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Abstract 

Background:  Micronucleus (MN) is an abnormal fragment in a human cell caused by disorders in the mechanism 
regulating chromosome segregation. It can be used as a biomarker for genotoxicity, tumor risk, and tumor malig-
nancy. The in vitro micronucleus assay is a commonly used method to detect micronucleus. However, it is time-con-
suming and the visual scoring can be inconsistent.

Methods:  To alleviate this issue, we proposed a computer-aided diagnosis method combining convolutional neural 
networks and visual attention for micronucleus recognition. The backbone of our model is AlexNet without any dense 
layers and it is pretrained on the ImageNet dataset. Two attention modules are applied to extract cell image features 
and generate attention maps highlighting the region of interest to improve the interpretability of the network. Given 
the problems in the data set, we leverage data augmentation and focal loss to alleviate the impact.

Results:  Experiments show that the proposed network yields better performance with fewer parameters. The AP 
value, F1 value and AUC value reach 0.932, 0.811 and 0.995, respectively.

Conclusion:  In conclusion, the proposed network can effectively recognize micronucleus, and it can play an auxiliary 
role in clinical diagnosis by doctors.

Keywords:  Micronucleus, Computer-aided diagnosis, Convolutional neural networks, Visual attention, Data 
augmentation

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Micronucleus is a round-shaped fragment contain-
ing DNA, and it is separated from the nucleus during 
mitosis due to chromosome aberration caused by geno-
toxic and carcinogenetic agents [1, 2]. It has been shown 
that micronucleus may not only suggest the presence of 
problems, but also play a facilitating role in the process 
of genetic damage and tumour development. Therefore, 
computer-aided diagnostic systems for cell micronucleus 

are essential for detecting and treating tumours as well as 
DNA damages.

The in  vitro micronucleus assay is at present used 
worldwide to detect whole chromosomes or chromosome 
fragments after nuclear division, allowing to identify the 
structural chromosome aberration [2, 3]. However, cur-
rent clinical decision-making relies heavily on the exper-
tise of physicians and researchers. Researchers have to 
use manual slide microscopy to enumerate micronuclei, 
which is tedious and error-prone. The excessive number 
of cases could stress physicians with the potential for 
misdiagnosis. Furthermore, staining the cells before diag-
nosis may contaminate the cells, making the visual scor-
ing even more difficult.
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In recent years, computer vision methods have suc-
ceeded in medical image analysis. It has advantages such 
as stability, standardization, long-term operation, and 
consistency [4]. Methods for diagnosis using computer 
vision are generally divided into traditional and deep 
learning techniques. Traditional methods design manual 
feature descriptors and feed the extracted features to the 
classifier for predictive results. For example, Mohammad 
et al. [5] firstly segmented the image and then performed 
micronucleus detection after processing the cell images 
using Nuc-Mask. However, the reliance of traditional 
methods on complex manual feature descriptor designs 
and image preprocessing limits the generality. Another 
kind of approach is based on convolutional neural net-
works (CNN). These methods implement training and 
testing end-to-end by feeding the original image into a 
deep learning network and outputting the prediction 
directly. Deep learning methods significantly improve 
classification accuracy and reduce the burden of design-
ing manual feature descriptors [6]. Therefore, these 
methods are widely used and have succeeded in medi-
cal image classification tasks. For example, Alafif et  al. 
[7] employed multiple transfer learning models for the 
classification of cell micronucleus images and then com-
pared the results to obtain the optimal model. Chi et al. 
[8] proposed a CNN method combing deep and shallow 
features to detect thyroid nodule malignant risks in the 
ultrasound images. Work in [9] tried to use generative 
adversarial networks (GAN) to synthesize high-quality 
images of focal liver lesions from CT images, effectively 
alleviating the problem posed by the small dataset used 
for training. Many works focus on changing the structure 
of CNN itself. In [10], the author first proposed ELNet 
and dual-stream network (DSN) for segmentation and 
classification of esophageal lesion images. In [11], Gao 
et  al. reported a dual-branch combinatorial network 
(DCN) for the joint segmentation and classification of 
covid-19 CT images. Wu et al. [12] proposed the covid-
al framework, which can consider both data diversity and 
data uncertainty, improving the efficiency of active learn-
ing methods. In addition, Work in [4] fused neural net-
works and traditional methods, introducing the YOLO 
algorithm into cell micronucleus image detection, and 
achieved great performance.

Despite the superior results of deep learning classifica-
tion methods in medical diagnosis, the low-quality cell 
images in the dataset still make it a challenge to deter-
mine the presence of micronuclei using only cell images. 
Normal cell images (Fig.  1a) can help the model learn 
the boundaries of different classes of samples, but low-
quality images may hinder the training process instead. 
Firstly, the staining process may contaminate the cells 
with black spots similar to micronuclei (Fig. 1b), causing 

the detection much harder. Secondly, the colour of the 
cytoplasm in the insufficiently stained cells was lighter 
(Fig.  1c), which also affected the judgment. Moreo-
ver, The presence of more than one cell in some images 
makes the tasks further difficult (Fig. 1d).

Due to the black-box nature of neural networks and the 
difficulty of producing outputs for specific pathological 
regions or lesion locations, there are significant interpret-
ability problems, which makes CNNs detection results 
unconvincing. Since medical decision-making is related 
to physical health and even life safety, medical diagnostic 
applications not only require high performance but also 
require a strong judgment basis [13].

Based on the analysis above, to improve the accuracy 
and efficiency of cell micronucleus image detection and 
to mitigate the impact of the uninterpretability of neural 
networks and the complexity of the cell images them-
selves, we introduce an end-to-end convolutional neural 

a. Normal cell images

b. Contaminated cell images

c. Cell images with unclear cytoplasm

d. Image containing two cells
Fig. 1  Examples of cell images
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network fusing AlexNet with the fully connected layer 
removed and visual attention. By using AlexNet with the 
fully-connected layer removed as the backbone network, 
the model parameters are significantly reduced, improv-
ing the efficiency of the network operation and reducing 
the possibility of overfitting. The attention maps gener-
ated by the attention module automatically highlight and 
display image regions relevant to the classification, thus 
developing interpretable information in addition to class 
labels. The network is implemented using the Pytorch 
framework and initialized using Alextnet pre-trained on 
ImageNet. Automatic detection is performed by fusing 
two attentional features and a depth feature to form a 
global feature.

Methods
Transfer learning
Transfer learning aims to improve the performance of a 
model in the current domain by transferring knowledge 
contained in a different but related field [14]. Deep trans-
fer learning combines deep learning architecture and 
transfer learning. And the model is usually pre-trained 
on large-scale datasets such as ChEMBL and then fine-
tuned on a specific dataset [15].

We use the AlexNet network as the backbone network 
and pretrain it for a good initialization. Transfer learning 
makes the network more lightweight and mitigates the 
possibility of overfitting. Because of the huge difference 
between ImageNet and our dataset, each layer of the net-
work was retrained in the experiments.

AlexNet
AlexNet is one of the most famous convolutional neural 
network structures, which was proposed by Krizhevsky 
et al. [16]. AlexNet applies the ReLU activation function 
for solving the vanishing gradient problem, and the drop-
out technique is added to avoid overfitting by randomly 
deactivating some neurons. Although more advanced 
network models such as GoogLeNet [17] and ResNet 
[18] are available now, some researches show that for 
small multimodal medical image datasets, the classifica-
tion results of GoogLeNet and AlexNet are very similar 
when rotation is used as the method of data augmenta-
tion. And for some categories, AlexNet even outperforms 
GoogLeNet. For newer networks such as VGG [19] and 
ResNet, the large number of parameters and complex 
structures mean a significant reduction in efficiency and 
a higher likelihood of overfitting. As the cell images used 
in this paper are not complex, consisting mainly of nuclei, 
micronuclei, cytoplasm, and a large amount of useless 
background information, Alextnet with fewer param-
eters is more efficient and sufficient to perform well on 

this classification task. Further, we remove the fully con-
nected layer of AlextNet to improve our method’s effi-
ciency. The structure of AlexNet is shown in Fig. 2.

Attention mechanism
When looking at an object in the field of view, people 
focus on the parts of interest to them or more vital to 
problem solving. Specifically, when determining whether 
there are micronuclei in a cell image, we will focus on 
the micronuclei rather than other parts of the images. 
Attention mechanisms are proposed and embedded in 
convolutional neural networks to simulate this visual 
mechanism. Features of different image parts contribute 
differently to the overall classification task. The attention 
mechanism can automatically find and highlight the most 
informative parts of images to improve classification per-
formance. Typically, this is achieved by generating an 
attention map of the original feature map.

Recently, attention mechanisms have been widely used 
in medical imaging diagnosis, and some new models 
have been proposed. Sun et  al. [20] introduced a chan-
nel attention module for density classification in mam-
mography. In [21], wang et  al. trained a chest disease 
classification network incorporating a channel attention 
module, a scale attention module, and an element atten-
tion module. Work in [13] applied a diagnostic model 

AlexNet
Conv 11 * 11,96 / ReLU

LRN

Max Pool 3 * 3

Conv 5 * 5,256 / ReLU

LRN

Max Pool 3*3

Conv 3 * 3,384 / ReLU

Conv 3 * 3,384 / ReLU

Conv 3 * 3,256 / ReLU

Max Pool 3 * 3

FC 4096 / ReLU

FC 4096 / ReLU

FC 1000
Fig. 2  AlexNet network structure
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for chest radiographs with global and local attention to 
improve the interpretability of convolutional neural net-
work diagnosis.

Although many visual attention-based approaches have 
achieved promising results in the field of medical image 
analysis, the detection of micronuclei in cell images using 
features of a single layer in neural networks is still a chal-
lenge. Single-layer features contain limited information 
and only partially reflect the cell images. The attention 
module in our network produces more representative 
features by combining deep and shallow features. The 
fused features are used to generate a global feature fed 
to the classifier. This strategy alleviates the problem of 
single-layer features being too one-sided. Moreover, the 
attention module is independent and can be applied 
to different networks without modifying other parts of 
structures.

Overall architecture
In this paper, AlexNet with fully connected layers 
removed is applied as the backbone network, and a spa-
tial attention module is embedded in our model for inter-
pretable information. Layer-5, layer-6 and the last layer 
(L) in Alexnet are used to compute the attention maps. 
Since the last layer is the deepest and most abstract layer 
in Alexnet and contains more semantic information, 
it serves as the lead feature when generating attention 
maps. Our model upsamples the feature L by means of 
bilinear interpolation and then feeds it to the attention 
block with the output of layer-5 and layer-6, respectively, 
to obtain the attention weight maps. Two attention maps 
are obtained by multiplying attention weight maps and 
the input feature. Finally, the global feature, formed by 

concatenating attention features and the input image, is 
fed into a softmax classification layer to obtain the clas-
sification result of cell images. The overall architecture of 
our network is illustrated in Fig. 3.

Attention module
Let M = {M1,M2 · · · ,MC} and L = {L1, L2, . . . , LC} 
denote the output of the middle layer and last layers’ 
output, respectively. C is the number of channels, and 
w × w × w is the size of the features. A 256-channel fea-
ture is obtained after bilinear interpolation and convolu-
tion, which is shown in Eq. (1).

where Wl is the weights of the convolution kernel cor-
responding to L, ⊗ is a convolutional operation, and 
bilinear(•) is the bilinear interpolation operation. The 
features of middle layers in the network are fed into a 
convolutional layer, yielding 256-channel outputs, which 
is shown in Eq. (2).

where Wm is the weights of the convolution kernel cor-
responding to the middle layers of the network. Fl and Fm 
are fused to produce F, which is shown in Eq. (3).

where ReLU  is the ReLU activation function, W is a con-
volution kernel that outputs a single channel. As in Eq. 
(4), The attention weight map is calculated by mapping 
the value of F to between 0 and 1 via the sigmoid activa-
tion function.

(1)Fl = bilinear(Wl ⊗ L)

(2)Fm = Wm ⊗M

(3)F = W ⊗ ReLU(Fl + Fm)

Fig. 3  The overall network architecture
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where A and σ(•) denote the attention weight map and 
the sigmoid activation function, respectively.

The attention feature map is obtained as follows:

where fi is the vector in attention feature map F  , fi and 
ai are the representations of the vector F and A, respec-
tively. The features of layer-5 and layer-6 are fed into the 
attention module to compute the corresponding atten-
tion features. The global feature is obtained by concat-
enating two attention features and L, which is shown in 
Eq. (6).

The architecture of the proposed attention module is pre-
sented in Fig. 4.

Loss function
After generating the attention features in the middle lay-
ers, these features are concatenated with the output of 
the last layer in the network to obtain the global feature. 
Then, a classifier is trained based on this feature for final 
prediction. Because our dataset is small and extremely 
imbalanced, the network is trained using focal loss [22], 
an improved version of cross-entropy loss, to reduce the 
effect. Focal Loss achieves the purpose of focusing on 
hard-to-classify samples by reducing the weight of easy-
to-classify samples. The cross-entropy is formulated as:

and formula for the cross focal loss is expressed as:

(4)A = σ(F)

(5)fi = ai · f

(6)Fg = cat(F5, F6, L)

(7)LCE(p, y) = −[y log(p)+ (1− y) log(1− p)]

(8)
LFocal(p, y) = −y(1− p)γ log(p)− (1− y)pγ log(1− p)

where y and p represent the original label and predicted 
probability, respectively. The parameter γ is used to 
reduce the loss of easily samples. When γ = 0, focal loss 
degenerates into the cross-entropy loss.We set γ = 2 in 
experiements.

Results
Dataset and preprocessing
We use data from the Radiology Department of Gansu 
Provincial Center For Disease Control And Prevention in 
China to evaluate the performance of our model. All the 
images in our dataset, taken by the MetaSystems Metafer 
slide scanning platform, are individual lymphocytes (like 
Fig. 1 shows). Specialists have labelled them according to 
the presence of micronuclei. The dataset contains 726 cell 
images with micronuclei and 10419 cell images without 
micronuclei. This dataset is used to train a convolutional 
neural network for a cell images classification task. All 
images are resized to 224 × 224 to fit the network.

Evaluation metrics
We investigate the task of binary classification on cellular 
image data in this paper. We evaluate the classification per-
formance of the network based on three metrics, including 
the area under the ROC curve (AUC), the average preci-
sion (AP), and the F1-score:

where Pecision and Recall are defined as Eq. (10) and Eq. 
(11).

AUC values can be calculated using the true positive rate 
(TPR) and the false positive rate (FPR). It is an informa-
tive metric that can help avoid problems caused by 
imbalanced datasets. TPR and FPR are defined as follows:

where

(9)F1 =
2Precision ∗ Recall

Precision+ Recall

(10)Precision =
TP

TP + FP

(11)Recall =
TP

TP + FN

(12)TPR = SEN

(13)FPR = 1− SPE

(14)SEN =
TP

TP + FN

Fig. 4  Attention module architecture
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and TP, TN, FP, FN are the number of true positives, true 
negatives, false positives, and false negatives, respectively.

Data augmentation
The dataset used in this paper is extremely imbalanced, 
which makes the network prefer the more frequent label. 
We perform the data augmentation strategy to address 
this issue, making our model more robust.

Network training aims to learn the boundary between 
images with and without micronuclei adequately, but this 
process can be affected by the imbalanced dataset. There-
fore, the samples are first randomly divided into a train-
ing set, a validation set and a test set in a ratio of 6:2:2. 
Then, data augmentation is performed on the cell images 
with micronuclei, and we downsample the cell images 
without micronuclei to make the dataset tend to be bal-
anced. The test set serves to evaluate the performance of 
the model using real samples, so no data augmentation is 
performed on it, and it is made to match the true sample 
distribution as closely as possible. The validation set also 
conforms to the true distribution. Experiments were con-
ducted using the original validation set and the data-aug-
mented validation set separately to assess the impact of 
data augmentation performed on the validation set when 
the images in the test set were all real data. The data set 
with only the training set augmented is denoted as TAD, 
and the data set with both the training and validation 
sets augmented is denoted as TVAD. The distribution 
of the number of images in the two data sets is shown in 
Tables 1 and 2.

(15)SPE =
TN

TN + FP

In [23], the authors used random affine transforma-
tions (rotation, scaling, shearing and translation) as well 
as random elastic deformation for data augmentation. 
The images are first randomly rotated, then these rotated 
images are flipped horizontally, flipped vertically and 
scaled randomly. Finally, the amount of data reaches five 
times the original.

Experimental details
Our network initialized on ImageNet is implemented on 
Pytorch, a deep learning framework. We use the focal 
loss to alleviate the issue caused by imbalanced data. The 
network is trained for 60 epochs. During the training, 
the initial learning rate is 0.01 and decayed by 0.1 every 
20 epochs. All the codes were run under Centos 7 with 
Intel(R) Xeon(R) Bronze 3106 CPU 1.70GHz, and RAM 
of 64GB.

We use the training subset to minimize the loss. During 
the training process, the checkpoint which maximizes the 
ROC value on the validation subset is saved, and we use 
it to evaluate the method performance on the test subset. 
This strategy is applied to all the compared models.

Comparison of experiments on two datasets
The classification results and confusion matrices of the 
experiments on the two datasets are shown in Tables 3, 
4,  5, respectively.

As shown in Table  3, our model achieves better per-
formance on dataset TVAD (0.932, 0.811, 0.995 for AP, 
F1, and AUC, respectively). The confusion matrices 
show that there is more data clustered on the diagonal 
in Table 4. These results demonstrate that data augmen-
tation on the validation set can improve classification 

Table 1  Distribution of the dataset TAD

Dataset Images without 
micronuclei

Images with 
micronuclei

Total

Training data 2191 2180 4371

Validation data 2084 145 2229

Test data 2083 145 2228

Table 2  Distribution of the dataset TVAD

Dataset Images without 
micronuclei

Images with 
micronuclei

Total

Training data 2191 2180 4371

Validation data 10420 725 11145

Test data 2083 145 2228

Table 3  The experimental results of the proposed method on 
two data sets

The best results in this table are labeled in bold

Dataset AP F1 AUC​

TAD 0.930 0.740 0.994

TVAD 0.932 0.811 0.995

Table 4  The confusion matrix of the proposed method on TVAD 
data set

Actual class Predicted class

Image with 
micronuclei

Image 
without 
micronuclei

Image with micronuclei 137 8

Image without micronuclei 56 2027
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performance. Therefore, the remaining comparison 
experiments are performed on the dataset TVAD.

Comparison with classic networks
In this group of experiments, we compare our net-
work with different classic models on the dataset TVAD 
(MobileNet, Vgg-16, GoogLenet, ResNet). The quanti-
tive classification results are shown in Table 6. It can be 
observed that our method achieves higher performance 
than the baselines(0.932, 0.811, 0.995 for AP, F1, and 
AUC, respectively). Especially, the AP value of the pro-
posed method is significantly better than other models. 
That is because 1. removing the dense layer of AlexNet 
makes our network more lightweight, which alleviates 
the overfitting issue. 2. attention module improves the 
classification performance.

Comparison with other attention mechanisms
In this study [25], the author introduces the multi-scale 
attention network (MSA-Net) to enhance the discrimi-
native power of the feature representation for DR clas-
sification. We replicate this network on our dataset to 
investigate the effectiveness of our method. Besides, 
we incorporate the channel attention from work [26] 

into Alex-light to design another variant (Alex-CA). It 
is equivalent to our network with the attention module 
replaced with a channel attention mechanism. The cor-
responding experimental results are presented in Table 6.

As shown in Table  6, our method outperform MSA-
Net on micronucleus recognition task. The results show 
that scale attention does not perform well on our data-
set, which may be since the scales of the parts in the cell 
pictures we used do not differ that much. Another obser-
vation is that although the channel attention mechanism 
improves the classification performance, our method 
obtains superior results with the same inputs.

Ablation study
Effectiveness of the focal loss
To evaluate the effectiveness of the focal loss, we apply 
the cross-entropy loss version of our method, termed our 
method-CE, for a fair comparison. Referring to Table 6, 
replacing the focal loss with the cross-entropy loss makes 
the performance of our network get worse. This experi-
ment indicates that even though the data augmenta-
tion has already been employed to make the training set 
almost ideally balanced, the focal loss could still be help-
ful for some latent reasons.

Comparison with the original AlexNet
Compared with the original AlexNet, the number of out-
put nodes of our network is changed from 1000 to 2, we 
remove the fully connected layer, and an attention mod-
ule is embedded. Referring to Table  6, our model still 
achieves better performance with fewer parameters than 
the original AlexNet.

Comparison with Alex‑light
The reason why the proposed network model outper-
forms the original AlextNet may be that the original 
AlextNet contains too many parameters, leading to over-
fitting. We name the AlextNet network with the fully 
connected layers removed (it is equivalent to our network 
with the attention module removed) Alex-light and verify 
its performance on our dataset. According to Table  6, 
Alex-light slightly outperforms the original AlexNet, 
but the proposed network significantly outperforms the 
former two. This indicates that Alex-light mitigates the 
overfitting issue, but most of the superior performance 
of our network does not come from the elimination of 
the overfitting problem, but from the network structure 
itself.

Comparison with VGG‑Att, GoogLeNet‑Att and ResNet‑Att
The experimental results (Table  6) show that VGG-16, 
GoogLeNet, and ResNet outperform AlexNet on our 
dataset. For a fair comparison, we apply the modifications 

Table 5  The confusion matrix of the proposed method on TAD 
data set

Actual class Predicted class

Image with 
micronuclei

Image 
without 
micronuclei

Image with micronuclei 141 4

Image without micronuclei 95 1988

Table 6  Experimental results of different methods

The bestresults in this table are labeled in bold

Method AP F1 AUC​

MobileNet [24] 0.589 0.504 0.931

VGG-16 [19] 0.868 0.803 0.989

VGG-Att 0.948 0.786 0.994

GoogLeNet [17] 0.871 0.780 0.988

GoogLeNet-Att 0.875 0.810 0.988

ResNet [18] 0.912 0.804 0.989

ResNet-Att 0.920 0.877 0.993

AlexNet [16] 0.824 0.749 0.984

Alex-light 0.875 0.800 0.990

MSA-Net [25] 0.919 0.808 0.989

Alex-CA 0.883 0.809 0.991

Our method-CE 0.818 0.548 0.985

Our method 0.932 0.811 0.995
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made for AlexNet to these three more advanced archi-
tectures and evaluate the impact. We truncate the dense 
layers of VGG-16 (GoogLeNet and ResNet use global 
average pooling to process the final convolutional fea-
ture map instead of the dual-stacked fully-connected lay-
ers for fewer parameters) and incorporate the attention 
mechanism into these three networks. The new architec-
tures are termed VGG-Att, GoogLeNet-Att, and ResNet-
att, respectively. The experimental results are added to 
Table 6. We can observe that the modifications make the 
networks achieve better performance. The AP value of 
VGG-att and the F1 score of ResNet-Att are higher than 
those of our method. However, more advanced architec-
tures such as VGG and Resnet always come with more 
parameters and complex strategies that make the train-
ing and classification extremely time-consuming. It 
could be a problem because one single cell image con-
tains such limited information that we need to examine 

vast amounts of them to provide a solid basis for clinical 
diagnosis. The training and testing time of these models 
on our dataset are depicted in Fig. 5. As shown in Fig. 5, 
ResNet-Att and VGG16-Att are significantly less efficient 
than GoogLeNet-Att and our method, consistent with 
the previous description. These results demonstrate that 
our network strikes a good balance between efficiency 
and classification performance, which validates that 
lightweight networks are sufficient to perform well on 
our dataset.

Visualization of attention features
To verify whether the superior performance implies bet-
ter visual interpretability, we upsample and visualize the 
attention feature maps of middle layers in the network. 
As shown in Fig.  6, the feature maps highlight regions 
highly relevant to the diagnosis.

It can be observed from Fig. 6 that the attention maps 
of the deep layer(layer 6)accurately highlight the micro-
nucleus, but the shallow attention maps(layer 5)do 
not seem to learn any useful information. This may be 
because deep layers in convolutional neural networks 
usually focus on more abstract information than shallow 
layers, ignoring parts not relevant to the detection task.

Discussion and conclusion
In this paper, we propose an attention-based net-
work with an explanation, which is one of the only few 
attempts using an interpretable model to detect micro-
nucleus in cell images. We remove the dense layer of our 
network and pretrain it on ImageNet, which makes the 
network run more efficiently. Moreover, data augmenta-
tion is applied to mitigate the over-fitting risk.Fig. 5  Training and testing time that is in second

Cell images

Attention maps of layer 5

Attention maps of layer 6

Fig. 6  Visualization of attention maps
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The experiments are first conducted on two datasets to 
demonstrate the effectiveness of data augmentation on the 
validation set. We compare our model with several clas-
sic networks, and the evaluation shows that our model 
achieves better performance.

There are two directions for further works. The first is 
improving the network structure to increase the interpret-
ability of the diagnostic method. The second is extending 
our approach to multiclassification problems to detect the 
number of cell micronuclei accurately.
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