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Abstract 

Background:  An emergency response to a medical situation is generally considered to be a risk decision-making 
problem. When an emergency event occurs, it makes sense to take into account more than one decision maker’s 
opinions and psychological behaviors. The existing research tends to ignore these multidimensional aspects. To fill 
this literature gap, we propose a multi-attribute model.

Methods:  The model is based on cumulative prospect theory (CPT), considering multiple experts’ psychological 
factors. By not assuming full rationality, we extend existing models to allow multiple experts’ risk preferences to be 
incorporated into the decision-making process in the case of an emergency. Then, traditional CPT is extended by 
allowing for multiple attributes. In addition, rather than using crisp data, interval values are adopted to tackle the 
usual uncertainties in reality.

Results:  The multi-attribute CPT based model proposed can deal with the selection of potential emergency alterna-
tives. The model incorporates interval values to allow more uncertainty and the comparative studies show that the 
optimal solution changes under different scenarios.

Conclusions:  Our illustrative example and comparative study show that considering multiple experts and multiple 
attributes is more reasonable, especially in complicated situations under an emergency. In addition, decision-makers’ 
risk preferences highly affect the selection outcomes, highlighting their importance in the medical decision-making 
process. Our proposed model can be applied to similar fields with appropriate modifications.
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Background
Emergency events, which require a reasonable and desir-
able response action, have drawn great attention recently. 
In general, decision-making problems in these situa-
tions are complicated by many factors and large volumes 
of data [1]. For example, in the medical field, physicians 

often face difficult decisions choosing from various 
alternatives in an emergency. Is a new surgical proce-
dure safer than the old one? Which therapy is the most 
efficient for treating a malignancy? Medical decision-
making processes can be complex, dynamic, and affected 
by time pressure, especially in emergency departments 
[2]. Unscientific decisions are likely to result in waste of 
resources or may negatively impact human life and social 
development. As a result, making the appropriate choice 
is vital, especially under uncertainty and lack of informa-
tion [3, 4].
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Various decision analysis methods have been inves-
tigated to address emergency response problems. In 
summary, the common methods used to tackle this 
issue can be classified into: multi-criteria decision-
making methods, mathematical programming meth-
ods, and intelligence methods. These will be discussed 
in the next section. Despite significant contributions 
to the emergency decision-making problem in various 
fields, some weaknesses need to be addressed. First, 
decision makers (DMs) tend to deviate, especially when 
dealing with uncertainties. For instance, a DM is more 
likely to be risk averse when facing gains with certainty. 
On the contrary, he (she) is more prone to be risk-seek-
ing when facing losses with probabilities [5]. Second, 
DMs may experience difficulty assigning crisp values to 
alternatives owing to certain factors in many real-world 
applications, like time pressure, or limited knowledge. 
Thus, it makes more sense to use interval values to 
express uncertainty, which is more practical than using 
numerical data [6].

Current research in medical emergency decision-mak-
ing has focused on the impact of emergency events only 
on a single attribute basis. However, the benefit of a suc-
cessful medical emergency event depends on more than 
one aspect, including cost and treatment effect, to name 
a few. Furthermore, more than one physician may be 
needed to manage a medical emergency problem effec-
tively, especially under a complex and uncertain decision 
environment. Not only does the physician require knowl-
edge about the underlying disease process and the most 
current treatment options available, but many other vari-
ables also need to be understood. Consequently, multi-
ple experts and attributes need to be taken into account 
in the medical health domain [7]. In this regard, a more 
accurate medical decision-making model is needed 
to describe DMs’ behaviors, especially under a fuzzy 
environment.

To address the above-mentioned problems in the exist-
ing research, this study proposes a multi-attribute cumu-
lative prospect theory (CPT)-based model. The main 
contributions of this paper are as follows.

(1)	 Instead of assuming full rationality, this model 
allows multiple medical paramedics to incorporate 
individuals’ psychological preferences into the deci-
sion-making process in the case of an emergency.

(2)	 Traditional CPT is extended by allowing for multi-
ple attributes to cope with complex environments, 
especially through the emergency decision making 
process.

(3)	 Rather than using crisp data, this study uses interval 
values to measure reference points and criteria val-
ues. Note that there are other studies using interval 

values as the reference points [8, 9] but few stud-
ies have incorporated the usage of interval values 
in medical emergency making with multiple attrib-
utes.

Related works
Over the past few decades, emergency decision-making 
method in various fields has assumed great importance. 
In general, emergency decision-making is characterized 
by the pressure of little time and lack of information. 
For example, Ju et al. [10] studied a framework combin-
ing several multi-criteria decision-making methods to 
tackle the emergency alternative evaluation and selec-
tion problem. Zhou et  al. [11] provided an overview of 
the emergency decision-making theory and methods for 
natural disasters in terms of a methodological perspec-
tive. Wan et  al. [12] developed an interactive multi-cri-
teria group decision-making method with probabilistic 
linguistic information and applied this method for emer-
gency assistance for COVID-19 in Wuhan. In the medical 
decision-making field, Hazen et al. [13] introduced a sto-
chastic tree model allowing for the explicit depiction of 
temporal uncertainty and applied this model to a medical 
scenario. Shea and Hoyt [14] discussed the role of nurse 
practitioners or physician assistants in an emergency or 
urgent-care setting and the necessary components lead-
ing to a sound medical decision-making process. Liao 
et  al. [15] applied artificial intelligence to aid nurses in 
addressing problems and receiving instructions through 
information technology.

DMs are hardly rational in reality, Tversky and Kah-
neman [16] were the first to analyze Prospect Theory 
(PT) and Cumulative Prospect Theory (CPT) to better 
describe the decision behaviors of an individual under 
risk. Thanks to its simple logic and computation, this 
theory has also been applied in emergency decision-mak-
ing. For example, Zhang et al. [17] proposed an approach 
based on PT considering experts’ psychological behav-
ior and different emergency situations. Wang et  al. [8] 
developed a PT-based interval dynamic reference point 
method for emergency decision-making. Liu et  al. [18] 
proposed a hybrid method combining CPT and Choquet 
integral method to solve the risk decision-making prob-
lem in emergency response.

In addition, emergency decision making often involves 
a group of DMs. In general, experts or DMs with differ-
ent background knowledge hold different or even contro-
versial opinions. Therefore, different opinions need to be 
considered to reach a consensus and obtain a collective 
preference before the final solution. Following this study, 
Sun et  al. [19] proposed a theoretical framework for a 
dynamic feedback mechanism in group decision making 
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(GDM) using an attitudinal consensus threshold to gen-
erate certain recommendation advice for experts. Wu 
et al. [20] studied the influence of the group attitude on 
the consensus reaching process in GDM. Zhang and Li 
[21] developed some personalized individual semantics 
based consistency control and consensus reaching mod-
els for linguistic GDM. Wang et al. [9] developed a new 
group emergency decision making method considering 
experts’ psychological behaviors. Xu et al. [22] proposed 
a two-stage risk emergency decision-making method 
considering large groups based on social media big data; 
a real case study associated with the Tianjin port explo-
sion on August 12, 2015, demonstrates the feasibility and 
effectiveness of this model. Wan et  al. [23] proposed a 
new personalized a personalized individual semantics 
based consensus reaching process for large-scale GDM 
with probabilistic linguistic preference relations, and 
applied this method to COVID-19 surveillance plans 
selection.

In summary, multiple methods have been proposed to 
deal with emergency decision-making problems. How-
ever, few studies have incorporated DMs’ physiological 
factors in the medical emergency decision-making field, 
especially with multiple experts and a fuzzy environment.

Group medical emergency decision‑making procedure
In this section, we discuss briefly the notations and pro-
cedure of the group medical emergency decision-making 
problem.

Notations
The notations used in the model formation are explained 
in Table 1.

Solution procedure
To solve the group medical decision-making problem, 
a corresponding procedure is analyzed, as illustrated in 
Fig. 1. In step 1, a group of experts (physicians) and the 
criteria are determined. Then, in step 2, given a set of fea-
sible emergency responses, we determine the value of all 
the potential responses for each criterion. In step 3, dif-
ferent experts are asked to express their unique reference 
points for each criterion. Interval values are used to allow 
for more uncertainty concerning the reference points and 
criterion values. To obtain a collective reference point, 
these experts are assigned weights based directly on their 
opinions. In step 4, a collective reference point is con-
structed combining all the experts’ opinions using their 
weights. Next, the relative gains and losses of each solu-
tion outcomes on each criterion are calculated based on 
CPT. In step 5, the prospect values of different response 
alternatives are obtained, based on which the rankings of 
all response alternatives can be determined.

Experts are required to select a desirable response 
solution among a set of different alternatives in a spe-
cific medical emergency situation. As depicted in step 
5 in Fig. 1, the prospect value of each response alterna-
tive needs to be determined. Figure  2 depicts a brief 
illustration of the problem [18]. Am (m = 1, 2, ..,M) 

Table 1  Notations used in this study

Index

h Index of experts

m Index of response actions (alternatives) (m = 1, 2, …, M)

n Index of outcomes (n = 1, 2, …, N)

k Index of attributes (k = 1, 2, …, K)

Parameter

H Number of experts

M Number of response actions (alternatives)

N Number of possible outcomes in terms of different responses

K Number of attributes considered in the medical emergency problem

Ehk Reference point value of expert Eh regarding criterion k

Rhk Normalized reference point value of expert Eh regarding criterion k

Rk Mean reference point value regarding criterion k

rk Collective reference point value regarding criterion k

xmnk kth attribute value with respect to the nth outcome of the mth action

zmnk Corresponding gain or loss regarding each value

vmnk Normalized gain or loss regarding each value

Set

E Group of experts

A Set of all feasible response actions in a medical emergency

P Vector of probabilities with respect to various outcomes
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refers to different emergency response solutions. 
pn (n = 1, 2, ..,N ) denotes the possibility of each out-
come under the corresponding solution. xmnk refers to 
the kth attribute value with respect to the nth outcome 
(m = 1, ..,M; n = 1, ..,N ; k = 1, ..,K ) of the mth solu-
tion. Let rk denote the collective kth reference point with 
respect to attribute k, separating losses from gains. The 
determination of the collective reference point value 
rk considering each expert’s preferences is briefly intro-
duced in the “Basic model” section. Due to the complexi-
ties of such an emergency decision-making problem, we 
use interval values rather than crisp values to measure 
these parameters, including xmnk and rk.

Methods
This section investigates in detail the proposed emer-
gency decision-making model based on CPT with 
interval uncertainty consideration. In the “Information 
gathering” section, we briefly introduce the calculation of 
a collective reference point for each criterion. The “Payoff 
calculation” section presents how the payoffs with inter-
val uncertainty are obtained. Finally, we explore the rank-
ing order of different emergency response solutions in 
terms of their prospect values.

Information gathering
As mentioned in the Introduction, individuals tend 
to treat outcomes as gains and losses from reference 
points. Therefore, the values of reference points are 
vital throughout the decision-making process. In exist-
ing studies, the reference points are generally based 
on crisp values. Uncertainty, however, exists in most 
real-world cases, calling for a more flexible model for 
a better measure of reality. To address this issue, we 
introduce interval values to represent reference points 
and attribute values in this study. Note that in GDM, 
each individual may have different reference points for 
each criterion, and therefore, it makes sense to incor-
porate all individuals’ opinions and obtain a collective 
reference point for each criterion.

There are multiple methods to aggregate the DM’s 
preferences, such as the weighted sum method [24], 
OWA [25], and IOWA [26]. However, this problem is 
neither a major concern in this paper, nor a key com-
ponent of our model. Therefore, the most commonly 
used method, i.e., the weighted sum method, is adopted 
in this study to combine each individual’s prefer-
ence value. The expert’s weight, however, is not given 
in advance. To address this issue, we follow Chen and 
Yang [27]—the closer an expert’s preference value is 
to the mean value, the larger should be the assigned 
weight.

Following tradition, let {E1, E2, …, EH} be a group of 
experts characterized by their unique backgrounds and 
knowledge, and K criteria are considered in the group 
emergency decision-making problem. Assume that a 
decision matrix with interval numbers is formulated as

where Ehk stands for the reference point value of expert 
Eh regarding criterion k, denoted as an interval number 
[

EL
hk ,E

H
hk

]

.
In particular, we need to, first, normalize the matrix 

so that the reference point value regarding different cri-
teria can be normalized later. For that purpose, each Ehk 
is normalized to Rhk using the following relation for the 
benefit-type criterion:

For the cost-type criterion, the following relation is 
adopted as

(1)

Criterion 1 Criterion 2 · · · Criterion K

E1
[

EL
11,E

H
11

] [

EL
12,E

H
12

]

· · ·
[

EL
1K ,E

H
1K

]

E2
[

EL
21,E

H
21

] [

EL
22,E

H
22

]

· · ·
[

EL
2K ,E

H
2K

]

· · · · · · · · · · · · · · ·

EH
[

EL
H1,R

H
H1

] [

EL
H2,E

H
H2

]

· · ·
[

EL
HK ,E

H
HK

]

,

(2)

RL
hk =

EL
hk −minh Ehk

maxh Ehk −minh Ehk
, RH

hk =
EH
hk −minh Ehk

maxh Ehk −minh Ehk

Fig. 1  Solution procedure for the group medical emergency 
decision-making problem
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where maxh Ehk = max(maxh E
L

hk
, maxh E

H

hk
), minh Ehk

= min(minh E
L

hk
, minh E

H

hk
) . The normalized Rhk has an 

apparent value between 0 and 1.
Then, the normalized decision-matrix describing 

experts’ preferences on the reference point is

We next obtain the mean reference point value 
Rk = [R

L

k
,R

H

k
] for all experts for each criterion, calculated 

as follows:

Note that Rk = [R
L

k
,R

H

k
].

(3)

RL
hk =

maxh Ehk − EL
hk

maxh Ehk −minh Ehk
, RH

hk =
maxh Ehk − EH

hk

maxh Ehk −minh Ehk

Criterion 1 Criterion 2 · · · Criterion K

E1
[

RL
11,R

H
11

] [

RL
12,R

H
12

]

· · ·
[

RL
1K ,R

H
1K

]

E2
[

RL
21,R

H
21

] [

RL
22,R

H
22

]

· · ·
[

RL
2K ,R

H
2K

]

· · · · · · · · · · · · · · ·

EH
[

RL
H1,R

H
H1

] [

RL
H2,R

H
H2

]

· · ·
[

RL
HK ,R

H
HK

]

(4)R
L
k =

1

H

H
∑

h=1

RL
hk , R

H
k =

1

H

H
∑

h=1

RH
hk

Then, the distance between the preference of expert h, 
that is, Rhk =

[

EL
hk ,E

H
hk

]

 , and the mean reference point 
regarding criterion k, Rk = [R

L

k
,R

H

k
] , is obtained as

Thereafter, a distance matrix D with numerical number 
is formulated as

The similarity between each expert’s opinions and the 
mean value is measured using

As mentioned earlier, an expert with a more similar 
value to the mean value is given a greater weight, com-
puted as

(5)dhk =

√

(EL
hk − R

L

k
)2 + (EH

hk − R
H

k
)2

2
,

(6)

Criterion 1 Criterion 2 · · · Criterion K
E1 d11 d12 · · · dK1

E2 d21 d22 · · · dK2

· · · · · · · · · · · · · · ·

EH dH1 dH2 · · · dHK

(7)dh =

K
∑

k=1

(1− dhk)

Fig. 2  Description of risk decision-making in a medical emergency response



Page 6 of 12Sun et al. BMC Medical Informatics and Decision Making          (2022) 22:124 

When the weights have been obtained, we then com-
bine all the experts’ opinions into a global one. The col-
lective reference point for criterion k is computed as

Payoff calculation
Suppose that R = [RL,RH ] and C = [CL,CH ] are two 
interval values. In particular, let R = [RL,RH ] represent 
the reference point, dividing gains and losses regarding 
different outcomes. Table 2 shows the possible relation-
ships between these two reference points [8].

In other words, for the benefit type criteria, an attribute 
value greater than the reference value is treated as a gain 
to the individual, but for the cost type (e.g., time, cost), 
the smaller the value, the better. The attribute value is 
treated as a gain only if it is less than the reference value; 
otherwise, it is a loss.

To calculate the relationship between two inter-
val values, we first form the following definition. Let 
C = [CL,CH ] be an interval attribute value, and x be a 
random variable with uniform distribution. Then, the 

(8)wh = dh/

H
∑

h=1

dh.

(9)

rk =

H
∑

h=1

wh × Rhk ⇒
[

rLk , r
U
k

]

=

H
∑

h=1

wh ×
[

RL
hk ,R

U
hk

]

probability density function of x is expressed using the 
following form

where 
∫ CH

CL f (x)dx = 1.
As there are six possible relationships between two 

interval values, we take only the first case in Table  2 to 
illustrate how the payoff for the individual is obtained. 
Note that the following calculation is for the benefit cri-
terion. Obviously, no gain can be obtained, as CH < RL . 
The loss is given by

Refer to Wang et al. [8] for more details. In summary, 
the payoffs for all possible scenarios under the two differ-
ent criteria types are tabulated in Table 3.

Prospect value calculation
This subsection explores how the prospect value is 
obtained based on CPT. Assume that M possible solu-
tions exist in the case of a medical emergency. N differ-
ent outcomes may occur under each solution with certain 
possibilities, resulting in various consequences on K 

(10)f (x) =

{

1
CH−CL , C

L ≤ x ≤ CH

0, otherwise
,

(11)
L =

∫ CH

CL
(x − RL)f (x)dx

= 0.5 ∗ (CL + CH )− RL

Table 2  Six possible relationships between R and C 
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criteria. We aim to determine the optimal solution for 
the experts based on their preferences.

To calculate the prospect value of each response alter-
native, we first need to measure its outcome on each 
criterion. As described before, more than one criterion 
is allowed in this study. According to the collective ref-
erence point rk and the interval attribute value xmnk, the 
gain or loss to the DM, denoted as zmnk, can be obtained 
using Table 3 based on the criterion type. Then, for each 
zmnk, the following PT function is applied to measure its 
outcome on each criterion

where vmnk refers to the normalized gain or loss for each 
criterion value.

Note that as more than one attribute is considered, dif-
ferent outcomes on each attribute need to be normalized 
before aggregation [28]. Therefore, the following process 
is carried out to normalize each attribute value as

where v∗k = maxm∈M, n∈N {|vmnk |}.
The weighting function in CPT is another important 

factor that cannot be overlooked. For the sake of com-
putation, we adopt a neo-additive probability weighting 
function [29], shown as

where 0 < µ < 1 . When μ is equal to 1, Eq. (14) can read 
as w(p) = p , representing no probability weighting. This 
simple formulation of the function provides the essen-
tial features of CPT in that small probabilities tend to be 
overweighted whereas big probabilities tend to be under-
weighted. Note that researchers have recommended 

(12)vmnk =

{

zαmnk , zmnk ≥ 0

−�(−zmnk)
β , zmnk < 0

.

(13)

ṽmnk =
vmnk

v
∗
k

, m = 1, 2, . . . ,M;

n = 1, 2, . . . ,N ; k = 1, 2, . . . ,K ,

(14)w(p) =







1 p = 1

µp+ 1
2
(1− µ) 0 < p < 1

0 p = 0

,

different values under certain situations in terms of μ. 
However, such a problem is neither the major concern 
nor a key component of our study. We set μ as 0.6 in this 
study.

After we obtain the normalized criterion value 
and weighting function, the prospect value of each 
event is obtained using the formulation of Blei-
chrodt et  al. [30]. The normalized outcomes ṽmnk 
( m = 1, 2, ...,M; n = 1, 2, ...,N ; k = 1, 2, ...,K  ) are 
ranked in descending order as ṽmnk ≥ ṽm,n+1,k . Outcome 
ṽmnk occurs with probability pik , and attribute j has mi 
different outcomes that are gains regarding prospect i. 
Next, the prospect value of the ith event solution under 
this condition is formulated as

where π+
j (pik) = w+

j (pi1, ..., pik)− w+
j (pi1, ..., pi, k−1) 

and π−
j (pik) = w−

j (pik , ..., pin)− w−
j (pi,k+1, ..., pin) . 

π+
j (p) and π−

j (p) are the decision weights for the jth 
attribute’s gains and losses, respectively. ṽikj is the nor-
malized value obtained in Eq.  (13). w1, w2, …, wJ are 
attribute weights summing to one.

Results
This section presents an example to illustrate the feasi-
bility and applicability of the proposed model and pro-
cedure when dealing with medical emergency situations. 
In addition, we carry out comparative studies to observe 
how the parameter values affect the results.

(15)

PVi = w1





m1
�

k=1

π+
1 (pik)ṽik1+

n
�

k=m1+1

π−
1 (pik)ṽik1





+ w2





m2
�

k=1

π+
2 (pik)ṽik2+

n
�

k=m2+1

π−
2 (pik)ṽik2





+ . . .

wJ





mJ
�

k=1

π+
J (pik)ṽikJ+

n
�

k=mJ+1

π−
J (pik)ṽikJ



,

Table 3  Payoffs for the benefit type criteria in six scenarios

Case Relation Benefit type Cost type

Loss Gain Loss Gain

1 C
H < R

L
0.5(CL + C

H)− R
L 0 R

L − 0.5(CL + C
H) 0

2 R
H < C

L 0 0.5(CL + C
H)− R

H 0 R
H − 0.5(CL + C

H)

3 C
L < R

L ≤ C
H < R

H
0.5(CL − R

L) 0 0.5(RL − C
L) 0

4 R
L < C

L ≤ R
H < C

H 0 0.5(CH − R
H) 0 0.5(RH − C

H)

5 C
L < R

L < R
H < C

H
0.5(CL − R

L) 0.5(CH − R
H) 0.5(RL − C

L) 0.5(RH − C
H)

6 R
L ≤ C

L < C
H ≤ R

H 0 0 0 0
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Basic model
Assume an emergency scenario of an individual 
involved in an accident, who needs immediate surgery. 
Based on the symptoms and analysis by four experts, 
three feasible actions are proposed for how to deal with 
the emergency:

A1: traditional method
A2: standard treatment method
A3: new therapy method

To select a desirable response action to the emer-
gency, three criteria are considered: 

C1: main immediate treatment effect
C2: potential effects after surgery in the long run
C3: positive ripple effect on the hospital

Criteria C1, C2, and C3 are the benefit types. In other 
words, a greater value is preferred. Due to the complex-
ities of the problem, DMs would rather use crisp values 
representing the reference points. The weights for the 
three criteria are 0.4, 0.35, and 0.25. The scale param-
eter is set as 1 and the loss aversion parameter is � = 2.

Basically, the surgery can either succeed or fail for 
each response action. Thus, only two situations can 
occur for each solution. We assume that the success 
and failure possibilities for each solution are p11 = 0.75, 
p12 = 0.25, p21 = 0.8, p22 = 0.2, p31 = 0.7, and p32 = 0.3. 
We argue that the parameter settings and values are 
for illustrative purposes only. Such a problem is neither 
the major concern in our study, nor a key factor for our 
emergency decision-making model. In practice, how-
ever, these values can be determined by expert elicita-
tion, historical statistics, or experiments [28].

To tackle this emergency decision-making problem, 
the proposed procedure is adopted. The solution pro-
cess is explained step by step below. First, the criteria, 
reference points, and possible emergency response are 
determined as mentioned above. Then, four experts 
(physicians) give their individual reference point value 
for each criterion using interval values, denoted as

To begin with, we normalize matrix E for the reference 
point value using Eqs. (2)–(3), obtained as

The mean reference point for each criterion is obtained as 
R1 = [0.339, 0.786],R2 = [0.25, 0.844],R3 = [0.265, 0.794] . 
Then, the distance matrix between each expert and the 
mean preference value is calculated using Eq. (5) as

Take d11 in the above matrix as an example. It is calcu-
lated as follows:

Next, the weights of the experts are obtained using Eqs. 
(7)–(8) as w1 = 0.277,w2 = 0.227,w3 = 0.261,w4 = 0.236

.
Last, a collective reference point can be cal-

culated using the weighted sum method as 
r1 = [42.738, 49.012], r2 = [50.068, 54.798], r3 = [0.495, 0.586].

For step 5 in Fig. 1, the possible outcomes of each solu-
tion for each criterion are collected and tabulated in 
Table 4.

Based on the procedure of the decision-making model, 
we first need to calculate the relative payoff of all solu-
tions for each criterion. To solve this, the relative payoffs 
are tabulated in Table  5 (based on Table  3). Note that 
crisp values, instead of interval values, for each criterion 
are obtained.

Criterion 1 Criterion 2 Criterion 3
E1 [40, 48] [50, 55] [0.48, 0.58]
E2 [38, 46] [48, 54] [0.45, 0.54]
E3 [45, 50] [52, 56] [0.50, 0.60]
E4 [48, 52] [50, 54] [0.55, 0.62]

Criterion 1 Criterion 2 Criterion 3
E1 [0.143, 0.714] [0.25, 0.875] [0.177, 0.765]
E2 [0, 0.571] [0, 0.75] [0, 0.529]
E3 [0.5, 0.857] [0.5, 1.0] [0.294, 0.882]
E4 [0.714, 1.0] [0.25, 0.75] [0.588, 1.0]

0.148 0.022 0.066

0.284 0.189 0.265

0.124 0.209 0.066

0.305 0.066 0.271

d11 =

√

(0.143− 0.339)2 + (0.714 − 0.786)2

2
= 0.148

Table 4  Outcomes of three decision actions for each criterion

Solution Succeed Fail

C1 C2 C3 C1 C2 C3

A1 [60, 70] [80, 85] [0.75, 0.8] [30, 40] [40, 45] [0.35, 0.4]

A2 [70, 75] [72, 80] [0.75, 0.85] [32, 42] [46, 48] [0.45, 0.5]

A3 [82, 88] [75, 80] [0.8, 0.84] [36, 44] [35, 40] [0.48, 0.5]
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Take the first item in Table  5 as an example. C is 
[60, 70] and R (i.e., r1) is [42.738, 49.012]. In this 
case, we have RH < CL and the second scenario is 
satisfied. Therefore, the payoff under this case is 
0.5(CL + C

H )− R
H = 0.5 ∗ (60+ 70)− 49.012 = 65−

49.012 = 15.988 . The same logic applies in other situ-
ations too. First, Eq.  (12) is used to compute the rela-
tive gains or losses on each criterion using CPT. Then, 
Eq. (13) is used to normalize each attribute value so that 
they can be aggregated. The weighting function is used 
to transfer the possibility value of each solution out-
come using Eq. (14). Take the first transition weight as 
an example, w(p11) = 0.6 ∗ 0.75+ 0.5 ∗ (1− 0.6) = 0.65 . 
Transition weights are the transferred weights (subjec-
tive probabilities) rather than the objective probabili-
ties based on the weighting function in CPT. Table  6 
gives the relatives payoffs and transition weights for 
each solution using CPT. Finally, we use Eq. (15) to cal-
culate the prospect value of each solution.

As there are only two possible outcomes of each solu-
tion, Eq. (15) can be simplified. Take A1, as an example, 
its prospect value is calculated based on Eq. (15) as

The prospect value of each of the three solutions is 
obtained as 0.257, 0.431, and 0.422, respectively. It is 
easy to obtain the following results: PV2 > PV3 > PV1. 
Accordingly, the solution with the maximum prospect 
value, that is, A2, is chosen as the best solution in this 
situation.

PV1 = w1 × π+
1 (pik)ṽik1 + w2 × π−

2 (pik)ṽik2

= 0.725× 0.65− 0.613× 0.35

= 0.257

Comparative analysis
Impact of criteria
In this subsection, a comparative study taking into 
account only one attribute value is first carried out. Using 
the proposed method, we evaluate the prospect value of 
each solution considering each of the three attributes 
independently. Note that transition weights are adopted. 
Figure 3 gives the prospect values for three different solu-
tions under each criterion and the corresponding ranking 
of alternatives with respect to each situation.

From Fig.  3, we find that the ranking order differs in 
three different situations. Specifically, if considering only 
criterion C1, the prospect value for each solution is 0.138, 
0.342, and 0.549, respectively. Accordingly, the ranking 
order is A3, followed by A2 and A1. Considering criterion 
C2, the prospect value for each solution is 0.459, 0.450, 
and 0.163, respectively. For this reason, the optimal solu-
tion in this case is A1, followed by A2 and A3. When it 
comes to criterion C3, the ranking order is the same as 
that of criterion C1, although the prospect values differ.
Impact of outcome weights
For the sake of comparison, we continue the experiment 
with individuals having original weights, which refer 
to the objective probabilities as settled in the baseline. 
Table 7 gives the final outcomes. It is easy to obtain the 
following results: PV3 > PV2 > PV1. Accordingly, the solu-
tion having the maximum prospect value, that is, A3, is 
chosen as the best solution in this case. This outcome dif-
fers greatly from that in Table 6. The reason may be that 
small probabilities are overweighted, and large probabili-
ties are underweighted when applying CPT in this model, 
leading to the change in prospect value of each solution. 
The change of the ranking order highlights, at least to an 
extent, the importance of considering transition weights 
throughout the decision-making process.

Impact of experts’ weights
As multiple experts are considered in this study, all their 
opinions are taken into account. It is logical that different 
experts’ weights may impact the final solution. To address 
this issue, five scenarios are considered in Table 8. In par-
ticular, the first line shows the baseline, as illustrated in 
the “Basic model” section. For scenarios 1 to 4, only one 
expert’s opinions are considered. We aim to show the 

Table 5  Relative payoffs of three decision actions for each criterion

Solution Succeed Fail

C1 C2 C3 C1 C2 C3

A1 15.988 27.702 0.189 − 7.738 − 7.568 − 0.120

A2 23.488 21.202 0.214 − 5.738 − 3.068 − 0.023

A3 35.988 22.702 0.234 − 3.369 − 12.568 − 0.008

Table 6  Prospect values of three decision actions

Solution Normalized value Transition 
weights

Prospect value

Succeed Fail Succeed Fail

A1 0.725 − 0.613 0.65 0.35 0.257

A2 0.752 − 0.252 0.68 0.32 0.431

A3 0.931 − 0.408 0.62 0.38 0.422
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importance of GDM. In scenario 5, the four experts are 
set the same weights regardless of their opinions.

From Fig.  4, the prospect values for each solution are 
different, and the optimal selection varies for differ-
ent scenarios. In particular, the second solution, A2, is 
selected as the optimal solution for the baseline, scenario 

1, scenario 4, and scenario 5. For scenario 2, in which 
only the second expert’s opinions are considered, solu-
tion A1 is chosen as the best one. For scenario 3, which 
considers only the third expert’s opinions, solution A3 is 
the optimal one. The differences highlight the importance 
of considering multiple experts’ opinions in decision-
making, especially in the case of an emergency, where 
one DM might not be able to acquire all the important 
information.

Conclusion
This study explores a group medical decision-making 
problem in the case of an emergency. Traditional meth-
ods seldom incorporate individuals’ risk preferences into 
decision-making, which is not realistic. In this study, a 
multi-attribute CPT based model is investigated to deal 
with the selection of potential emergency alternatives. 
We extend the existing research by incorporating interval 
values to allow more uncertainty in the model. Our illus-
trative example and comparative study show that con-
sidering multiple experts and multiple attributes is more 
reasonable, especially under complicated situations in 
an emergency. In addition, DMs’ risk preferences highly 
affect the selection outcomes, highlighting their impor-
tance in the medical decision-making process.

Several directions can be considered for future 
research. For example, more criteria could be con-
sidered, such as time or cost factors; other types of 
experts’ preferences can be adopted throughout deci-
sion making process, such as linguistic information 
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Fig. 3  Prospect values of three solutions for each criterion

Table 7  Relative payoffs of three decision actions for each 
criterion under original weights

Solution Normalized value Original weights Value

Succeed Fail Succeed Fail

A1 0.730 − 0.310 0.75 0.25 0.470

A2 0.758 − 0.127 0.8 0.2 0.581

A3 0.937 − 0.204 0.7 0.3 0.594

Table 8  Five different scenarios with respect to different experts’ 
weights

Scenario Experts’ weights

E1 E2 E3

Baseline 0.277 0.227 0.261 0.236

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0.25 0.25 0.25 0.25
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or intuitionistic fuzzy preference relations. We aim to 
continue our research in this direction.
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maker.
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