered in the problem search space.

In the proposed framework, a multilayer neural net-
work is first created based on the training data set. Sub-
sequently, the desired ANN is created as an array of 
weights and thresholds under the initial population of 
water waves. Afterward, a WWO algorithm is imple-
mented on them to finally develop the best water wave 
or the corresponding ANN to predict the risk of read-
mission of COVID-19 patients. A multi-layered neural 
network with two hidden layers and five hidden nodes 
in each layer is randomly selected for initial training by 
70% of the entire data. The desired ANN configuration is 
optimized by the WWO algorithm and implemented in 
MATLAB R2016a to select the best member of the neu-
ral network set. The performance of the proposed model 
was compared with other methods. To calculate the aver-
age error in the experiments, the number of experiments 
was considered to be 50, and the mean error in all these 
experiments was announced as the final result. Mean 
square error (MSE) and root mean square error (RMSE) 
were used as the objective function to reduce the error. 
In 50 experiments, values of 0.17 and 0.41 were respec-
tively calculated. In the proposed method, an ANN is 
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initially created by training, and several neural networks 
are encoded in the form of water waves. The waves are 
optimized, and then each of these waves (corresponding 
neural network) is evaluated by the objective function of 
the problem, and the best water wave or neural network 
is identified in this iteration of the algorithm. Any ANN 
or water wave that has a smaller classification error is 
considered to be better qualified. Figure 1 describes the 
steps of the proposed model.

Models evaluation
To evaluate the performance of each algorithm, tenfold 
cross-validation was used to obtain reliable results for 
assessing prediction models or obtaining reliable results. 

The original training dataset was divided into 10 folds 
through stratified random sampling. For the ith iteration, 
fold  i  was considered as the test data, and the remain-
ing nine folds were used to train the model. The model 
was assessed using the test data, and the procedure was 
repeated for 10 iterations. The evaluation results of 10 
iterations were collected to compute the mean value and 
standard deviation.

The performance of models was measured using accu-
racy, precision, recall, specificity, and F-measure metrics. 
These evaluation criteria are commonly reported in the 
evaluation of models with ML [59], and their definitions 
are listed in Table 2. Furthermore, Friedman’s statistical 
technique was adopted to compare the algorithms more 

Fig. 1  The proposed method framework for predicting the risk of COVID-19 readmission
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precisely and select the algorithm with the highest effi-
ciency. This test assigns a rank to each algorithm and the 
best algorithm has a lower rating. The null hypothesis 
states that all the algorithms are the same, while rejecting 
the null hypothesis shows that the compared algorithms 
significantly differ. In this paper, we set the significance 
level to α = 0.05.

Results
Sample characteristics
After applying the exclusion criteria, the records of 1225 
discharged COVID-19 patients remained. Of these, 887 
(72.40%) were male and 338 (27.60%) were women, and 
the median age of the participants was 57.25 years (inter-
quartile 18–100). Of these, 89 patients had readmission, 
and 1136 patients had no readmission.

Feature selection
Given that MHAs are naturally random and the solutions 
may be slightly different in each independent execution, 
each algorithm was executed 20 times, and the average 
of the results was obtained after 20 independent execu-
tions. Furthermore, in all algorithms, the population 
size and the maximum number of iterations were set to 
50 and 100, respectively. The mean fitness value of each 
algorithm, the accuracy of the KNN classifier based on 

the selected features, and the number of selected features 
are presented in Table 3.

The numerical results show that the HOA algorithm is 
significantly superior to the other algorithms in terms of 
all three criteria [accuracy: 0.924 (95% CI 0.923 to 0.925)]. 
The most important variables to predict the readmission 
rate selected by HOA were age, sex, prior LOS, fever, dry 
coughs, cardiovascular disease, diabetes, hypertension, 
prior oxygen therapy, CRP, creatinine, ESR, D-dimer, 
ALT/ASP, absolute lymphocyte/ neutrophil count, pleu-
ral effusion and consolidation.

Model implementation
To select the best predictive performance, three tra-
ditional ML algorithms and a hybrid technique were 
trained, and their performance was compared according 
to the selected evaluation criteria. The steps of the pro-
posed method (hybrid) for predicting the readmission 
risk of COVID-19 patients are as follows:

First, a multilayer artificial neural network with a speci-
fied number of hidden layers was trained by the COVID-
19 dataset. Next, by training the desired ANN, the values 
and biases of the multilayer neural network were quanti-
fied, so several multilayer ANNs were developed with the 
same weights and thresholds and with relatively differ-
ent values. Then, each of these neural networks created 
by the proposed coding was converted into several arrays 
or water waves, which constituted the initial population 
quantification step in the WWO algorithm. Each of the 
water waves or the initial population of the correspond-
ing ANNs was delivered as an input to the wave optimi-
zation algorithm; then, each wave (the corresponding 
neural network) was evaluated by the objective function 
of the problem and the best water wave or the same neu-
ral network was detected in this iteration. The WWO 
algorithm was implemented on neural networks or water 
waves to extract the best wave or neural network to pre-
dict the re-admission risk in the last iteration. Finally, the 

Table 2  Definitions of evaluation metrics

* True positive (TP), true negative (TN), false positive (FP), false negative (FN)

Performance measures Definitions

Precision TP/(TP + FP)

Specificity/true negative rate (TNR) TN/(TN + FP)

Sensitivity/true positive rate (TPR) or Recall TP/(TP + FN)

Accuracy (TP + TN)/
(TP + TN + FP + FN)

F-measure (2 × Preci‑
sion × Recall)/ 
(Precision + Recall)

Table 3  Comparison of algorithms in terms of different criteria in 20 runs

Measure Algorithms

GA PSO DE GWO HHO HOA

Mean fitness value 0.101
(95% CI 0.103 to 
0.099)

0.095
(95% CI 0.096 to 
0.094)

0.096
95% CI 0.095 to 
0.097)

0.098
(95% CI 0.099 to 
0.097)

0.101
(95% CI 0.102 to 
0.099)

0.083
(95% CI 0.082 to 
0.084)

Accuracy 0.891
(95% CI 0.888 to 
0.894)

0.903
(95% CI 0.901 to 
0.905)

0.904
(95% CI 0.903 to 
0.905)

0.900
(95% CI 0.901 to 
0.899)

0.892
(95% CI 0.891 to 
0.893)

0.924
(95% CI 0.923 to 
0.925)

No. selected 
features

18 21 20 24 19 17
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efficiency of the proposed method was assessed based on 
model evaluation criteria.

Note that the performance of ML models on the ini-
tial dataset as well as the dataset after feature selection 
was implemented (trained) and compared separately (see 
Table 4).

Generally, the results in Table 4 reveal that the perfor-
mance of ML algorithms in the prediction of readmis-
sion has improved significantly after preprocessing. The 
WWO classifier was introduced as the best algorithm for 
predicting the readmission risk of COVID-19 patients 
with a 0.9705 accuracy, 0.9729 precision, 0.9869 recall, 
0.9259 specificity, and 0.9795 F-measure. The SVM with 
accuracy, precision, recall, specificity, and F-measure of 
0.821, 0.743, 0.792, 0.921, and 0.767 had the poorest per-
formance, respectively.

Given that the data in the outcome classes are unevenly 
distributed, the F1 score criterion is a more appropriate 
indicator than accuracy for model evaluation. Herein, 
due to the imbalance of readmission and non-readmis-
sion classes, according to Table 4, the F1 score criterion 
related to the proposed model was evaluated. With a 
value of 0.9795, the F2 index indicated the appropriate 
performance of the proposed model compared to other 
ML algorithms.

AUC is an effective technique to summarize the accu-
racy of predictive models. Its value ranges from 0 to 1, 
with the value of 0 indicating a completely incorrect test 
and 1 denoting a completely accurate diagnostic test. In 
general, an AUC of 0.5 does not indicate any discrimina-
tion, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is con-
sidered excellent, and > 0.9 is regarded as prominent [60]. 
According to Fig. 2, the ACU of the proposed model in 
the test dataset was excellent.

Discussion
Accurately identifying the COVID-19 readmission risk 
can provide a practical solution for clinical decision-mak-
ing to prevent disease reinfection and recurrent [31]. The 
present study retrospectively identified the most contrib-
uting factors in predicting the risk of hospital readmis-
sion in COVID-19 patients. The most important clinical 

variables were first selected and then leveraged as inputs 
for constructing ML models including KNN, SVM, 
WWO, and DT. Finally, the efficiency and performance 
of developed models were evaluated and compared.

Improving the quality of healthcare services and opti-
mal management of hospital resources has given rise to 
the need to design predictive models to predict future 
disease behaviour and outcome [9, 10]. Using decision 
support systems to predict patient readmission and dis-
ease recurrence plays a crucial role in improving care 
quality and safety [26, 32]. The need to reduce the costs 
of early readmission up to 30  days after discharge and 
promote satisfaction during the pandemic has attracted 
the attention of many researchers [61].

Many studies on ML application to predict readmis-
sion have focused on chronic conditions such as cardio-
vascular diseases [62–68], stroke [69–73], and respiratory 
diseases [74–78]. Shang (2021) [79], Vosough (2021) [80], 
and Lin (2019) [81] assessed the performance of ML algo-
rithms in disease recurrence and readmission prediction. 
Their results showed that ML methods provide a reason-
able level of accuracy and certainty in predicting hospital 
readmission for chronic patients.

Table 4  The performance of ML algorithms before and after preprocessing

b.p Before preprocessing, a.p after preprocessing, F.a. r Friedman aligned ranks

ML algorithm Accuracy Precision Recall Specificity F-Measure F.a. r p-value

b.p a.p b.p a.p b.p a.p b.p a.p b.p a.p

Decision tree 0.761 0.958 0.564 0.961 0.534 0.903 0.906 0.982 0.547 0.922 2.04 0.0091

SVM 0.457 0.821 0.287 0.743 0.412 0.792 0.375 0.921 0.336 0.767 4 0.0001

KNN 0.526 0.941 0.462 0.942 0.485 0.765 0.912 0.961 0.471 0.823 2.201 0.0063

Proposed model 0.782 0.9705 0.8064 0.9729 0.8333 0.9863 0.7 0.9259 0.8196 0.9795 2.187 0.0065

Fig. 2  ROC curve for the proposed model
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Several efforts are also made to apply ML algorithms 
for the prediction of readmission risk of COVID-19 
patients. Mejia et al. concluded that the lack of a valid and 
scientific model for predicting readmission of COVID-19 
patients influences the higher mortality due to disease 
recurrence [82]. Afrash et  al. suggested the ML-based 
predictive models as useful for managing limited health-
care resources during the COVID-19 pandemic [83]. 
Donnely et al. also stated that the prediction of COVID-
19 readmission is a challenging but important task in pre-
venting the devastating effects of disease recurrence or 
reinfection [22]. Gavin et al. presented a predictive model 
to predict 30-day readmission in COVID-19 patients 
based on the simplified hospital score method for reduc-
ing patient readmission and directing resources toward 
high-risk cases [84]. Hebert et al., developed a risk score 
model for early prediction of the hospital readmission 
risk using multiple logistic regression techniques [85]. 
Rodriguez et  al. also proposed a predictive model for 
readmission of COVID-19 patients based on statistical 
regression techniques with an AUC-ROC of 0.871 [86].

Eckert et  al. reported that predictive modeling for 
patient readmission based on ML methods can identify 
high-risk groups of patients with high accuracy; in this 
way, unplanned readmission and severe complications of 
the disease will be reduced [87].

Accordingly, Cuong et  al. concluded that ML tech-
niques had a greater ability to predict patient readmission 
during COVID-19 than traditional statistical methods 
[88]. Davazdahemami et al. used the ML method to pre-
dict early or emergency readmission (less than 7 days) in 
COVID-19 patients. Their proposed model with an AUC 
of 0.883 showed good performance [33]. Raftarai et  al. 
compared the performance of selected ML algorithms 
for predicting readmission among COVID-19 hospital-
ized patients [32]. Jia et al. also assessed the performance 
of some ML algorithms to predict future deterioration 
and readmission risk among discharged patients with 
COVID-19 [89]. Koteswari et al. utilized ML techniques 
to predict the readmission probability of various COVID-
19 cases [15]. In other studies by Ryu [90] Zhao [91], 
Darabi [92], Chen [93], and Shah [94], ML algorithms 
were applied to predict the likelihood of readmission of 
COVID-19 patients.

In our study, the results showed that the WWO algo-
rithm with an accuracy of 0.9705, precision of 0.9729, 
recall of 0.9869, specificity of 0.9259, and F-measure of 
0.9795 has the best capability for early prediction of the 
risk of readmission in discharged COVID-19 patients.

Selecting key variables affecting the COVID-19 read-
mission is critical to developing predictive models [9]. 
Using these variables as an input to ML models improves 
their performance [32]. Thus far, several studies have 

selected clinically important predictors for post-dis-
charge COVID-19 recurrence and readmission risk. In 
Rodriguez’s study, some variables (e.g., LDH, CRP, and 
ESR) were selected as the key factors in hospital read-
mission [86]. Mendito et  al. also determined a number 
of clinical characteristics such as age, neutrophilia count, 
sequential organ failure assessment (SOFA), LDH, CRP, 
and D-dimer as highly contributing factors to the read-
mission of COVID-19 patients [95]. In the study by 
Duarte et  al., polymerization, living in residential care 
homes, general malaise, thoracic pain, and hematologic 
symptoms along with headaches, depressive symptoms, 
nephrological manifestations, syncope or hypotension, 
and superinfection were selected as the most relevant 
factors in COVID-19 readmission [96]. In many studies, 
age, sex, BMI, length of stay (LOS), ICU hospitalization, 
and the presence of comorbidities were introduced as 
the most influencing factors on COVID-19 readmission 
[97]. In the study by Nematshahi et al., the increase in the 
time interval from discharge to readmission, age (over 
60  years), sex (male), diabetes, elevated creatinine, and 
lung involvement were selected as influential factors in 
predicting the readmission of COVID-19 patients [98]. 
Similarly, in Jeon’s research, age and sex were effective in 
increasing the risk of readmission of COVID-19 patients 
[99]. The presence of comorbidities, high BMI, adult age, 
and laboratory indicators such as CRP, creatinine, and 
ALT/ASP rate were also introduced as the major under-
lying factors for readmission in COVID-19 patients in 
Verna’s study [100]. In a systematic review conducted by 
Akbari et al., it was concluded that male sex, white eth-
nicity, comorbid diseases, and old age affect COVID-19 
readmission [101].

In our study, after comparing the performance of six 
MHAs for feature selection, the HOA method with a 
mean fitness value of 0.083 and a KNN accuracy of 0.924 
achieved the best performance. A total of 17 highly cor-
related variables such as old age, high weight, dry coughs, 
fever, dyspnea, loss of smell, cardiovascular diseases, 
hypertension, CRP, ALT/ASP, SPO2, and leukocytosis 
were selected as the top predictors affecting COVID-19 
readmission.

The proposed model can help healthcare providers 
in the timely detection of patient deterioration in order 
to reduce severe complications and the resulting mor-
talities. Although the current study presented an opti-
mum performance in predicting the readmission risk 
of patients with COVID-19, it had several potential 
limitations and challenges. This was a retrospective and 
single-center dataset, which might have affected the 
quality, comprehensiveness, and generalizability of the 
data. In this situation, the existence of some non-inte-
grated, incomplete, error-prone, and abnormal data fields 



Page 9 of 12Shanbehzadeh et al. BMC Medical Informatics and Decision Making          (2022) 22:139 	

could have negatively impacted prediction. Therefore, 
to improve the consistency of data, the normal range of 
each variable was defined using the opinion of two infec-
tious diseases specialists, a virologist, and a hematologist. 
Then, all the values that were outside the defined range 
(noisy fields) were specified and completed by referring 
to patient records or the responsible physician. In addi-
tion, the records with more than 70% of empty fields 
were removed and imputed by median and mode val-
ues substitution for continuous and discrete variables, 
respectively. Moreover, we used only four (albeit well-
known) ML algorithms for prediction analyses based on 
some clinical features. The accuracy and generalizability 
of our models can be enhanced if other ML techniques 
are tested on a larger, multicenter, and prospective data-
set containing time-varying covariates to identify a more 
insightful set of longitudinal factors related to COVID-
19 readmission. Besides, the external validation method 
should be used to confirm the results of the present study. 
Another possible limitation was that this study did not 
describe any causal relationship between the predictor 
and outcome variables. This was not the main purpose 
of this research, but it can be addressed in future stud-
ies. Overall, the integrity of predictive models based on 
ML algorithms depends on the comprehensiveness of the 
dataset. Since all analyses were based on a single-center 
dataset, the results of this study may not be generalizable 
enough for national use. In future research, by analyzing 
data from multiple COVID-19 care centers in different 
provinces of Iran, the comprehensiveness and generaliz-
ability of the proposed model can be improved.

Conclusions
Our models have a satisfactory potential in equipping 
physicians and healthcare policymakers with a practi-
cal and effective tool for the timely prediction of hos-
pital readmission of COVID-19 patients. The insights 
provided by these predictive models may help better 
care delivery, lessen clinicians’ workload, and ultimately 
enhance both care quality and financial outcomes. In 
the present study, the proposed hybrid WWO algorithm 
yielded the best capability to predict COVID-19 hospital 
readmission based on influential features. In future stud-
ies, the proposed method can be applied to predict the 
risk of hospital readmissions for other chronic diseases. 
The MHA used in feature selection can also be improved.
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